

Developments in Group Field Theory Cosmology

A collective effort: D. Oriti, E. Wilson-Ewing, S. Gielen, M. Sakellariadou, A. Pithis, M. de Cesare, A. Polaczek, A. Jercher, A. Calcinari, R. Dekhil, X. Pang, L. Mickel, T. Ladstätter, P. Fischer, . . .

Luca Marchetti

ILQGS 18 April 2023

Department of Mathematics and Statistics UNB Fredericton

Overview

Introduction to Group Field Theory

- Group Field Theory and spinfoam models
- Group Field Theory and Loop Quantum Gravity
- Including scalar matter

Group Field Theory Cosmology

- Basic principles
- Homogeneous and isotropic sector
 - Volume
 - Matter
- Inhomogeneous sector
 - First steps and limitations
 - Super-horizon limit
 - Perturbations at all scales

Introduction to Group Field Theory

Group Field Theory and spinfoam models

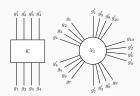
Group Field Theories: theories of a field $\varphi: G^d \to \mathbb{C}$ defined on d copies of a group manifold G.

Group Field Theories: theories of a field $\varphi: G^d \to \mathbb{C}$ defined on d copies of a group manifold G.

$$S[\varphi,\bar{\varphi}] = \int\!\mathrm{d}g_a\bar{\varphi}(g_a)\mathcal{K}[\varphi](g_a) + \sum_{\gamma}\frac{\lambda_{\gamma}}{n_{\gamma}}\,\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] + \mathsf{c.c.}\,.$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{\mathsf{a}} \prod_{(\mathsf{a},i;b,j)} \mathcal{V}_{\gamma}(\mathsf{g}_{\mathsf{a}}^{(i)},\mathsf{g}_{\mathsf{b}}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(\mathsf{g}_{\mathsf{a}}^{(i)}) \,.$$

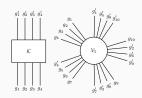


Group Field Theories: theories of a field $\varphi: G^d \to \mathbb{C}$ defined on d copies of a group manifold G.

$$S[\varphi,\bar{\varphi}] = \int\!\mathrm{d}g_a\bar{\varphi}(g_a)\mathcal{K}[\varphi](g_a) + \sum_{\gamma}\frac{\lambda_{\gamma}}{n_{\gamma}}\,\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] + \mathsf{c.c.}\,.$$

- ► Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ :

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{\mathsf{a}} \prod_{(\mathsf{a}, \mathsf{i}, \mathsf{b}, \mathsf{i})} \mathcal{V}_{\gamma}(g_{\mathsf{a}}^{(i)}, g_{\mathsf{b}}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{\mathsf{a}}^{(i)}) \,.$$



$$Z[\varphi,\bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma}$$

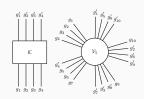
- lacktriangledown $\Gamma=$ stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.
- \blacktriangleright Amplitudes A_{Γ} = sums over group theoretic data associated to the cellular complex.

Group Field Theories: theories of a field $\varphi: G^d \to \mathbb{C}$ defined on d copies of a group manifold G.

$$S[\varphi,\bar{\varphi}] = \int\!\mathrm{d}g_a\bar{\varphi}(g_a)\mathcal{K}[\varphi](g_a) + \sum_{\gamma}\frac{\lambda_{\gamma}}{n_{\gamma}}\,\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] + \mathsf{c.c.}\,.$$

- ► Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph γ:

$$\mathsf{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{\mathsf{a}} \prod_{(\mathsf{a}, \mathsf{i}, \mathsf{b}, \mathsf{i})} \mathcal{V}_{\gamma}(g_{\mathsf{a}}^{(i)}, g_{\mathsf{b}}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{\mathsf{a}}^{(i)}) \,.$$



$$Z[arphi,ar{arphi}]=\sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma}= ext{ complete spinfoam model}.$$

- ightharpoonup $\Gamma=$ stranded diagrams dual to d-dimensional cellular complexes of arbitrary topology.
- lacktriangle Amplitudes $A_{\Gamma}=$ sums over group theoretic data associated to the cellular complex.
- $ightharpoonup \mathcal{K}$ and \mathcal{V}_{γ} chosen to match the desired spinfoam model.

One-particle Hilbert space

The one-particle Hilbert space is $\mathcal{H}_{tetra}\subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

One-particle Hilbert space

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric)

$$\mathcal{H}_{\Delta_2} = L^2(\mathfrak{g})$$

Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a simplicial interpretation of the fundamental quanta:

Closure

$$\rightarrow X \cdot B_a = 0 \text{ (BC)}$$

One-particle Hilbert space

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric)

$$\mathcal{H}_{\Delta_a} = L^2(\mathfrak{g})$$

Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a simplicial interpretation of the fundamental quanta:

$$\blacktriangleright X \cdot B_a = 0 \text{ (BC)}$$

One-particle Hilbert space

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

$$\begin{array}{ccc} \text{Lie algebra (metric)} & \text{Lie group (connection)} \\ \mathcal{H}_{\Delta_{a}} = \textit{L}^{2}(\mathfrak{g}) & & \text{FT} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$

Geometricity constraints (appropriately encoded in K and V_{γ}) allow for a simplicial interpretation of the fundamental quanta:

One-particle Hilbert space

The one-particle Hilbert space is $\mathcal{H}_{tetra}\subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Lie algebra (metric) Lie group (connection) Representation space
$$\mathcal{H}_{\Delta_{a}} = L^{2}(\mathfrak{g}) \xrightarrow{\text{Non-comm.}} \mathcal{H}_{\Delta_{a}} = L^{2}(G) \xrightarrow{\text{Peter-Weyl}} \mathcal{H}_{\Delta_{a}} = \bigoplus_{J_{a}} \mathcal{H}_{J_{a}}$$

Geometricity constraints (appropriately encoded in $\mathcal K$ and $\mathcal V_\gamma$) allow for a simplicial interpretation of the fundamental quanta:

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a simplicial interpretation of the fundamental quanta:

- ▶ Impose simplicity and reduce to G = SU(2).
- ► Impose closure (gauge invariance).

The one-particle Hilbert space is $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$ (subset defined by the imposition of constraints)

Constraints

Geometricity constraints (appropriately encoded in \mathcal{K} and \mathcal{V}_{γ}) allow for a simplicial interpretation of the fundamental quanta:

Simplicity THIS TALK $X \cdot (B - \gamma \star B)_{a} = 0 \text{ (EPRL)};$ $\sum_{a} B_a = 0$

- ▶ Impose simplicity and reduce to G = SU(2).
- ► Impose closure (gauge invariance).

$$\mathcal{H}_{\mathsf{tetra}} = \bigoplus_{\vec{j}} \mathsf{Inv} \left[\bigotimes_{a=1}^{4} \mathcal{H}_{j_a} \right]$$

= open spin-network vertex space

The Group Field Theory Fock space

Tetrahedron wavefunction

$$arphi(g_1,\ldots,g_4)$$
 (subject to constraints)

The Group Field Theory Fock space

Tetrahedron wavefunction

$$arphi(g_1,\ldots,g_4)$$
 (subject to constraints)

GFT field operator

$$\hat{arphi}(g_1,\ldots,g_4)$$
 (subject to constraints)

The Group Field Theory Fock space

Tetrahedron wavefunction

$$arphi(g_1,\ldots,g_4)$$
 (subject to constraints)

GFT field operator $\hat{\varphi}(g_1,\ldots,g_4)$ ubject to constraints

$$\mathcal{F}_{GFT} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{tetra}^{(1)} \otimes \mathcal{H}_{tetra}^{(2)} \otimes \dots \mathcal{H}_{tetra}^{(V)} \right]$$

