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This talk is about:
• Diffeomorphism Invariance and 

observables in quantum gravity
• The non-locality of quantum gravity observables
• Implications for Information “propagation”

(re: Black Holes, AdS/CFT, etc.)

Key Point:
• HADM is a pure boundary term on the constraint 

surface.  
• Clean statements for appropriate 

boundary conditions.
• We’ll focus on AdS BCs here,

or AdS-like BCS, 
w/ brief comments on As. Flat (details in refs)   
Other BCs = future work
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Punch Line: AdS Boundary Unitarity
1. “Boundary Fields” form a natural set of

observables.  
(E.g., Eab = Cabcd nc nd rescaled and 
pulled back to bndy.)

Let Abndy obs(t) = algebra of boundary 
observables at time t

2. On the constraint surface, 
H is a pure boundary term.

H = H(t) eAbndy obs(t)

Suppose this  is self-adjoint on some Hilbert space.
3. Then H generates time translations (for Observables) via

Abndy obs(t1)  = Abndy obs(t2) “Boundary Unitarity!”

AdS

t=0

In QM, Information present on the Bndy at any one 
time t1 remains present at any other time t2.
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The role of QM

Technical Result: Physical Interpretation

O ∈ A, generated by A1, A2, A3…

1. Holds in QM with usual 
notion of algebra

2. Holds classically for Poisson 
Algebra

Analogy:  Jz ∈ A, generated by Jx, Jy

Similar for QM & CM

QM:  Information about O
can be obtained by measuring 
A1, A2, …

(E.g., Suppose an ensemble of 
identically prepared spins. Find 
Jz as follows: 

For half, measure Jx and then Jy.  

For other half, measure Jy and 
then Jx.)

CM:  Measurements of Jx, Jy,… 
may tell us nothing about Jz !
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Outline:
I. Toy Model for AdS: Gravity in a Box
II. Boundary Unitarity
III. Perturbative Holography
IV. AdS Boundary Conditions
V. Comments on As Flat BCs
VI. Summary
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I.  Gravity in a box
First, review a familiar problem:  
Linear scalar φ in a cylinder in flat space time (radius R).

Cylinder 
of radius 
R in flat 

spacetime

∇2φ - m2φ = 0

Dirichlet data: φD = φ|
r=R

Neumann data: φN = na ∂aφ|
r=R

For well-posed problem, fix one of these (or Robin) as BC.

Say, choose Dirichlet BC: maybe φD = 0. Then φN is dynamical.
Call it a “boundary field.”

Nothing magic here. φN is just a part of φ, which of 
course interacts with the other parts of φ.  Info is 
continually exchanged btwn φN and the rest of φ. 

For z = r-R, φ = φD + z φN + O(z2)

Key physical point: Good phase space if Klein-Gordon 
inner product is conserved. 

F(δφ1, δφ2) = KG flux out of cylinder = ∫
r=R

(δφD
1 δφN

2 - δφD
2 δφN

1)

Same story for non-linear fields.

(very similar to AdS BCs)
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Gravity in a box
Gravity is similar, too: Gab = 8πTab

Dirichlet data: g(0) = g|
r=R

(pull-back)

Neumann data: Pij = [Kij – (1/2)K g(0)
ij ]|

r=R

Expect well-posed initial value problem and short-time 
existence for BCs with F=0.  Say, choose Dirichlet BC: fix g(0)

ij. 

Then Pij is a dynamical “boundary field.”

Note: In Gaussian Normal Coordinates (w/ z=0 on Bndy)

Key physical point: 
Good phase space if symplectic product is conserved. 

F(δg1, δg2) = flux out of cylinder

= ∫Bndy
[ (δg1)ij(0) δPij

2 - (δg2)ij(0) δPij
1]

ds2 = dz2 + gij(x,z) dxidxj,        xi = t,x,y.
gij = gij

(0) + z Kij + …

Cylinder 
of 

finite size
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Which Diffeos are Symmetries?

Cylinder 
of 

finite size

2) Recall: gij
(0) is fixed as a BC.  To preserve BC, ξ(0)

i

must be a KVF of gij
(0) . 

Consider a vector field:

ξa(x,z) = ξ(0)
a (x) + z ξ(1)

a (x) + …

1) To preserve the cylinder, require ξ(0)
a tangent to 

boundary. 

Note: set of ξ(0)
a is finite dimensional.

Defines “asymptotic symmetry group.”
Not gauge symmetries. 

Gauge symmetries are generated by
ξa(x,z) = z ξ(1)

a (x) + …
These act trivially on Bndy, and leave 
invariant bndy fields : φN = na ∂aφ|

r=R
, Pij

I.e., Bndy fields are observables.
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II.  “Boundary Unitarity” 
1. “Boundary Fields” form a natural set of

observables.  

Let Abndy obs(t) = algebra of boundary observables
[generated by φN, Pij] at time t

2. Construct the Hamiltonian:
On the constraint surface, H is a pure boundary term. 
(Time-dependent of t-trans not a symmetry).

H = H(t) eAbndy obs(t)   
[weak equivalence, or action on physical phase space.]

E.g., for above BCs  fixing g(0)
ij and φD=0, find 

H(t) := ∫
Bndy Cut w/ t =const

Pij ξi ni dA (Brown & York)

with ξ = ∂t and ni = normal to t= constant cut of boundary.

Finite 
Cylinder

t=0
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“Boundary Unitarity,” part 2:
H = H(t) eAbndy obs(t)   

E.g.,   H(t) := ∫
t=const

Pij ξi ni dA

Note: For any observable O, 

Abndy obs(t1)  = Abndy obs(t2) “Boundary Unitarity!”

Finite 
Cylinder

t=0

In QM, information present on the Bndy at any 
one time t1 remains present at any other time t2.

