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Gravity induced entanglement (GIE)

Can the gravitational interaction entangle two masses?

Does that mean anything about the quantum nature of gravity?

If so, what?

Questions to discuss on this talk:



The BMV experiment



The BMV experiment



1/r Potential can entangle

Bose et al. PRL 119, 240401 (2017)
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1/r Potential can entangle

show, in Supplemental Material [31], that off-diagonal
terms between coherent states (a signature of the quantum
superposition principle) of the Newtonian gravitational
field are necessary for the development of the entanglement
between the test masses.
Our proposal relies on two simple assumptions: (a) the

gravitational interaction between two masses is mediated
by a gravitational field (in other words, it is not a direct
interaction at a distance) and (b) the validity of a central
principle of quantum information theory: entanglement
between two systems cannot be created by local operations
and classical communication (LOCC) [38]. It can readily
be proved that, in the absence of closed timelike loops [39]
(i.e., under the assumption of validity of the chronology
protection conjecture [40]) and as long as the notion of
classicality itself is not extended significantly [41], LOCC
keeps any initially unentangled state separable. Translating
to our setting of two test masses in adjacent interferometers
any external fields (including the gravitational fields from
other masses around them) can only make LOs on their
states, while a classical gravitational field propagating
between the test masses can only give a CC channel
between them. These LOCC processes cannot entangle
the states of the masses. Thus it immediately follows that
if the mutual gravitational interaction entangles the state of
two masses, then the mediating gravitational field is
necessarily quantum mechanical in nature.

Entanglement due to gravitational interaction.—We first
consider a schematic version that clarifies how the states of
two neutral test masses 1 and 2 (masses m1 and m2), each
held steadily in a superposition of two spatially separated
states jLi and jRi as shown in Fig. 1(a) for a time τ, get
entangled. Imagine the centers of jLi and jRi to be
separated by a distance Δx, while each of the states jLi
and jRi is a localized Gaussian wave packet with widths
≪ Δx so that we can assume hLjRi ¼ 0. There is a
separation d between the centers of the superpositions as
shown in Fig. 1(a) so that even for the closest approach of
the masses (d − Δx), the short-range Casimir-Polder force
is negligible. Distinct components of the superposition
have distinct gravitational interaction energies as the
masses are separated by different distances and thereby
have different rates of phase evolution. Under these
circumstances, the time evolution of the joint state of the
two masses is purely due to their mutual gravitational
interaction, and given by

jΨðt ¼ 0Þi12 ¼
1ffiffiffi
2

p ðjLi1 þ jRi1Þ
1ffiffiffi
2

p ðjLi2 þ jRi2Þ ð1Þ

→ jΨðt ¼ τÞi12 ¼
eiϕffiffiffi
2

p
"
jLi1

1ffiffiffi
2

p ðjLi2 þ eiΔϕLR jRi2Þ

þ jRi1
1ffiffiffi
2

p ðeiΔϕRL jLi2 þ jRi2Þ
#
; ð2Þ

where ΔϕRL ¼ ϕRL − ϕ, ΔϕLR ¼ ϕLR − ϕ, and

ϕRL ∼
Gm1m2τ
ℏðd − ΔxÞ

; ϕLR ∼
Gm1m2τ
ℏðdþ ΔxÞ

;

ϕ ∼
Gm1m2τ

ℏd
:

One can now think of each mass as an effective “orbital
qubit” with its two states being the spatial states jLi and
jRi, which we can call orbital states. As long as
1=

ffiffiffi
2

p
ðjLi2 þ eiΔϕLR jRi2Þ and 1=

ffiffiffi
2

p
ðeiΔϕRL jLi2 þ jRi2Þ

are not the same state (which is very generic, happening
for any ΔϕLR þ ΔϕRL ≠ 2nπ, with integral n), it is clear
that the state jΨðt ¼ τÞi12 cannot be factorized and is
thereby an entangled state of the two orbital qubits.
Witnessing this entanglement then suffices to prove that
a quantum field must have mediated the gravitational
interaction between them.
It makes sense to start with particles of the largest

possible masses, namely, m1 ∼m2 ∼ 10−14 kg for which
there have already been realistic proposals for creating
superpositions of spatially separated states such as jLi and
jRi [26]. Note that we are constrained to design an
experiment in which only the gravitational interaction is
active. This means that the allowed distance of closest
approach is d − Δx ≈ 200 μm, which is the distance at
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FIG. 1. Adjacent interferometers to test the quantum nature of
gravity: (a) Two test masses held adjacently in superposition of
spatially localized states jLi and jRi. (b) Adjacent Stern-Gerlach
(SG) interferometers in which initial motional states jCij of
masses are split in a spin dependent manner to prepare states
jL;↑ij þ jR;↓ij (j ¼ 1, 2). Evolution under mutual gravitational
interaction for a time τ entangles the test masses by imparting
appropriate phases to the components of the superposition. This
entanglement can only result from the exchange of quantum
mediators—if all interactions aside gravity are absent, then this
must be the gravitational field (labeled h00 where hμν are weak
perturbations on the flat space-time metric ημν). This entangle-
ment between test masses evidencing quantized gravity can be
verified by completing each interferometer and measuring spin
correlations.