- $\blacktriangleright \ \ \mathcal{F}_{\mathsf{GFT}} \ \ \mathsf{generated} \ \ \mathsf{by} \ \ \mathsf{action} \ \ \mathsf{of} \ \ \hat{\varphi}^\dagger(g_{\mathsf{a}}) \ \ \mathsf{on} \ \ |0\rangle, \ \mathsf{with} \ \ [\hat{\varphi}(g_{\mathsf{a}}), \hat{\varphi}^\dagger(g_{\mathsf{a}}')] = \mathbb{I}_{\mathcal{G}}(g_{\mathsf{a}}, g_{\mathsf{a}}').$
- ▶ $\mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}$, \mathcal{H}_{Γ} space of states associated to connected simplicial complexes Γ.
- ▶ Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- ▶ Similar to \$\mathcal{H}_{LQG}\$ but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Tetrahedron wavefunction

$$arphi(g_1,\ldots,g_4)$$
 (subject to constraints)

GFT field operator $\hat{\varphi}(g_1,\ldots,g_4)$ ubject to constraints

$$\mathcal{F}_{GFT} = \bigoplus_{V=0}^{\infty} \operatorname{sym} \left[\mathcal{H}_{tetra}^{(1)} \otimes \mathcal{H}_{tetra}^{(2)} \otimes \dots \mathcal{H}_{tetra}^{(V)} \right]$$

- $ightharpoonup \mathcal{F}_{\mathsf{GFT}}$ generated by action of $\hat{\varphi}^{\dagger}(g_{\mathsf{a}})$ on $|0\rangle$, with $[\hat{\varphi}(g_{\mathsf{a}}),\hat{\varphi}^{\dagger}(g_{\mathsf{a}}')] = \mathbb{I}_{\mathsf{G}}(g_{\mathsf{a}},g_{\mathsf{a}}')$.
- $\blacktriangleright \ \, \mathcal{H}_{\Gamma} \subset \mathcal{F}_{GFT}, \, \mathcal{H}_{\Gamma} \text{ space of states associated to connected simplicial complexes } \Gamma.$
- ▶ Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- ightharpoonup Similar to \mathcal{H}_{LQG} but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

erators

Volume operator
$$\hat{V} = \int \mathrm{d}g_{\mathsf{a}}^{(1)} \, \mathrm{d}g_{\mathsf{a}}^{(2)} \, V(g_{\mathsf{a}}^{(1)}, g_{\mathsf{a}}^{(2)}) \hat{\varphi}^{\dagger}(g_{\mathsf{a}}^{(1)}) \hat{\varphi}(g_{\mathsf{a}}^{(2)}) = \sum_{j_{\mathsf{a}}, m_{\mathsf{a}}, \iota} V_{j_{\mathsf{a}}, \iota} \hat{\varphi}_{j_{\mathsf{a}}, m_{\mathsf{a}}, \iota} \hat{\varphi}_{j_{\mathsf{a}}, m_{\mathsf{a}}, \iota}$$

▶ Generic second quantization prescription to build a m + n-body operator: sandwich matrix elements between spin-network states between m powers of $\hat{\varphi}^{\dagger}$ and n powers of $\hat{\varphi}$.

Group Field Theory and matter: scalar fields

Group Field Theories: theories of a field $\varphi: G^d \to \mathbb{C}$ defined on the product G^d .

d is the dimension of the "spacetime to be" (d=4) and G is the local gauge group of gravity, $G=\operatorname{SL}(2,\mathbb{C})$ or, in some cases, $G=\operatorname{SU}(2)$.

Kinematics

Quanta are d-1-simplices decorated with quantum geometric and scalar data:

▶ Geometricity constraints imposed analogously as before.

$$\mathcal{H}_{\text{tetra}} =$$
 j_3
 j_1

Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity + scalar fields path integral.

 Geometric data enter the action in a non-local and combinatorial fashion.

Group Field Theory and matter: scalar fields

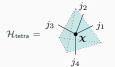
Group Field Theories: theories of a field $\varphi: G^d \times \mathbb{R}^{d_l} \to \mathbb{C}$ defined on the product of G^d and \mathbb{R}^{d_l} .

d is the dimension of the "spacetime to be" (d=4) and G is the local gauge group of gravity, $G=\operatorname{SL}(2,\mathbb{C})$ or, in some cases, $G=\operatorname{SU}(2)$.

Kinematics

Quanta are d-1-simplices decorated with quantum geometric and scalar data:

- ► Geometricity constraints imposed analogously as before.
- lackbox Scalar field discretized on each d-simplex: each d-1-simplex composing it carries values $oldsymbol{\chi} \in \mathbb{R}^{d_{\parallel}}.$



Dynamics

 S_{GFT} obtained by comparing Z_{GFT} with simplicial gravity + scalar fields path integral.

- Geometric data enter the action in a non-local and combinatorial fashion.
- Scalar field data are local in interactions.
- ► For minimally coupled, free, massless scalars:

$$\mathcal{K}(g_a, g_b; \chi^{\alpha}, \chi^{\alpha'}) = \mathcal{K}(g_a, g_b; (\chi^{\alpha} - \chi^{\alpha'})^2)$$

 $\mathcal{V}_5(g_a^{(1)}, \dots, g_a^{(5)}, \chi) = \mathcal{V}_5(g_a^{(1)}, \dots, g_a^{(5)})$

Group Field Theory Cosmology

The main ingredients

GFT condensates

- ▶ From the GFT perspective, continuum geometries are associated to large number of quanta.
- ► The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_\sigma \exp\left[\int \mathrm{d}^{d_l}\chi \int \mathrm{d}g_{\mathrm{a}}\,\sigma(g_{\mathrm{a}},\chi^\alpha) \hat{\varphi}^\dagger(g_{\mathrm{a}},\chi^\alpha)\right] |0\rangle\,.$$

GFT condensates

- ▶ From the GFT perspective, continuum geometries are associated to large number of quanta.
- The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_\sigma \exp\left[\int \mathrm{d}^{d_I}\chi \int \mathrm{d}g_a\, \sigma(g_a,\chi^\alpha) \hat{\varphi}^\dagger(g_a,\chi^\alpha)\right] |0\rangle\,.$$

Mean-field approximation

When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:

$$\left\langle \frac{\delta S[\hat{\varphi},\hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_I,x^{\alpha})} \right\rangle_{\sigma} = \left. \int \mathrm{d}h_a \int \mathrm{d}\chi \, \mathcal{K}(g_a,h_a,(x^{\alpha}-\chi^{\alpha})^2) \sigma(h_a,\chi^{\alpha}) + \lambda \frac{\delta V[\varphi,\varphi^*]}{\delta \varphi^*(g_a,x^{\alpha})} \right|_{\varphi=\sigma} = 0 \, . \label{eq:delta-eq}$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

GFT condensates

- ▶ From the GFT perspective, continuum geometries are associated to large number of quanta.
- The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_\sigma \exp\left[\int \mathrm{d}^{d_J}\chi \int \mathrm{d}g_a\, \sigma(g_a,\chi^\alpha) \hat{\phi}^\dagger(g_a,\chi^\alpha)\right] |0\rangle\,.$$

Mean-field approximation

When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:

$$\left\langle \frac{\delta S[\hat{\phi},\hat{\phi}^{\dagger}]}{\delta \hat{\phi}(g_{I},x^{\alpha})} \right\rangle_{\sigma} = \left. \int \! \mathrm{d}h_{a} \! \int \! \mathrm{d}\chi \, \mathcal{K}(g_{a},h_{a},(x^{\alpha}-\chi^{\alpha})^{2}) \sigma(h_{a},\chi^{\alpha}) + \lambda \frac{\delta V[\phi,\phi^{*}]}{\delta \phi^{*}(g_{a},x^{\alpha})} \right|_{\phi=\sigma} = 0 \; . \label{eq:delta_spectrum}$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

Condensate Peaked States

 \blacktriangleright Constructing relational observables on $\mathcal{F}_{\mathsf{GFT}}$ is difficult (QFT with no continuum intuition).