∂tO (t) = - i [O(t) ,H(t)]

3. Suppose * that we can exponentiate H(t) to define

Then, as in usual QM, find

O (t2)  = U(t2,t1) O(t1) U(t1,t2) 
I.e., expresses any Bndy Obs at t2

in terms of Bndy Fields φN, Pij, at any other t1.
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Comment on Assumption:
For any observable O, 

Finite 
Cylinder

t=0

∂tO (t) = - i [O(t) ,H(t)]
3. Suppose * that we can exponentiate H(t) to define

QM interpretation: 

Assumes quantum Hamiltonian can still be built from φN, 
Pij,, but that Quantum Gravity “resolves 
singularities”.

Classical Interpretation on space of smooth metrics:  

Assumes long-time existence of solutions to EOMs, 
at least in some neighborhood of the Bndy. 

I.e., form of “Cosmic Censorship.” (False for finite cylinder.)

Appears consistent w/ LQG, and easier for BCs 
where cosmic censorship holds classically.
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i

III. Perturbative Holography

Consider perturbation theory abt some classical solution 
which is flat before t=0.   

(Though need not remain flat for time-dep BCs.
E.g., can make a black hole.)

At linearized level, any hab, φ can be written  (up to gauge) in 
terms of Bndy observables at early times by solving EOMs.

Summary of Above:  Any info ever present in the Bndy
Fields remains encoded in Bndy Fields.

Q: Is this everything?  Or is there more info “in the bulk.”
A: Maybe, but “not much.”

(Related to Holmgren’s Uniqueness Thm.)

Remains true at any order in 
perturbation theory.
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i

Perturbative Holography
So, any perturbative observable can be written  in terms of 
Bndy Observables at early times by solving EOMs.

But in gravity, at any order beyond the linearized
theory, the Hamiltonian can again be written as a 
boundary term!

(I.e., Gauss’ Law gives a useful measure of the energy.)

AAll Pert Obs = ABndy Obs(all t < 0)

Bndy Unitarity Argument

APert Obs (all t < 0) = ABndy Obs (any single t)

AAll Pert Obs = ABndy Obs(any single t)
“Perturbative Holography”
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IV. Similar story for AdS gravity (D=4)

AdS

E.g, fix gij
(0) .  Then  Tij is a dynamical “boundary field.”  

Good phase space if symplectic structure is conserved. 

F(δg1, δg2) = flux out through Bndy = ∫Bndy
[ (δg1)ij(0) δTij

2 - (δg2)ij(0) δTij
1]

Fix Bndy @ z=0.

ds2 = z-2 (dz2 + gij(x,z) dxidxj),        xi = t,x,y.

In Fefferman-Graham Gauge:

gij = gij
(0) + z gij

(1)+ z2gij
(2) + z3βij + …

Determined by gij
(0) Independent of gij

(0)

for D=4

Q: Which diffeos are gauge? 
A:Only those acting trivially on Bndy

& preserving asymptotic form of “z”.

Tij is an observable.  Also true for φN.

Conformal analogue of Gaussian Normal Coordinates.

where Tij = Eij /(D-3), with Eij = limz 0 zD-3 Cijkl nknl

is built from gij
(0) and βij. 
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AdS Boundary Unitarity
1. “Boundary Fields”  Tij, φN form a natural set of

observables.  

Let Abndy obs(t) = algebra of boundary 
observables at time t

2. On solutions, H is a pure boundary term.

H = H(t) eAbndy obs(t)

Suppose  this can be exponentiated.
Note: Classical cosmic censorship is plausible, 
especially for AdS4. 

3. Then H generates time translations 
(for Observables) via

Abndy obs(t1)  = Abndy obs(t2) “Boundary Unitarity!”

AdS

t=0

Perturbative Holography also follows, just 
as for “Gravity in a Box.”
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I+

V. Comments on As Flat case

Claim: A complete set of perturbative
observables is available on I+ in any 
neighborhood of i0.

i0

I-

g0ab

1. Perturbative Holography:

Consider a collapsing black hole background 
g0ab in pure Einstein-Hilbert gravity.

2. Suggests Unitary S-matrix, with 
info imprinted in Hawking radiation 
(next slide).

Basic Mechanism:  Constraints and local energy conservation!
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Cartoon of BH evaporation

Info is carried
deep inside 
the black hole.

But constraints relate HADM to 
THawking

ab and a surface term 
“Gauss Law Grav. Flux” ΦH at 
the horizon.

?
Strong 

Curvature
Suppose physics far from strong 
coupling region is essentially 
perturbative.

Then perturbative holography 
implies that all info is encoded in 
asymptotic fields gab, especially 
HADM.

HADM − ΦH(h) = ∫Σ THawking
ab(h)
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Cartoon of Black Hole Evaporation 2

Σ
HADMΦΗ

Equivalent info 
is stored out 

here
ΦH(h) → 0 as BH evaporates.
⇒ info transferred locally to Tab.

Indeed, once evaporation is complete,
constraint implies HADM ∼ ∫Σ Tab(h).

,

Info shared 
between ΦH and Tab.

Remaining 
info is stored 
here!

I.e., info fully transferred to Hawking radiation.

Info carried inside 
by infalling matter.

?
HADM − ΦH(h) ~ ∫Σ Tab(h)
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Summary:  New Perspective
1. Perturbative Holography 

& (for AdS) Bndy Unitarity
follow from gravitational 
constraints, gauge invariance, and 
quantum Cosmic Censorship.

2. Info is stored in asymptotic local
fields, and throughout BH exterior. 

3. Info can be locally transferred to 
Hawking rad via constraints and (local) 
Energy conservation. 

No new causality violation or 
non-locality required.

AdS
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