PRL 119, 240401 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 DECEMBER 2017

240401-2

<latexit sha1_base64="E0PAIWyjy7NfHAUcAwGgZSH+N1o=">AAAEdHicdVNNb9MwGPbWAmN8dXCEg1k0iVPVdBObkJAGHOA4pLab1FSV47itqR1HtjNWPN/5NVzhr/BHOGMnrWjSYsnRq/d5nvfLeeOMUaU7nd87u43mnbv39u7vP3j46PGT1sHTgRK5xKSPBRPyKkaKMJqSvqaakatMEsRjRi7j+QePX14TqahIe3qRkRFH05ROKEbaucatw2iGNIyyGX0bTSTC5iPk49DdrjUFJO24FXTaneLATSNcGgFYnovxQeNNlAicc5JqzJBSw7CT6ZFBUlPMiN2PckUyhOdoSobOTBEnamSKZiw8cp4EToR0N9Ww8K4rDOJKLXjsmBzpmapj3rkNG+Z6cjYyNM1yTVJcJprkDGoB/WRgQiXBmi2cgbCkrlaIZ8jNRLv5VbLEvNKDcfGUK73i8/m1EEw5tyQp+YoF5yhNTJS4yWpyo01iHbaOUOogL5TcUGvrnfl5qHrmG+3kWS3QnGg7DEfmFpogtDCSKJ0Wg18nxRIVpIgVaEm9rZGIK0fSb3Z4XCeaoGvd59iuokO4Eb+oo1tVFsLtFWVSfCn41bqjl//03c0Se/LdfDXSnvtdS1Nhg+x4Xh+xI7P/kUsvs3XNAMmVxJtbH3T5askmek3wSu3NWmyRlW/gV8337LctrO/WpjHotsPX7ZPPJ8H5++Xe7YHn4BC8AiE4BefgE7gAfYDBd/AD/AS/Gn+aL5pB86ik7u4sNc9A5TTbfwHJKord</latexit>

�̂ =
Gm1m2

r̂

show, in Supplemental Material [31], that off-diagonal
terms between coherent states (a signature of the quantum
superposition principle) of the Newtonian gravitational
field are necessary for the development of the entanglement
between the test masses.
Our proposal relies on two simple assumptions: (a) the

gravitational interaction between two masses is mediated
by a gravitational field (in other words, it is not a direct
interaction at a distance) and (b) the validity of a central
principle of quantum information theory: entanglement
between two systems cannot be created by local operations
and classical communication (LOCC) [38]. It can readily
be proved that, in the absence of closed timelike loops [39]
(i.e., under the assumption of validity of the chronology
protection conjecture [40]) and as long as the notion of
classicality itself is not extended significantly [41], LOCC
keeps any initially unentangled state separable. Translating
to our setting of two test masses in adjacent interferometers
any external fields (including the gravitational fields from
other masses around them) can only make LOs on their
states, while a classical gravitational field propagating
between the test masses can only give a CC channel
between them. These LOCC processes cannot entangle
the states of the masses. Thus it immediately follows that
if the mutual gravitational interaction entangles the state of
two masses, then the mediating gravitational field is
necessarily quantum mechanical in nature.

Entanglement due to gravitational interaction.—We first
consider a schematic version that clarifies how the states of
two neutral test masses 1 and 2 (masses m1 and m2), each
held steadily in a superposition of two spatially separated
states jLi and jRi as shown in Fig. 1(a) for a time τ, get
entangled. Imagine the centers of jLi and jRi to be
separated by a distance Δx, while each of the states jLi
and jRi is a localized Gaussian wave packet with widths
≪ Δx so that we can assume hLjRi ¼ 0. There is a
separation d between the centers of the superpositions as
shown in Fig. 1(a) so that even for the closest approach of
the masses (d − Δx), the short-range Casimir-Polder force
is negligible. Distinct components of the superposition
have distinct gravitational interaction energies as the
masses are separated by different distances and thereby
have different rates of phase evolution. Under these
circumstances, the time evolution of the joint state of the
two masses is purely due to their mutual gravitational
interaction, and given by

jΨðt ¼ 0Þi12 ¼
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;
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:

One can now think of each mass as an effective “orbital
qubit” with its two states being the spatial states jLi and
jRi, which we can call orbital states. As long as
1=

ffiffiffi
2

p
ðjLi2 þ eiΔϕLR jRi2Þ and 1=

ffiffiffi
2

p
ðeiΔϕRL jLi2 þ jRi2Þ

are not the same state (which is very generic, happening
for any ΔϕLR þ ΔϕRL ≠ 2nπ, with integral n), it is clear
that the state jΨðt ¼ τÞi12 cannot be factorized and is
thereby an entangled state of the two orbital qubits.
Witnessing this entanglement then suffices to prove that
a quantum field must have mediated the gravitational
interaction between them.
It makes sense to start with particles of the largest