GFT condensates

- ▶ From the GFT perspective, continuum geometries are associated to large number of quanta.
- ▶ The simplest states that can accommodate infinite number of quanta are condensate states:

$$|\sigma\rangle = \mathcal{N}_\sigma \exp\left[\int \mathrm{d}^{d_f}\chi \int \mathrm{d}g_a\, \sigma(g_a,\chi^\alpha) \hat{\varphi}^\dagger(g_a,\chi^\alpha)\right] |0\rangle\,.$$

Mean-field approximation

lacktriangle When interactions are small (certainly satisfied in an appropriate regime) the dynamics of σ is:

$$\left\langle \frac{\delta S[\hat{\phi},\hat{\phi}^{\dagger}]}{\delta \hat{\phi}(g_{I},x^{\alpha})} \right\rangle_{\sigma} = \left. \int \mathrm{d}h_{a} \! \int \! \mathrm{d}\chi \, \mathcal{K}(g_{a},h_{a},(x^{\alpha}-\chi^{\alpha})^{2}) \sigma(h_{a},\chi^{\alpha}) + \lambda \frac{\delta V[\phi,\phi^{*}]}{\delta \phi^{*}(g_{a},x^{\alpha})} \right|_{\phi=\sigma} = 0 \; . \label{eq:delta_spectrum}$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

Condensate Peaked States

- ightharpoonup Constructing relational observables on $\mathcal{F}_{\mathsf{GFT}}$ is difficult (QFT with no continuum intuition).
- Relational localization implemented at an effective level on observable averages.
- ▶ If χ^{μ} constitute a reference frame, this can be achieved by assuming $\sigma = \text{(fixed peaking function } \eta) \times \text{(dynamically determined reduced wavefunction } \tilde{\sigma}\text{)}$

Homogeneous sector

Spatial relational homogeneity:

 σ depends on a single "clock" scalar field χ^0 ($\mathcal{D}=$ minisuperspace + clock)

Spatial relational homogeneity:

 σ depends on a single "clock" scalar field χ^0 $(\mathcal{D} = \text{minisuperspace} + \text{clock})$

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot,\cdot) = \int \mathrm{d}\chi^0 \mathrm{d}g_a$):

$$\hat{N} = (\hat{\varphi}^{\dagger}, \hat{\varphi}) \qquad \qquad \hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$$

$$\hat{X}^{0} = (\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}) \qquad \qquad \hat{\Pi}^{0} = -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi})$$

 \blacktriangleright Observables \leftrightarrow collective operators on Fock space.

Spatial relational homogeneity:

 σ depends on a single "clock" scalar field χ^0 $(\mathcal{D} = \text{minisuperspace} + \text{clock})$

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_{\theta}$):

$$\hat{N} = (\hat{\varphi}^{\dagger}, \hat{\varphi}) \qquad \qquad \hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$$

$$\hat{X}^{0} = (\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}) \qquad \qquad \hat{\Pi}^{0} = -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi})$$

- $\blacktriangleright \ \ \, \mathsf{Observables} \, \leftrightarrow \mathsf{collective} \,\, \mathsf{operators} \,\, \mathsf{on} \,\, \mathsf{Fock} \,\, \mathsf{space}.$
- $\langle \hat{O} \rangle_{\sigma_{\chi^0}} = O[\tilde{\sigma}]|_{\chi^0 = x^0}:$ functionals of $\tilde{\sigma}$ localized at x^0 .

Spatial relational homogeneity:

 σ depends on a single "clock" scalar field χ^0 $(\mathcal{D} = \text{minisuperspace} + \text{clock})$

Collective Observables

Relationality

Number, **volume** (determined e.g. by the mapping with LQG) and **matter** operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\hat{N}=(\hat{\varphi}^{\dagger},\hat{\varphi})$$
 $\hat{V}=(\hat{\varphi}^{\dagger},V[\hat{\varphi}])$

 $\hat{\mathbf{X}}^0 = (\hat{\varphi}^\dagger, \chi^0 \hat{\varphi})$ $\hat{\mathbf{\Pi}}^0 = -i(\hat{\varphi}^\dagger, \partial_0 \hat{\varphi})$

► Observables ↔ collective operators on Fock space.

► Averaged evolution wrt
$$x^0$$
 is physical:

): Intensive $-\langle \hat{\chi}^0 \rangle_{\sigma.a.} \equiv \langle \hat{X}^0 \rangle_{\sigma.a.} / \langle \hat{N} \rangle_{\sigma.a.} \simeq x^0$

- ► Emergent effective relational description:
 - Small clock quantum fluctuations.
 - Effective Hamiltonian $H_{\sigma_{\chi^0}} \simeq \langle \hat{\Pi}^0 \rangle_{\sigma_{\chi^0}}$

 $\langle \hat{O} \rangle_{\sigma_{\chi^0}} = O[\tilde{\sigma}]|_{\chi^0 = x^0} :$ functionals of $\tilde{\sigma}$ localized at x^0 .

Spatial relational homogeneity:

 σ depends on a single "clock" scalar field χ^0 $(\mathcal{D} = minisuperspace + clock)$

Collective Observables

Number, volume (determined e.g. by the mapping with LQG) and matter operators (notation: $(\cdot, \cdot) = \int d\chi^0 dg_a$):

$$\begin{split} \hat{N} &= (\hat{\varphi}^{\dagger}, \hat{\varphi}) & \hat{V} &= (\hat{\varphi}^{\dagger}, V[\hat{\varphi}]) \\ \hat{X}^{0} &= (\hat{\varphi}^{\dagger}, \chi^{0} \hat{\varphi}) & \hat{\Pi}^{0} &= -i(\hat{\varphi}^{\dagger}, \partial_{0} \hat{\varphi}) \end{split}$$

- Observables \leftrightarrow collective operators on Fock space.

functionals of
$$\tilde{\sigma}$$
 localized at x^0 .

$$\langle \hat{V} \rangle_{\sigma_X^0} = \sum_{v} V_v |\tilde{\sigma}_v|^2 (x^0)$$

Relationality

• Averaged evolution wrt x^0 is physical:

$$\langle \hat{\chi}^0 \rangle_{\sigma_{\mathbf{x}^0}} \equiv \langle \hat{X}^0 \rangle_{\sigma_{\mathbf{x}^0}} / \langle \hat{\mathbf{N}} \rangle_{\sigma_{\mathbf{x}^0}} \simeq \mathbf{x}^0$$

- ► Emergent effective relational description:
 - Small clock quantum fluctuations.
 - Effective Hamiltonian $H_{\sigma_{v^0}} \simeq \langle \hat{\Pi}^0 \rangle_{\sigma_{v^0}}$

$$v = j \in \mathbb{N}/2$$
 (EPRL);

$$v = \rho \in \mathbb{R} \text{ (ext. BC)}$$

Mean-field approximation

- ► Mesoscopic regime: large *N* but negligible interactions.
- \blacktriangleright Derivative expansion of ${\cal K}$ (due to peaking properties).
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

Mean-field approximation

- ► Mesoscopic regime: large *N* but negligible interactions.
- \blacktriangleright Derivative expansion of ${\cal K}$ (due to peaking properties).
- Isotropy: $\tilde{\sigma}_{\upsilon} \equiv \rho_{\upsilon} e^{i\theta_{\upsilon}}$ fundamental variables.

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

Effective relational Freidmann dynamics

$$\left(\frac{V'}{3V}\right)^2 \simeq \left(\frac{2 \mathop{\rm st}}_{\scriptscriptstyle U} V_\upsilon \rho_\upsilon {\rm sgn}(\rho_\upsilon') \sqrt{\mathcal{E}_\upsilon - Q_\upsilon^2/\rho_\upsilon^2 + \mu_\upsilon^2 \rho_\upsilon^2}}{3 \mathop{\rm st}}_{\scriptscriptstyle U} V_\upsilon \rho_\upsilon^2}\right)^2, \quad \frac{V''}{V} \simeq \frac{2 \mathop{\rm st}}_{\scriptscriptstyle U} V_\upsilon \left[\mathcal{E}_\upsilon + 2\mu_\upsilon^2 \rho_\upsilon^2\right]}{\mathop{\rm st}}_{\scriptscriptstyle U} V_\upsilon \rho_\upsilon^2}$$

Effective relational volume dynamics

Mean-field approximation

- ► Mesoscopic regime: large *N* but negligible interactions.
- \blacktriangleright Derivative expansion of ${\cal K}$ (due to peaking properties).
- Isotropy: $\tilde{\sigma}_v \equiv \rho_v e^{i\theta_v}$ fundamental variables.