possible masses, namely, m1 ∼m2 ∼ 10−14 kg for which
there have already been realistic proposals for creating
superpositions of spatially separated states such as jLi and
jRi [26]. Note that we are constrained to design an
experiment in which only the gravitational interaction is
active. This means that the allowed distance of closest
approach is d − Δx ≈ 200 μm, which is the distance at
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FIG. 1. Adjacent interferometers to test the quantum nature of
gravity: (a) Two test masses held adjacently in superposition of
spatially localized states jLi and jRi. (b) Adjacent Stern-Gerlach
(SG) interferometers in which initial motional states jCij of
masses are split in a spin dependent manner to prepare states
jL;↑ij þ jR;↓ij (j ¼ 1, 2). Evolution under mutual gravitational
interaction for a time τ entangles the test masses by imparting
appropriate phases to the components of the superposition. This
entanglement can only result from the exchange of quantum
mediators—if all interactions aside gravity are absent, then this
must be the gravitational field (labeled h00 where hμν are weak
perturbations on the flat space-time metric ημν). This entangle-
ment between test masses evidencing quantized gravity can be
verified by completing each interferometer and measuring spin
correlations.
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show, in Supplemental Material [31], that off-diagonal
terms between coherent states (a signature of the quantum
superposition principle) of the Newtonian gravitational
field are necessary for the development of the entanglement
between the test masses.
Our proposal relies on two simple assumptions: (a) the

gravitational interaction between two masses is mediated
by a gravitational field (in other words, it is not a direct
interaction at a distance) and (b) the validity of a central
principle of quantum information theory: entanglement
between two systems cannot be created by local operations
and classical communication (LOCC) [38]. It can readily
be proved that, in the absence of closed timelike loops [39]
(i.e., under the assumption of validity of the chronology
protection conjecture [40]) and as long as the notion of
classicality itself is not extended significantly [41], LOCC
keeps any initially unentangled state separable. Translating
to our setting of two test masses in adjacent interferometers
any external fields (including the gravitational fields from
other masses around them) can only make LOs on their
states, while a classical gravitational field propagating
between the test masses can only give a CC channel
between them. These LOCC processes cannot entangle
the states of the masses. Thus it immediately follows that
if the mutual gravitational interaction entangles the state of
two masses, then the mediating gravitational field is
necessarily quantum mechanical in nature.

Entanglement due to gravitational interaction.—We first
consider a schematic version that clarifies how the states of
two neutral test masses 1 and 2 (masses m1 and m2), each
held steadily in a superposition of two spatially separated
states jLi and jRi as shown in Fig. 1(a) for a time τ, get
entangled. Imagine the centers of jLi and jRi to be
separated by a distance Δx, while each of the states jLi
and jRi is a localized Gaussian wave packet with widths
≪ Δx so that we can assume hLjRi ¼ 0. There is a
separation d between the centers of the superpositions as
shown in Fig. 1(a) so that even for the closest approach of
the masses (d − Δx), the short-range Casimir-Polder force
is negligible. Distinct components of the superposition
have distinct gravitational interaction energies as the
masses are separated by different distances and thereby
have different rates of phase evolution. Under these
circumstances, the time evolution of the joint state of the
two masses is purely due to their mutual gravitational
interaction, and given by

jΨðt ¼ 0Þi12 ¼
1ffiffiffi
2

p ðjLi1 þ jRi1Þ
1ffiffiffi
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→ jΨðt ¼ τÞi12 ¼
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;

ϕ ∼
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ℏd
:

One can now think of each mass as an effective “orbital
qubit” with its two states being the spatial states jLi and
jRi, which we can call orbital states. As long as
1=

ffiffiffi
2

p
ðjLi2 þ eiΔϕLR jRi2Þ and 1=

ffiffiffi
2

p
ðeiΔϕRL jLi2 þ jRi2Þ

are not the same state (which is very generic, happening
for any ΔϕLR þ ΔϕRL ≠ 2nπ, with integral n), it is clear
that the state jΨðt ¼ τÞi12 cannot be factorized and is
thereby an entangled state of the two orbital qubits.
Witnessing this entanglement then suffices to prove that
a quantum field must have mediated the gravitational
interaction between them.
It makes sense to start with particles of the largest

possible masses, namely, m1 ∼m2 ∼ 10−14 kg for which
there have already been realistic proposals for creating
superpositions of spatially separated states such as jLi and
jRi [26]. Note that we are constrained to design an
experiment in which only the gravitational interaction is
active. This means that the allowed distance of closest
approach is d − Δx ≈ 200 μm, which is the distance at
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FIG. 1. Adjacent interferometers to test the quantum nature of
gravity: (a) Two test masses held adjacently in superposition of
spatially localized states jLi and jRi. (b) Adjacent Stern-Gerlach
(SG) interferometers in which initial motional states jCij of
masses are split in a spin dependent manner to prepare states
jL;↑ij þ jR;↓ij (j ¼ 1, 2). Evolution under mutual gravitational
interaction for a time τ entangles the test masses by imparting
appropriate phases to the components of the superposition. This
entanglement can only result from the exchange of quantum
mediators—if all interactions aside gravity are absent, then this
must be the gravitational field (labeled h00 where hμν are weak
perturbations on the flat space-time metric ημν). This entangle-
ment between test masses evidencing quantized gravity can be
verified by completing each interferometer and measuring spin
correlations.
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2-Thus, if the masses interact only gravitationally and get entangled, the 
gravitational field which mediates the interaction is going beyond ‘CC’.
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2-Thus, if the masses interact only gravitationally and get entangled, the 
gravitational field which mediates the interaction is going beyond ‘CC’.