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

Effective relational Freidmann dynamics

$$\left(\frac{V'}{3V}\right)^2 \simeq \left(\frac{2 \cancel{\$}_v \ V_v \rho_v \mathrm{sgn}(\rho_v') \sqrt{\mathcal{E}_v - Q_v^2/\rho_v^2 + \mu_v^2 \rho_v^2}}{3 \cancel{\$}_v \ V_v \rho_v^2}\right)^2, \quad \frac{V''}{V} \simeq \frac{2 \cancel{\$}_v \ V_v \left[\mathcal{E}_v + 2\mu_v^2 \rho_v^2\right]}{\cancel{\$}_v \ V_v \rho_v^2}$$

Classical limit (large ρ_v s, late times)

If μ_v^2 is mildly dependent on v (or one v is dominating) and equal to $3\pi G$

$$(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$$

 Quantum fluctuations on clock and geometric variables are under control.

Effective relational volume dynamics

Eff. dynamics

Mean-field approximation

- ► Mesoscopic regime: large *N* but negligible interactions.
- \blacktriangleright Derivative expansion of ${\cal K}$ (due to peaking properties).
- Isotropy: $\tilde{\sigma}_v \equiv \rho_v e^{i\theta_v}$ fundamental variables.

$$\tilde{\sigma}_{\upsilon}^{\prime\prime}-2i\tilde{\pi}_{0}\tilde{\sigma}_{\upsilon}^{\prime}-E_{\upsilon}^{2}\tilde{\sigma}=0.$$

Effective relational Freidmann dynamics

$$\left(\frac{V'}{3V}\right)^2 \simeq \left(\frac{2 \mathop{\rm sh}}{v} \mathop{\rm V}_v \rho_v \mathop{\rm sgn}(\rho_v') \sqrt{\mathcal{E}_v - Q_v^2/\rho_v^2 + \mu_v^2 \rho_v^2}}{3 \mathop{\rm sh}}\right)^2, \quad \frac{V''}{V} \simeq \frac{2 \mathop{\rm sh}}{v} \mathop{\rm V}_v \left[\mathcal{E}_v + 2\mu_v^2 \rho_v^2\right]}{\mathop{\rm sh}}^2$$

Classical limit (large ρ_{υ} s, late times)

 \blacktriangleright If μ_{υ}^2 is mildly dependent on υ (or one υ is dominating) and equal to $3\pi {\it G}$

$$(V'/3V)^2 \simeq 4\pi G/3 \longrightarrow \text{flat FLRW}$$

 Quantum fluctuations on clock and geometric variables are under control.

Bounce

- A non-zero volume bounce happens for a large range of initial conditions (at least one Q_v ≠ 0 or one E_v < 0).</p>
- The average singularity resolution may still be spoiled by quantum effects on geometric and clock variables.

(T)GFT interactions and matter

Running couplings and effective potentials

- ▶ Adding a scalar field ϕ with potential U_{ϕ} requires (T)GFT interactions, as $V_{\gamma} = V_{\gamma}(\{g\}, U_{\phi})$.
- Interactions studied perturbatively at late times (mesoscopic regime) and in single j approx.

(T)GFT interactions and matter

Running couplings and effective potentials

- ▶ Adding a scalar field ϕ with potential U_{ϕ} requires (T)GFT interactions, as $V_{\gamma} = V_{\gamma}(\{g\}, U_{\phi})$.
- ▶ Interactions studied perturbatively at late times (mesoscopic regime) and in single j approx.

Modulus interactions

$$\begin{split} & \text{notation: } (\cdot, \cdot) = \! \int \! \mathrm{d}^4 \chi \mathrm{d} \phi \mathrm{d} g_{\tilde{g}} \\ & \mathsf{Tr}_{\mathcal{V}_{\gamma_l}}^{(m)} \left[\varphi, \bar{\varphi} \right] \sim \left(\mathcal{V}_{\gamma_l}^{(m)}, \bar{\varphi}^{(l+1)/2} \varphi^{(l+1)/2} \right) \end{split}$$

- \checkmark GR matching possible only if I=5, and if
- Macroscopic constants (including G) run with relational time!

(T)GFT interactions and matter

Running couplings and effective potentials

- Adding a scalar field ϕ with potential U_{ϕ} requires (T)GFT interactions, as $\mathcal{V}_{\gamma} = \mathcal{V}_{\gamma}(\{g\}, U_{\phi})$.
- Interactions studied perturbatively at late times (mesoscopic regime) and in single j approx.

Modulus interactions

$$\begin{split} & \text{notation: } (\cdot, \cdot) = \! \int \! \mathrm{d}^4 \chi \mathrm{d}\phi \mathrm{d}g_{\text{a}} \\ & \mathsf{Tr}_{\mathcal{V}_{\gamma_l}}^{(m)} \left[\varphi, \bar{\varphi} \right] \sim \left(\mathcal{V}_{\gamma_l}^{(m)}, \bar{\varphi}^{(l+1)/2} \varphi^{(l+1)/2} \right) \end{split}$$

- \checkmark GR matching possible only if I = 5, and if
- Macroscopic constants (including G) run with relational time!

Phase interactions

notation:
$$(\cdot, \cdot) = \int \mathrm{d}^4 \chi \mathrm{d}\phi \mathrm{d}g_a$$

$$\mathsf{Tr}_{\mathcal{V}_{\gamma_I}}^{(p)} = \left(\mathcal{V}_{\gamma_I}^{(p)}, \varphi^{l+1}\right)$$

- \checkmark GR matching possible only if I = 5, but
- Effective scalar field potential corrected by trigonometric factors.

Running couplings and effective potentials

- Adding a scalar field ϕ with potential U_{ϕ} requires (T)GFT interactions, as $V_{\gamma} = V_{\gamma}(\{g\}, U_{\phi})$.
 - Interactions studied perturbatively at late times (mesoscopic regime) and in single j approx.

Modulus interactions

$$\begin{split} & \text{notation: } (\cdot, \cdot) = \! \int \! \mathrm{d}^4 \chi \mathrm{d} \phi \mathrm{d} g_{\text{d}} \\ \mathsf{Tr}_{\mathcal{V}_{\gamma_l}}^{(m)} [\varphi, \bar{\varphi}] \sim \big(\mathcal{V}_{\gamma_l}^{(m)}, \bar{\varphi}^{(l+1)/2} \varphi^{(l+1)/2}\big) \end{split}$$

- \checkmark GR matching possible only if I=5, and if
- Macroscopic constants (including G) run with relational time!

Phase interactions

notation:
$$(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$$

$$\mathsf{Tr}_{\mathcal{V}_{\gamma_I}}^{(p)} = (\mathcal{V}_{\gamma_I}^{(p)}, \varphi^{I+1})$$

- \checkmark GR matching possible only if I = 5, but
- Effective scalar field potential corrected by trigonometric factors.

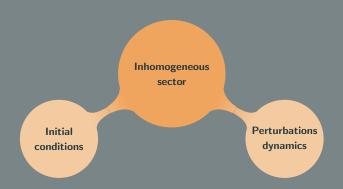
Emergent matter components

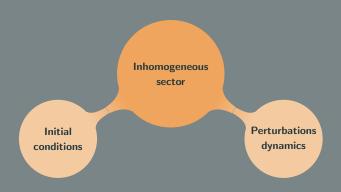
- Matter can also emerge as a result of pure QG effects!
- ightharpoonup Consider modulus interactions at very late times, but include a subdominant spin j':

$$w = 3 - 2(VV'')/(V')^2 \simeq -1 - b/V$$
, $b > 0$.