3-Hence the field cannot be classical since it establishes a quantum channel. 



1/r Potential can entangle

If a third system locally mediates interaction between systems 1 and 2 and 1 
and 2 can get entangled, the intermediary system has to be quantum. 

Marletto and Vedral, Phys. Rev. D, 102 086012 (2020)

Marletto and Vedral, Phys. Rev. Lett., 119, 240402 (2020)
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1/r Potential can entangle
<latexit sha1_base64="E0PAIWyjy7NfHAUcAwGgZSH+N1o="></latexit>

�̂ =
Gm1m2

r̂

But is gravity an intermediary system? Am I making a hidden assumption? 

If a third system locally mediates interaction between systems 1 and 2 and 1 
and 2 can get entangled, the intermediary system has to be quantum. 

1-LOCC does not increase the entanglement between quantum systems.

2-Thus, if the masses interact only gravitationally and get entangled, the 
gravitational field which mediates the interaction is going beyond ‘CC’.

3-Hence the field cannot be classical since it establishes a quantum channel. 

If not the interaction would be non-local!! 

Mass 1 couples to the field and then the field carries quantum information to mass 
2, or otherwise we would have non locality or action-at-a-distance. 

 Right?!
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Two notions of locality

Event Locality: Operations happen at events in spacetime, 
and do not affect other events which are causally 

disconnected from them.

Fundamental notion.

Operational notion.

System locality: (Specific to QM) Operations that 
independently affect two quantum systems must be separable



An event local interaction that is not 
system local

Consider first weak gravity:

2

cality comes from quantum mechanics, and states that
operations that independently a↵ect two quantum sys-
tems must be separable. We will call this notion system
locality. The notion of system locality alone is agnos-
tic about causal structure or any underlying notion of
spacetime. Although these notions of locality are di↵er-
ent there are particular frameworks in which we link the
two. For example, in quantum field theory (QFT) the
postulate of microcausality prevents operations in local
systems from violating the notion of event locality pre-
scribed by relativity.

The distinction between the two notions of locality is
particularly important when talking about local opera-
tions and classical communication (LOCC). While the
notion of system locality is operationally captured by the
‘L’ and the ‘O’, we often define what we mean by classi-
cal communication (the ‘CC’) in terms of event locality.
After all, what is classical communication if not sending
information from one event to another?

Many works in the literature which argue that the
BMV experiment can be used to probe the quantum
nature of gravity use an argument based on LOCC. In
essence, the argument goes as follows: LOCC does not in-
crease the entanglement between quantum systems, thus,
if the masses interact only gravitationally and get en-
tangled, the gravitational field which mediates the inter-
action is going beyond ‘CC’, hence the field cannot be
classical [1, 2, 13, 14]. However, this argument assumes
a relationship between event and system locality in or-
der to reach its conclusion: it assumes that, in order to
get them entangled, the field has to couple system-locally
to the masses. This assumption can be reworded as fol-
lows: mass A couples to the field and then the field car-
ries quantum information to mass B, or otherwise we
would have action-at-a-distance. However, the assump-
tion that the gravitational interaction is implemented
through system-local operations is not based on first prin-
ciples. It is reasonable to demand that gravity must sat-
isfy event locality to prevent action-at-a-distance, but it
is not unthinkable to consider that it may not necessar-
ily be system-local since this notion is just operational
rather than fundamental.

We know that if we use QFT to describe gravity, the in-
teraction will be both event-local and system-local. How-
ever, assuming this relationship between the two notions
of locality to interpret the results of the experiment im-
plicitly assumes a-pirori that the system is described by
a framework like QFT. This is not satisfactory if our ob-
jective is to prove the quantum nature of a relativistic
theory. For instance, the fact that a classical Coulomb
potential can entangle two charges is not why we believe
that the electromagnetic field is quantum: q�̂

r
is clearly

not a quantum field. The electromagnetic field has only
been proved to be quantum when QFT was required to
model experiments which no classical theory could ac-
count for.

Local classical fields can entangle.– We first set
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show that this description is able to predict the expected
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cles labelled by i 2 {1, 2} with masses m1 and m2, whose
centres of mass are quantum and can undergo two possi-
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|L1L2i is associated with a di↵erent classical gravita-
tional interaction between the masses. In this sense, this
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plicitly assumes a-pirori that the system is described by
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theory. For instance, the fact that a classical Coulomb
potential can entangle two charges is not why we believe
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cles labelled by i 2 {1, 2} with masses m1 and m2, whose
centres of mass are quantum and can undergo two possi-
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Each possible path combination |R1R2i , |R1L2i , |L1R2i,
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action is going beyond ‘CC’, hence the field cannot be
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is not unthinkable to consider that it may not necessar-
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to the masses. This assumption can be reworded as fol-
lows: mass A couples to the field and then the field car-
ries quantum information to mass B, or otherwise we
would have action-at-a-distance. However, the assump-
tion that the gravitational interaction is implemented
through system-local operations is not based on first prin-
ciples. It is reasonable to demand that gravity must sat-
isfy event locality to prevent action-at-a-distance, but it
is not unthinkable to consider that it may not necessar-
ily be system-local since this notion is just operational
rather than fundamental.