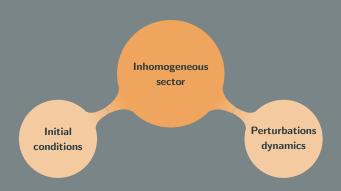
Universe effectively dominated by (non-pathologic) emergent phantom dark energy.

Inhomogeneous sector

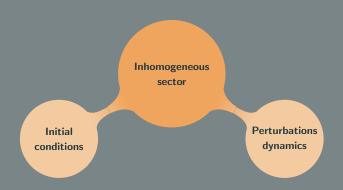




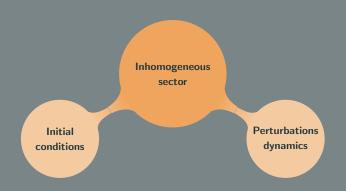
► Fock quantize the emergent perturbation dynamics.



- ► Fock quantize the emergent perturbation dynamics.
- Extract quantum properties directly from GFT.



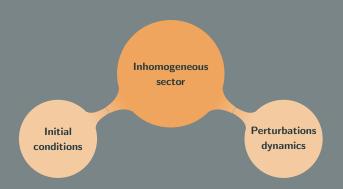
- ► Fock quantize the emergent perturbation dynamics.
- Extract quantum properties directly from GFT.
 - First step in GFT using second moment $\delta^2 \hat{V}$.
 - What about higher moments? Is \hat{V} really relational? Only a background result?



- ► Fock quantize the emergent perturbation dynamics.
- Extract quantum properties directly from GFT.
 - First step in GFT using second moment $\delta^2 \hat{V}$.
 - What about higher moments? Is \hat{V} really relational? Only a background result?

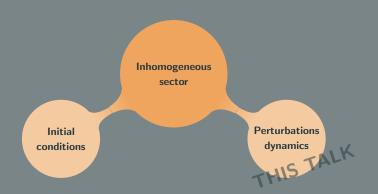
Gielen, Oriti, 1709.01095; Gerhart, Oriti, Wilson-Ewing 1805.03099.

► Goal: vector, tensor, scalar modes at all scales.



- ► Fock quantize the emergent perturbation dynamics.
- Extract quantum properties directly from GFT.
 - First step in GFT using second moment $\delta^2 \hat{V}$.
 - What about higher moments? Is \hat{V} really relational? Only a background result?

- ► Goal: vector, tensor, scalar modes at all scales.
- First step in GFT for scalar perturbations in the separate universe framework.
 - Can we extend to all scales? Can we use a proper physical reference frame?



- ► Fock quantize the emergent perturbation dynamics.
- Extract quantum properties directly from GFT.
 - First step in GFT using second moment $\delta^2 \hat{V}$.
 - What about higher moments? Is \hat{V} really relational? Only a background result?

- ► Goal: vector, tensor, scalar modes at all scales.
- First step in GFT for scalar perturbations in the separate universe framework.
 - Can we extend to all scales? Can we use a proper physical reference frame?

Simplest (slightly) relationally inhomogeneous system

Simplest (slightly) relationally inhomogeneous system

Classical

- ▶ 4 MCMF reference fields (χ^0, χ^i) , with Lorentz/Euclidean invariant S_{χ} in field space.
- ▶ 1 MCMF matter field ϕ dominating the e.m. budget and relationally inhomog. wrt. χ^i .

Simplest (slightly) relationally inhomogeneous system

Classical

- ▶ 4 MCMF reference fields (χ^0, χ^i) , with Lorentz/Euclidean invariant S_χ in field space.
- ▶ 1 MCMF matter field ϕ dominating the e.m. budget and relationally inhomog. wrt. χ^i .

Quantum

- GFT field: φ(g_a, χ^μ, φ), depends on 5 discretized scalar variables.
- EPRL-like model with S_{GFT} respecting the classical matter symmetries.

Simplest (slightly) relationally inhomogeneous system

Classical

- ▶ 4 MCMF reference fields (χ^0, χ^i) , with Lorentz/Euclidean invariant S_{χ} in field space.
- ▶ 1 MCMF matter field ϕ dominating the e.m. budget and relationally inhomog. wrt. χ^i .

Observables

notation: $(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$

$$\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \quad \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi})$$

Only isotropic info: $\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$

$$\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi})$$
 $\hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$

Quantum

- ► GFT field: $\varphi(g_a, \chi^{\mu}, \phi)$, depends on 5 discretized scalar variables.
- EPRL-like model with S_{GFT} respecting the classical matter symmetries.

Simplest (slightly) relationally inhomogeneous system

Classical

- ▶ 4 MCMF reference fields (χ^0, χ^i) , with Lorentz/Euclidean invariant S_{χ} in field space.
- ▶ 1 MCMF matter field ϕ dominating the e.m. budget and relationally inhomog. wrt. χ^i .

Observables

notation: $(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$

 $\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \quad \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi})$

Only isotropic info: $\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$

 $\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi})$ $\hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$

Quantum

- ► GFT field: $\varphi(g_a, \chi^{\mu}, \phi)$, depends on 5 discretized scalar variables
- EPRL-like model with S_{GFT} respecting the classical matter symmetries.

States

- CPSs around $\chi^{\mu} = x^{\mu}$, with
 - η: Isotropic peaking on rods;
 - $\tilde{\sigma}$: Isotropic distribution of geometric data.
- Small relational $\tilde{\sigma}$ -inhomogeneities ($\tilde{\sigma} = \rho e^{i\theta}$): $\rho = \bar{\rho}(\cdot, \chi^0) + \delta \rho(\cdot, \chi^\mu), \ \theta = \bar{\theta}(\cdot, \chi^0) + \delta \theta(\cdot, \chi^\mu),$

notation:
$$(\cdot, \cdot) = \int \mathrm{d}^4 \chi \mathrm{d} \phi \mathrm{d} g_{\mathsf{d}}$$

$$\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \quad \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi})$$

Only isotropic info:
$$\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$$

$$\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi})$$
 $\hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$

States

- ightharpoonup CPSs around $\chi^{\mu} = \chi^{\mu}$, with
 - η: Isotropic peaking on rods;
 - σ̃: Isotropic distribution of geometric data.
- ▶ Small relational $\tilde{\sigma}$ -inhomogeneities ($\tilde{\sigma} = \rho e^{i\theta}$): $\rho = \bar{\rho}(\cdot, \chi^0) + \delta \rho(\cdot, \chi^\mu), \ \theta = \bar{\theta}(\cdot, \chi^0) + \delta \theta(\cdot, \chi^\mu).$

Late times volume and matter dynamics

- Averaged q.e.o.m. (no interactions) \longrightarrow coupled eqs. for (ρ, θ) . Dynamic equations
- for $\langle \hat{V} \rangle_{\tau}$, $\langle \hat{\Phi} \rangle_{\tau}$. spin Decoupling for a range of values of CPSs and large N (late times).

notation:
$$(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$$

$$\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \quad \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi})$$

Only isotropic info:
$$\hat{V}=(\hat{arphi}^{\dagger},\,V[\hat{arphi}])$$

$$\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi})$$
 $\hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$

States

- ightharpoonup CPSs around $\chi^{\mu} = \chi^{\mu}$, with
 - η: Isotropic peaking on rods;
 - σ̃: Isotropic distribution of geometric data.
- ▶ Small relational $\tilde{\sigma}$ -inhomogeneities ($\tilde{\sigma} = \rho e^{i\theta}$): $\rho = \bar{\rho}(\cdot, \chi^0) + \delta \rho(\cdot, \chi^\mu), \ \theta = \bar{\theta}(\cdot, \chi^0) + \delta \theta(\cdot, \chi^\mu).$

Late times volume and matter dynamics

- single Averaged q.e.o.m. (no interactions) \longrightarrow coupled eqs. for (ρ, θ) . Dynamic equations
- Decoupling for a range of values of CPSs and large N (late times).

for $\langle \hat{V} \rangle_{\tau}$, $\langle \hat{\Phi} \rangle_{\tau}$. spin

Background

- Matching with GR possible.
- Emergent matter and G defined in terms of microscopic parameters.