We know that if we use QFT to describe gravity, the in-
teraction will be both event-local and system-local. How-
ever, assuming this relationship between the two notions
of locality to interpret the results of the experiment im-
plicitly assumes a-pirori that the system is described by
a framework like QFT. This is not satisfactory if our ob-
jective is to prove the quantum nature of a relativistic
theory. For instance, the fact that a classical Coulomb
potential can entangle two charges is not why we believe
that the electromagnetic field is quantum: q�̂
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not a quantum field. The electromagnetic field has only
been proved to be quantum when QFT was required to
model experiments which no classical theory could ac-
count for.

Local classical fields can entangle.– We first set
up the local interaction between the masses by coupling
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and is compatible with relativistic locality. Yet, we will
show that this description is able to predict the expected
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cles labelled by i 2 {1, 2} with masses m1 and m2, whose
centres of mass are quantum and can undergo two possi-
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degrees of freedom. The total interaction Hamiltonian
can be written as
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to the masses. This assumption can be reworded as fol-
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tion that the gravitational interaction is implemented
through system-local operations is not based on first prin-
ciples. It is reasonable to demand that gravity must sat-
isfy event locality to prevent action-at-a-distance, but it
is not unthinkable to consider that it may not necessar-
ily be system-local since this notion is just operational
rather than fundamental.

We know that if we use QFT to describe gravity, the in-
teraction will be both event-local and system-local. How-
ever, assuming this relationship between the two notions
of locality to interpret the results of the experiment im-
plicitly assumes a-pirori that the system is described by
a framework like QFT. This is not satisfactory if our ob-
jective is to prove the quantum nature of a relativistic
theory. For instance, the fact that a classical Coulomb
potential can entangle two charges is not why we believe
that the electromagnetic field is quantum: q�̂
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not a quantum field. The electromagnetic field has only
been proved to be quantum when QFT was required to
model experiments which no classical theory could ac-
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which does not rely on any quantum property of gravity
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show that this description is able to predict the expected
results of the experiment. Consider two pointlike parti-
cles labelled by i 2 {1, 2} with masses m1 and m2, whose
centres of mass are quantum and can undergo two possi-
ble trajectories each, zRi(t) and zLi(t). We associate each
possible trajectory to states |Rii and |Lii (see Fig. 1).
Each possible path combination |R1R2i , |R1L2i , |L1R2i,
|L1L2i is associated with a di↵erent classical gravita-
tional interaction between the masses. In this sense, this
description is a quantum-controlled classical model for
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degrees of freedom. The total interaction Hamiltonian
can be written as
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The interaction (3) defines a quantum channel between
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lishing a quantum channel cannot be taken as proof that
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freedom of its own that carry information between the
particles (i.e. gravity is not an active mediator). We use
the term “classical” to refer to (3) because it associates
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each particle undergoing each path. The name “classical”
is given in contrast to the model presented later where
the field has local quantum degrees of freedom and acts
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although the interaction is intrinsically local in the rela-
tivistic sense and thus satisfies event locality. This means
that time evolution implemented by ÛI can create en-
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dt ĤI(t)

◆

1
Notice that in the nomenclature of quantum information an in-

teraction between two systems of the form (3) is called quan-

tum because it establishes a quantum channel. However in this

manuscript we argue that establishing a quantum channel is not a

valid proof that the gravitational interaction has a Hilbert space

structure of any kind or any local quantum degrees of freedom.

A proof that gravity is quantum requires, in our opinion, to see

an experimental phenomenon that cannot be explained unless

there are local degrees of freedom for the gravitational field, as

we argue below.

=
X

p12{L1,R1}
p22{L2,R2}

e
2⇡iG�p1p2 |p1p2ihp1p2| , (7)

where �p1p2 is a double integral in spacetime of the re-
tarded plus advanced propagator

�µ⌫↵0�0
(x, x0) =

⇣
G

µ⌫↵0�0

R (x, x0) +G
µ⌫↵0�0

A (x, x0)
⌘

(8)

contracted with the stress-energy tensor of the sources
corresponding to each path:

�p1p2
:=

Z
dV dV 0

T
µ⌫
p1

(x)�µ⌫↵0�0(x, x0)T↵0�0

p2
(x0). (9)

Importantly, the time evolution generated by the clas-
sical field interaction is not local in the operational quan-
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An event local interaction that is not 
system local

Let us prescribe the interaction as associating to each state of the particles the 
classical field sourced by each particle undergoing each path.  

2

cality comes from quantum mechanics, and states that
operations that independently a↵ect two quantum sys-
tems must be separable. We will call this notion system
locality. The notion of system locality alone is agnos-
tic about causal structure or any underlying notion of
spacetime. Although these notions of locality are di↵er-
ent there are particular frameworks in which we link the
two. For example, in quantum field theory (QFT) the
postulate of microcausality prevents operations in local
systems from violating the notion of event locality pre-
scribed by relativity.

The distinction between the two notions of locality is
particularly important when talking about local opera-
tions and classical communication (LOCC). While the
notion of system locality is operationally captured by the
‘L’ and the ‘O’, we often define what we mean by classi-
cal communication (the ‘CC’) in terms of event locality.
After all, what is classical communication if not sending
information from one event to another?

Many works in the literature which argue that the
BMV experiment can be used to probe the quantum
nature of gravity use an argument based on LOCC. In
essence, the argument goes as follows: LOCC does not in-
crease the entanglement between quantum systems, thus,
if the masses interact only gravitationally and get en-
tangled, the gravitational field which mediates the inter-
action is going beyond ‘CC’, hence the field cannot be
classical [1, 2, 13, 14]. However, this argument assumes
a relationship between event and system locality in or-
der to reach its conclusion: it assumes that, in order to
get them entangled, the field has to couple system-locally
to the masses. This assumption can be reworded as fol-
lows: mass A couples to the field and then the field car-
ries quantum information to mass B, or otherwise we
would have action-at-a-distance. However, the assump-
tion that the gravitational interaction is implemented
through system-local operations is not based on first prin-
ciples. It is reasonable to demand that gravity must sat-
isfy event locality to prevent action-at-a-distance, but it
is not unthinkable to consider that it may not necessar-
ily be system-local since this notion is just operational
rather than fundamental.

We know that if we use QFT to describe gravity, the in-
teraction will be both event-local and system-local. How-
ever, assuming this relationship between the two notions
of locality to interpret the results of the experiment im-
plicitly assumes a-pirori that the system is described by
a framework like QFT. This is not satisfactory if our ob-
jective is to prove the quantum nature of a relativistic
theory. For instance, the fact that a classical Coulomb
potential can entangle two charges is not why we believe
that the electromagnetic field is quantum: q�̂

r
is clearly

not a quantum field. The electromagnetic field has only
been proved to be quantum when QFT was required to
model experiments which no classical theory could ac-
count for.

Local classical fields can entangle.– We first set
up the local interaction between the masses by coupling

them via the gravitational field in the linear regime. Con-
sider the metric

gµ⌫ = ⌘µ⌫ +
p
16⇡Ghµ⌫ , (1)

where ⌘µ⌫ = diag(�1, 1, 1, 1) and hµ⌫ is a metric pertur-
bation with units of energy. We choose these conventions
so that the field propagators do not pick up factors of G.
We write the solution of the linearized Einstein’s equa-
tions for a source Tµ⌫ as

h
µ⌫(x) =

p
4⇡G

Z
dV 0

G
µ⌫
R ↵0�0(x, x0)T↵0�0

(x0), (2)

where G
µ⌫
R ↵0�0(x, x0) denotes a retarded Green’s function

for the linearized Einstein’s equations and dV 0 is the in-
variant spacetime volume element.
We now present a description of the BMV experiment

which does not rely on any quantum property of gravity
and is compatible with relativistic locality. Yet, we will
show that this description is able to predict the expected
results of the experiment. Consider two pointlike parti-
cles labelled by i 2 {1, 2} with masses m1 and m2, whose
centres of mass are quantum and can undergo two possi-
ble trajectories each, zRi(t) and zLi(t). We associate each
possible trajectory to states |Rii and |Lii (see Fig. 1).
Each possible path combination |R1R2i , |R1L2i , |L1R2i,
|L1L2i is associated with a di↵erent classical gravita-
tional interaction between the masses. In this sense, this
description is a quantum-controlled classical model for
the gravitational field, where gravity has no quantum
degrees of freedom. The total interaction Hamiltonian
can be written as

ĤI(t) =
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p22{L2,R2}

�p1p2(t) |p1p2ihp1p2| , (3)
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is the stress-energy tensor corresponding to each path
zpi(t) for the particles with four-velocities u
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(t). This

approach is the relativistic (and thus causal) unap-
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3
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itational field whatsoever. It also does not involve any su-
perposition of gravitational fields since there is no Hilbert
space for gravity: a quantum-controlled classical field is
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valid proof that the gravitational interaction has a Hilbert space

structure of any kind or any local quantum degrees of freedom.

A proof that gravity is quantum requires, in our opinion, to see

an experimental phenomenon that cannot be explained unless

there are local degrees of freedom for the gravitational field, as

we argue below.
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The notion of event locality is the one that comes from
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We use negativity instead of entanglement entropy to compare

this classical calculation with the quantum description for the

gravitational field below. When the field is quantum there will

be particle-field entanglement and the state of the particles will

not be pure. Entanglement entropy is therefore not a valid entan-

glement measure. Negativity is always a faithful entanglement

quantifier for bipartite two-level systems [23].
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However the field has no quantum degrees of freedom!