notation:
$$(\cdot, \cdot) = \int \mathrm{d}^4 \chi \mathrm{d} \phi \mathrm{d} g_{\mathsf{d}}$$

$$\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \quad \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi})$$

Only isotropic info:
$$\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$$

$$\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi}) \qquad \hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$$

States

- ▶ CPSs around $\chi^{\mu} = x^{\mu}$, with
 - η: Isotropic peaking on rods;
 - $\tilde{\sigma}$: Isotropic distribution of geometric data.
- Small relational $\tilde{\sigma}$ -inhomogeneities ($\tilde{\sigma} = \rho e^{i\theta}$): $\rho = \bar{\rho}(\cdot, \chi^0) + \delta \rho(\cdot, \chi^\mu), \ \theta = \bar{\theta}(\cdot, \chi^0) + \delta \theta(\cdot, \chi^\mu).$

Late times volume and matter dynamics

- $lackbox{ Averaged q.e.o.m. (no interactions)} \longrightarrow \mathsf{coupled} \ \mathsf{eqs. for} \ (\rho, \theta).$
- $\frac{\text{single}}{\text{spin}} \quad \begin{array}{c} \text{Dynamic equations} \\ \text{for } \langle \hat{V} \rangle_{\sigma}, \ \langle \hat{\Phi} \rangle_{\sigma}. \end{array}$
- ightharpoonup Decoupling for a range of values of CPSs and large N (late times).

Perturbations

- Matching with GR possible.
- ► Emergent matter and *G* defined in terms of microscopic parameters.
- Super-horizon GR matching.

Background

notation:
$$(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$$

$$\hat{X}^{\mu}=(\hat{arphi}^{\dagger},\chi^{\mu}\hat{arphi})\ \hat{\Pi}^{\mu}=-i(\hat{arphi}^{\dagger},\partial_{\mu}\hat{arphi})$$

Only isotropic info:
$$\hat{V}=(\hat{arphi}^{\dagger},\,V[\hat{arphi}])$$

$$\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi})$$
 $\hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$

States

- ► CPSs around $\chi^{\mu} = x^{\mu}$, with
 - η: Isotropic peaking on rods;
 - $\tilde{\sigma}$: Isotropic distribution of geometric data.
- Small relational $\tilde{\sigma}$ -inhomogeneities ($\tilde{\sigma} = \rho e^{i\theta}$): $\rho = \bar{\rho}(\cdot, \chi^0) + \delta \rho(\cdot, \chi^\mu), \ \theta = \bar{\theta}(\cdot, \chi^0) + \delta \theta(\cdot, \chi^\mu).$

Late times volume and matter dynamics

- $lackbox{ Averaged q.e.o.m. (no interactions)} \longrightarrow \mathsf{coupled} \ \mathsf{eqs. for} \ (\rho, \theta).$
- Spin Dynamic equations for $\langle \hat{V} \rangle_{\sigma}$, $\langle \hat{\Phi} \rangle_{\sigma}$.
- lacktriangle Decoupling for a range of values of CPSs and large N (late times).

Background

Mat. Vol. Frame

- Matching with GR possible.
- ► Emergent matter and *G* defined in terms of microscopic parameters.

Perturbations

- Super-horizon GR matching.
- No matching for intermediate and subhorizon modes. Frame coupling issues?

notation: $(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$

$$\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \quad \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi})$$

Only isotropic info:
$$\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$$

$$\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi})$$
 $\hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$

States

- ▶ CPSs around $\chi^{\mu} = x^{\mu}$, with
 - n: Isotropic peaking on rods:
 - σ̃: Isotropic distribution of geometric data.
- ► Small relational $\tilde{\sigma}$ -inhomogeneities ($\tilde{\sigma} = \rho e^{i\theta}$): $\rho = \bar{\rho}(\cdot, \chi^0) + \delta \rho(\cdot, \chi^\mu), \ \theta = \bar{\theta}(\cdot, \chi^0) + \delta \theta(\cdot, \chi^\mu).$

Super-horizon volume and matter dynamics

- Averaged q.e.o.m. (no interactions) \longrightarrow coupled eqs. for (ρ, θ) .
- single Dynamic equations for $\langle \hat{V} \rangle_{\tau}$, $\langle \hat{\Phi} \rangle_{\tau}$

Restrict to super-horizon modes but study also early times.

notation: $(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$

$$\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \ \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi})$$

Only isotropic info:
$$\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$$

$$\hat{\Phi} = (\hat{arphi}^{\dagger}, \phi \hat{arphi}) \qquad \hat{\Pi}_{\phi} = -i(\hat{arphi}^{\dagger}, \partial_{\phi} \hat{arphi})$$

States

- ► CPSs around $\chi^{\mu} = x^{\mu}$, with
 - η: Isotropic peaking on rods;
 - $\tilde{\sigma}$: Isotropic distribution of geometric data.
- ► Small relational $\tilde{\sigma}$ -inhomogeneities ($\tilde{\sigma} = \rho e^{i\theta}$): $\rho = \bar{\rho}(\cdot, \chi^0) + \delta \rho(\cdot, \chi^\mu), \ \theta = \bar{\theta}(\cdot, \chi^0) + \delta \theta(\cdot, \chi^\mu).$

Super-horizon volume and matter dynamics

- $\qquad \qquad \textbf{Averaged q.e.o.m. (no interactions)} \longrightarrow \textbf{coupled eqs. for } (\rho, \theta).$
- single Dynamic equations for $\langle \hat{V} \rangle_{\sigma}$, $\langle \hat{\Phi} \rangle_{\sigma}$

Restrict to super-horizon modes but study also early times.

Modified gravity

- Dynamics of super-horizon scalar perturbations can be obtained generically for any MG theory.
- No matching at early times with effective GFT volume dynamics.

Super-horizon scalar perturbations

Observables

notation: $(\cdot, \cdot) = \int d^4 \chi d\phi dg_a$

$$\hat{X}^{\mu} = (\hat{\varphi}^{\dagger}, \chi^{\mu} \hat{\varphi}) \quad \hat{\Pi}^{\mu} = -i(\hat{\varphi}^{\dagger}, \partial_{\mu} \hat{\varphi})$$

Only isotropic info:
$$\hat{V} = (\hat{\varphi}^{\dagger}, V[\hat{\varphi}])$$

$$\hat{\Phi} = (\hat{\varphi}^{\dagger}, \phi \hat{\varphi})$$
 $\hat{\Pi}_{\phi} = -i(\hat{\varphi}^{\dagger}, \partial_{\phi} \hat{\varphi})$

States

- ► CPSs around $\chi^{\mu} = x^{\mu}$, with
 - η : Isotropic peaking on rods;
 - σ̃: Isotropic distribution of geometric data.
- ► Small relational $\tilde{\sigma}$ -inhomogeneities ($\tilde{\sigma} = \rho e^{i\theta}$): $\rho = \bar{\rho}(\cdot, \chi^0) + \delta \rho(\cdot, \chi^\mu), \ \theta = \bar{\theta}(\cdot, \chi^0) + \delta \theta(\cdot, \chi^\mu).$

Super-horizon volume and matter dynamics

- Averaged q.e.o.m. (no interactions) \longrightarrow coupled eqs. for (ρ, θ) .

 Restrict to super-horizon modes but study also early times.
- single Dynamic equations for $\langle \hat{V} \rangle_{\sigma}$, $\langle \hat{\Phi} \rangle_{\sigma}$
- times. $\frac{1}{\text{spin}}$ for $\langle \hat{V} \rangle_{\sigma}$, $\langle \hat{\Phi} \rangle_{\sigma}$

Modified gravity

Aat. Vol. Frame

- Dynamics of super-horizon scalar perturbations can be obtained generically for any MG theory.
- No matching at early times with effective GFT volume dynamics.

Perturbing background dynamics

- ► Study super-horizon scalar perturbations by perturbing background QG volume eq.
- No matching at early times with full effective GFT volume dynamics

Scalar perturbations at all scales

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model.