An event local interaction that is not 
system local

This evolution establishes a quantum channel between the masses: 
It gets them entangled.

Finding entanglement on the masses through their gravitational interaction 
Does not mean gravity has local quantum degrees of freedom

The interaction is not system-local

An interaction establishing a quantum channel does not mean that it is 
mediated by a quantum system, and can still be event local!

But the interaction is event local:  
No action at a distance. It is fully relativistic
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Coupling the stress energy tensor of the particles to 
the quantum gravitational field

No matter your quantum gravity, one could expect 
that this would be its weak limit.

Put hats on the metric perturbation.
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With the typical choice of paths for the BMV experiment
the above quantity is non-zero. Therefore, it is possible
to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density

ĤI(x) = �
p
4⇡G

X

pi2{Li,Ri}

|piihpi|Tµ⌫
pi

(x)ĥµ⌫(x), (14)

where ĥµ⌫(x) is the field corresponding to linearized
quantum gravitational perturbations, and T

µ⌫
pi

(x) is
given by (6). The interaction Hamiltonian is given by
ĤI(t) =

R
d3x ĤI(x) =
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p12{L1,R1}
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|piihpi|mi
u
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(t)u⌫
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(t)

u0
pi
(t)

ĥµ⌫(zpi(t)). (15)

Unlike in the classical description previously discussed,
this interaction Hamiltonian does not commute with it-
self at di↵erent times. The unitary time evolution oper-

ator is then given by ÛI = T exp
⇣
�i

R
dt Ĥ(t)

⌘
, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
standard (see Appendix B).

To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
lated by rotations and translations in space, so that the
local vacuum e↵ect in each trajectory is the same. Under
this assumption, the leading order negativity is

Ng=⇡G

⇣���GL1L2+GR1R2�GL1R2�GR1L2

����L
⌘
+O(G2),

(16)

where L is a local noise term associated to the particle’s
interaction with the gravitational field vacuum (see Ap-

pendix C),

Gp1p2 =

Z
dV dV 0

T
µ⌫
p1

(x)Gµ⌫↵0�0(x, x0)T↵0�0

p2
(x0) (17)

and Gµ⌫↵0�0(x, x0) = h0| T
�
ĥµ⌫(x)ĥ↵0�0(x0)

�
|0i is the

Feynman propagator of the linearized quantum gravita-
tional field. It can be written as

Gµ⌫↵0�0(x, x0) = � i

2
�µ⌫↵0�0(x, x0) +

1

2
Hµ⌫↵0�0(x, x0),

(18)
where �µ⌫↵0�0(x, x0) is the state-independent part
of the Feynman propagator, which is already
present in a classical theory, and given by Eq. (8)
and Hµ⌫↵0�0(x, x0) = h0| {ĥµ⌫(x), ĥ↵0�0(x0)} |0i is the
Hadamard distribution, which corresponds to the
state-dependent part of the propagator and is not
present in the classical case, thus showcasing the
genuinely quantum nature of the field in this interaction.
Comparing Eqs. (18) and (16) with (13), we see that,

apart from the vacuum noise L that appears in the quan-
tum case the entanglement acquired in the quantum case
is larger than the one obtained in the classical descrip-
tion. In the regime of long interaction times, the noise
term L is insignificant compared to the e↵ect of the prop-
agators, so that it can be neglected. The contribution to
the negativity due to the imaginary part of the Feynman
propagator can be associated with entanglement medi-
ated by communication via the gravitational field [26],
while the real part of the propagator is associated with
the entanglement extracted from the vacuum state of
the gravitational field (in relativistic quantum informa-
tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.
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now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density
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where ĥµ⌫(x) is the field corresponding to linearized
quantum gravitational perturbations, and T

µ⌫
pi

(x) is
given by (6). The interaction Hamiltonian is given by
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, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
standard (see Appendix B).

To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
lated by rotations and translations in space, so that the
local vacuum e↵ect in each trajectory is the same. Under
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where �µ⌫↵0�0(x, x0) is the state-independent part
of the Feynman propagator, which is already
present in a classical theory, and given by Eq. (8)
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the entanglement extracted from the vacuum state of
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tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
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With the typical choice of paths for the BMV experiment
the above quantity is non-zero. Therefore, it is possible
to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density
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self at di↵erent times. The unitary time evolution oper-

ator is then given by ÛI = T exp
⇣
�i

R
dt Ĥ(t)
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, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
standard (see Appendix B).

To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
lated by rotations and translations in space, so that the
local vacuum e↵ect in each trajectory is the same. Under
this assumption, the leading order negativity is
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ĥµ⌫(x)ĥ↵0�0(x0)

�
|0i is the

Feynman propagator of the linearized quantum gravita-
tional field. It can be written as

Gµ⌫↵0�0(x, x0) = � i

2
�µ⌫↵0�0(x, x0) +

1

2
Hµ⌫↵0�0(x, x0),

(18)
where �µ⌫↵0�0(x, x0) is the state-independent part
of the Feynman propagator, which is already
present in a classical theory, and given by Eq. (8)
and Hµ⌫↵0�0(x, x0) = h0| {ĥµ⌫(x), ĥ↵0�0(x0)} |0i is the
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tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
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Violating Bell inequalities with this entanglement would
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ular, the proposed implementations of the BMV experi-
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L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
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description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density
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(x)ĥµ⌫(x), (14)
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Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.