 $ightharpoonup arphi_{lpha} \equiv arphi(g_{a}, X_{lpha}, \chi^{\mu}, \phi), g \in \mathrm{SL}(2, \mathbb{C}), X_{lpha} \text{ tetrahedron normal defining its causal character, } \alpha = \pm.$

Scalar perturbations at all scales

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model.

• $\varphi_{\alpha} \equiv \varphi(g_a, X_{\alpha}, \chi^{\mu}, \phi)$, $g \in SL(2, \mathbb{C})$, X_{α} tetrahedron normal defining its causal character, $\alpha = \pm ...$

Two-sector Fock space

- ▶ Generic operators on $\mathcal{F} = \mathcal{F}_+ \otimes \mathcal{F}_-$ correlate spacelike and timelike tetrahedra.
- Volume operator is an exception: $\hat{V} = \hat{V}_+ \otimes \mathbb{I}_-$.

Scalar perturbations at all scales

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model.

 $\qquad \qquad \varphi_{\alpha} \equiv \varphi(\mathsf{g}_{\mathsf{a}}, \mathsf{X}_{\alpha}, \chi^{\mu}, \phi), \ \mathsf{g} \in \mathrm{SL}(2, \mathbb{C}), \ \mathsf{X}_{\alpha} \ \text{tetrahedron normal defining its causal character, } \alpha = \pm.$

Two-sector Fock space

- Generic operators on $\mathcal{F}=\mathcal{F}_+\otimes\mathcal{F}_-$ correlate spacelike and timelike tetrahedra.
- Volume operator is an exception: \(\hat{V} = \hat{V}_+ \otimes \mathbb{I}_-. \)

Frame coupling

$$\begin{split} \mathcal{K}_{+} &= \mathcal{K}_{+}(\cdot, (\chi^{0} - \chi^{0\prime})^{2}), \\ \mathcal{K}_{-} &= \mathcal{K}_{+}(\cdot, |\boldsymbol{\chi} - \boldsymbol{\chi}^{\prime}|^{2}). \end{split}$$

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model.

• $\varphi_{\alpha} \equiv \varphi(g_a, X_{\alpha}, \chi^{\mu}, \phi)$, $g \in SL(2, \mathbb{C})$, X_{α} tetrahedron normal defining its causal character, $\alpha = \pm$.

Two-sector Fock space

- Generic operators on $\mathcal{F}=\mathcal{F}_+\otimes\mathcal{F}_-$ correlate spacelike and timelike tetrahedra.
- $lackbox{Volume operator is an exception: } \hat{V} = \hat{V}_+ \otimes \mathbb{I}_-.$

Frame coupling

$$\begin{split} \mathcal{K}_{+} &= \mathcal{K}_{+}(\cdot, (\chi^{0} - \chi^{0\prime})^{2})\,,\\ \mathcal{K}_{-} &= \mathcal{K}_{+}(\cdot, |\boldsymbol{\chi} - \boldsymbol{\chi}^{\prime}|^{2})\,. \end{split}$$

Including two-body correlations

$$|\psi\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$$

Collective states

Causal frame fields coupling

Causal properties of frame fields can be easily implemented in the complete extended BC model.

 $\qquad \qquad \varphi_{\alpha} \equiv \varphi(\mathsf{g}_{\mathsf{a}}, \mathsf{X}_{\alpha}, \chi^{\mu}, \phi), \ \mathsf{g} \in \mathrm{SL}(2, \mathbb{C}), \ \mathsf{X}_{\alpha} \ \text{tetrahedron normal defining its causal character, } \alpha = \pm.$

Two-sector Fock space

- ▶ Generic operators on $\mathcal{F} = \mathcal{F}_+ \otimes \mathcal{F}_-$ correlate spacelike and timelike tetrahedra.
- $lackbox{Volume operator is an exception: } \hat{V} = \hat{V}_+ \otimes \mathbb{I}_-.$

Frame coupling

$$\begin{split} \mathcal{K}_{+} &= \mathcal{K}_{+}(\cdot, (\chi^{0} - \chi^{0\prime})^{2})\,,\\ \mathcal{K}_{-} &= \mathcal{K}_{+}(\cdot, |\boldsymbol{\chi} - \boldsymbol{\chi}^{\prime}|^{2})\,. \end{split}$$

Including two-body correlations

$$|\psi\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$$

Background

- $\hat{\sigma} = (\sigma, \hat{\varphi}_{+}^{\dagger})$: spacelike condensate.
- $\hat{\tau} = (\tau, \hat{\varphi}^{\dagger})$: timelike condensate.
- au, σ peaked; $ilde{ au}$, $ilde{\sigma}$ homogeneous.

Collective states

Causal properties of frame fields can be easily implemented in the complete extended BC model.

 $\varphi_{\alpha} \equiv \varphi(g_a, X_{\alpha}, \chi^{\mu}, \phi), g \in SL(2, \mathbb{C}), X_{\alpha}$ tetrahedron normal defining its causal character, $\alpha = \pm 1$.

Two-sector Fock space

- Generic operators on $\mathcal{F} = \mathcal{F}_+ \otimes \mathcal{F}_-$ correlate spacelike and timelike tetrahedra.
- ▶ Volume operator is an exception: $\hat{V} = \hat{V}_+ \otimes \mathbb{I}_-$.

Frame coupling

$$\begin{split} \mathcal{K}_{+} &= \mathcal{K}_{+}(\cdot, (\chi^{0} - \chi^{0\prime})^{2})\,,\\ \mathcal{K}_{-} &= \mathcal{K}_{+}(\cdot, |\boldsymbol{\chi} - \boldsymbol{\chi}^{\prime}|^{2})\,. \end{split}$$

Including two-body correlations

$$|\psi\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$$

Background

Perturbations

- $\hat{\tau} = (\tau, \hat{\varphi}^{\dagger})$: timelike condensate.
- \blacktriangleright δΦ, δΨ and δΞ small and relationally inhomogeneous.
- ightharpoonup au, σ peaked; $ilde{ au}$, $ilde{\sigma}$ homogeneous.
- Perturbations = nearest neighbour 2-body correlations.

Including two-body correlations

$$|\psi
angle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{ au} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0
angle$$

Background

Perturbations

- $\hat{\tau} = (\tau, \hat{\varphi}_{-}^{\dagger})$: timelike condensate. $\delta \Phi$, $\delta \Psi$ and $\delta \Xi$ small and relationally inhomogeneous. \blacktriangleright τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.
 - Perturbations = nearest neighbour 2-body correlations.

Scalar perturbations

Mean-field equations (negligible interactions):

$$\left\langle \delta S/\delta \hat{\varphi}_{+}^{\dagger}\right\rangle _{\psi}=0=\left\langle \delta S/\delta \hat{\varphi}_{-}^{\dagger}\right\rangle _{\psi}$$

- 2 coupled eqs. for 3 variables: $(\delta \Phi, \delta \Psi, \delta \Xi)!$
- Late times and single (spacelike) rep. label.

Including two-body correlations

$$|\psi\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$$

Background

Perturbations

- $\hat{\tau} = (\tau, \hat{\varphi}_{-}^{\dagger})$: timelike condensate. \blacktriangleright τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.
- \blacktriangleright $\delta\Phi$, $\delta\Psi$ and $\delta\Xi$ small and relationally inhomogeneous. Perturbations = nearest neighbour 2-body correlations.

Scalar perturbations

Mean-field equations (negligible interactions):

$$\langle \delta S / \delta \hat{\varphi}_{+}^{\dagger} \rangle_{\psi} = 0 = \langle \delta S / \delta \hat{\varphi}_{-}^{\dagger} \rangle_{\psi}$$

- 2 coupled eqs. for 3 variables: $(\delta \Phi, \delta \Psi, \delta \Xi)!$
- ► Late times and single (spacelike) rep. label.

$$\delta V_{\psi} \propto \text{Re}(\delta \Psi, \tilde{\sigma} \tilde{\tau}) + \text{Re}(\delta \Phi, \tilde{\sigma}^2)$$

- Late time GR matching fixes:
 - Parameters determining τ dynamics;
 - Dynamical freedom (e.g. in $\delta \Phi$).

Including two-body correlations

$$|\psi\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$$

Background

Perturbations

- $\hat{\tau} = (\tau, \hat{\varphi}_{-}^{\dagger})$: timelike condensate. \blacktriangleright τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.
- \blacktriangleright $\delta\Phi$, $\delta\Psi$ and $\delta\Xi$ small and relationally inhomogeneous. Perturbations = nearest neighbour 2-body correlations.

Scalar perturbations

Mean-field equations (negligible interactions):

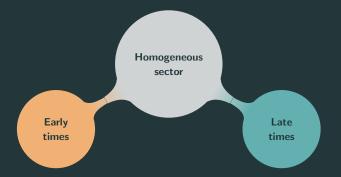
$$\langle \delta S / \delta \hat{\varphi}_{+}^{\dagger} \rangle_{\psi} = 0 = \langle \delta S / \delta \hat{\varphi}_{-}^{\dagger} \rangle_{\psi}$$

- 2 coupled eqs. for 3 variables: $(\delta \Phi, \delta \Psi, \delta \Xi)!$
- Late times and single (spacelike) rep. label.

$$\delta V_{\psi} \propto \text{Re}(\delta \Psi, \tilde{\sigma} \tilde{\tau}) + \text{Re}(\delta \Phi, \tilde{\sigma}^2)$$

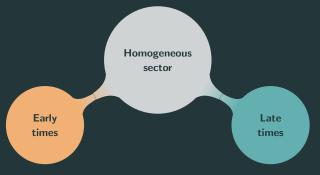
- Late time GR matching fixes:
 - Parameters determining τ dynamics;
 - Dynamical freedom (e.g. in $\delta\Phi$).

Late times volume perturbations dynamics matches GR at all scales!



Results

- $\checkmark\,$ Singularity resolution into quantum bounce.
- ✓ Universal bounce (for MCMF scalar field).
- Impact of quantum effects on the bounce (and interplay with relationality).
- Acceleration produced by the bounce not long enough to sustain inflation.



Results

- Singularity resolution into quantum bounce.
- ✓ Universal bounce (for MCMF scalar field).
- Impact of quantum effects on the bounce (and interplay with relationality).
- Acceleration produced by the bounce not long enough to sustain inflation.

Results

- Small interactions: classical regime identified (small quantum fluctuations and GR matching).
- Universal classical limit (for MCMF scalar field).
- Inclusion of scalar field with potential: emergent running couplings.
- Exotic matter can emerge from GFT interactions.



Perspectives

- Extend the analysis to more generic fluids.
- ► Universal bounce also for generic fluids?
- In particular, would trigonometric modifications to a scalar field potential appear at early times?
- ▲ What kind of inflationary physics is generated?

Perspectives

- Extend the analysis to more generic fluids.
- Universal classical limit also for generic fluids?
- ► Insights on the renormalization properties of GFTs from emergent running couplings?
- ► Can we rely on mean-field approx. at late times?

Results

- Super-horizon analysis in EPRL with MCMF scalar fields:
 - Scalar pert. dynamics differs from any MG model.
 - Full QG scalar pert. dynamics differs from perturbed background dynamics.

Results

- Super-horizon analysis in EPRL with MCMF scalar fields:
 - Scalar pert. dynamics differs from any MG model.
 - Full QG scalar pert. dynamics differs from perturbed background dynamics.

Results

- All scales analysis for complete BC model with MCMF scalar fields:
 - Manifest causal properties of quanta allow for a careful coupling of the physical ref. frame.
 - ✓ Scalar pert. ←→ quantum correlations!
 - ✓ Late-times scalar pert. dynamics matches GR!

Perspectives

- ▲ Different fundamental d.o.f. → different perturbation dynamics?
- ▲ Scalar field perturbations? EFT description?
- ► Are the results universal? Analysis in BC!
- ► Generalization to physically interesting fluids.
- Extension to VT modes: more observables!
- ► Initial conditions and power spectra?
 - Fock quantization of early-times dynamics.
 - Can we derive it from full QG?

rerspectives

- Physical interpretation and consequences of matching conditions?
- Scalar field perturbations? EFT description?
- Are the results universal? Extension to EPRL!
- Generalization to physically interesting fluids.
- Extension to VT modes: more observables!
- How do quantum perturbations classicalize?
- How do GFT interactions change the picture?

$$S = \sum_{\{j_a\}, \{j_a'\}, \{m_a\}, \{m_a'\}, \iota, \iota, \iota'\}} \bar{\varphi}_{\{m_a\}}^{\{j_a\}, \iota'} \chi_{\{m_a\}, \{m_a'\}, \iota, \iota'}^{\{j_a\}, \iota'} + V_5,$$

$$V_5 = \frac{1}{5} \sum_{\{j_a\}, \{m_a\}, \{\iota_b\}} \bar{\varphi}_{i_1 j_2 j_3 i_4 \iota_1}^{j_4 j_5 j_5 i_7 \iota_2} \varphi_{-m_4 m_5 m_6 m_7}^{j_4 j_5 j_5 i_7 \iota_3} \varphi_{-m_7 - m_3 m_8 m_9}^{j_5 j_6 j_2 j_1 \iota_4} \varphi_{-m_1 \iota_0 - m_8 - m_5 - m_1}^{j_1 \iota_5 j_1 \iota_5} \times \prod_{c=1}^{3} (-1)^{j_c - m_c} \mathcal{V}_5(j_1, \ldots, j_{10}; \iota_1, \ldots, \iota_5), \qquad \qquad \begin{array}{c} a = 1, \ldots, 4 \\ b = 1, \ldots, 5 \\ c = 1, \ldots, 5 \end{array}$$

$$\mathcal{V}_5(\{j_c\}, \{\iota_b\}) = \sum_{\{j_a\}} \int \left[\prod_A \mathrm{d} \rho_A(n_A^2 + \rho_A^2) \right] \left[\bigotimes_b f_{\{n_A\}, \{\rho_A\}}^{\iota_b}(\{j_a\}) \right] \{15j\}_{\mathrm{SL}(2, \mathbb{C})},$$

where f maps $SL(2,\mathbb{C})$ data into SU(2) ones by imposing the constraints n=2j and $\rho=2j\gamma$.

$$\begin{split} S &= \left[\prod_{i} \int \mathrm{d}\rho_{i} \, 4\rho_{i}^{2} \sum_{j_{i}m_{i}} \right] \bar{\varphi}_{j_{i}m_{i}}^{\rho_{i}} \varphi_{j_{i}m_{i}}^{\rho_{i}} + \frac{\lambda}{5} \left[\prod_{a=1}^{10} \int \mathrm{d}\rho_{a} \, 4\rho_{a}^{2} \sum_{j_{a}m_{a}} \right] \left[\prod_{a=1}^{10} (-1)^{-j_{a}-m_{a}} \right] \{10\rho\}_{BC} \\ &\times \varphi_{j_{1}m_{1}j_{2}m_{2}j_{3}m_{3}j_{4}m_{4}}^{\rho_{1}\rho_{5}\rho_{6}\rho_{7}} \varphi_{j_{4}-m_{4}j_{5}m_{5}j_{6}m_{6}j_{7}m_{7}}^{\rho_{7}\rho_{3}\rho_{8}\rho_{9}} \\ &\times \varphi_{j_{9}-m_{9}j_{6}-m_{6}j_{2}-m_{2}j_{10}m_{10}}^{\rho_{10}\rho_{8}\rho_{5}\rho_{1}} \varphi_{j_{10}-m_{10}j_{8}-m_{8}j_{5}-m_{5}j_{1}-m_{1}}^{\rho_{7}\rho_{7}\rho_{3}\rho_{8}m_{8}} + \mathrm{c.c.} \end{split}$$