4

With the typical choice of paths for the BMV experiment
the above quantity is non-zero. Therefore, it is possible
to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density
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ator is then given by ÛI = T exp
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dt Ĥ(t)

⌘
, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
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To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
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is the one which captures the entanglement associated to
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many setups where the paths are causally connected, the
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gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.
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to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
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which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
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, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
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To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
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the gravitational field (in relativistic quantum informa-
tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.
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sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
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which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
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, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
standard (see Appendix B).

To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
lated by rotations and translations in space, so that the
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present in the classical case, thus showcasing the
genuinely quantum nature of the field in this interaction.
Comparing Eqs. (18) and (16) with (13), we see that,
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term L is insignificant compared to the e↵ect of the prop-
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propagator can be associated with entanglement medi-
ated by communication via the gravitational field [26],
while the real part of the propagator is associated with
the entanglement extracted from the vacuum state of
the gravitational field (in relativistic quantum informa-
tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.
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With the typical choice of paths for the BMV experiment
the above quantity is non-zero. Therefore, it is possible
to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density
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(x)ĥµ⌫(x), (14)
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T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
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To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
lated by rotations and translations in space, so that the
local vacuum e↵ect in each trajectory is the same. Under
this assumption, the leading order negativity is
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ĥµ⌫(x)ĥ↵0�0(x0)

�
|0i is the

Feynman propagator of the linearized quantum gravita-
tional field. It can be written as

Gµ⌫↵0�0(x, x0) = � i

2
�µ⌫↵0�0(x, x0) +

1

2
Hµ⌫↵0�0(x, x0),

(18)
where �µ⌫↵0�0(x, x0) is the state-independent part
of the Feynman propagator, which is already
present in a classical theory, and given by Eq. (8)
and Hµ⌫↵0�0(x, x0) = h0| {ĥµ⌫(x), ĥ↵0�0(x0)} |0i is the
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ing [26–28]). In this sense, the real part of the propagator
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the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
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L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
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2
�µ⌫↵0�0(x, x0) +

1

2
Hµ⌫↵0�0(x, x0),

(18)
where �µ⌫↵0�0(x, x0) is the state-independent part
of the Feynman propagator, which is already
present in a classical theory, and given by Eq. (8)
and Hµ⌫↵0�0(x, x0) = h0| {ĥµ⌫(x), ĥ↵0�0(x0)} |0i is the
Hadamard distribution, which corresponds to the
state-dependent part of the propagator and is not
present in the classical case, thus showcasing the
genuinely quantum nature of the field in this interaction.
Comparing Eqs. (18) and (16) with (13), we see that,

apart from the vacuum noise L that appears in the quan-
tum case the entanglement acquired in the quantum case
is larger than the one obtained in the classical descrip-
tion. In the regime of long interaction times, the noise
term L is insignificant compared to the e↵ect of the prop-
agators, so that it can be neglected. The contribution to
the negativity due to the imaginary part of the Feynman
propagator can be associated with entanglement medi-
ated by communication via the gravitational field [26],
while the real part of the propagator is associated with
the entanglement extracted from the vacuum state of
the gravitational field (in relativistic quantum informa-
tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.

4

With the typical choice of paths for the BMV experiment
the above quantity is non-zero. Therefore, it is possible
to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density

ĤI(x) = �
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Unlike in the classical description previously discussed,
this interaction Hamiltonian does not commute with it-
self at di↵erent times. The unitary time evolution oper-

ator is then given by ÛI = T exp
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R
dt Ĥ(t)

⌘
, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
standard (see Appendix B).
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assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
lated by rotations and translations in space, so that the
local vacuum e↵ect in each trajectory is the same. Under
this assumption, the leading order negativity is
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where L is a local noise term associated to the particle’s
interaction with the gravitational field vacuum (see Ap-
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Comparing Eqs. (18) and (16) with (13), we see that,

apart from the vacuum noise L that appears in the quan-
tum case the entanglement acquired in the quantum case
is larger than the one obtained in the classical descrip-
tion. In the regime of long interaction times, the noise
term L is insignificant compared to the e↵ect of the prop-
agators, so that it can be neglected. The contribution to
the negativity due to the imaginary part of the Feynman
propagator can be associated with entanglement medi-
ated by communication via the gravitational field [26],
while the real part of the propagator is associated with
the entanglement extracted from the vacuum state of
the gravitational field (in relativistic quantum informa-
tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.

With local quantum degrees of freedom

With quantum-controlled classical gravity

2

cality comes from quantum mechanics, and states that
operations that independently a↵ect two quantum sys-
tems must be separable. We will call this notion system
locality. The notion of system locality alone is agnos-
tic about causal structure or any underlying notion of
spacetime. Although these notions of locality are di↵er-
ent there are particular frameworks in which we link the
two. For example, in quantum field theory (QFT) the
postulate of microcausality prevents operations in local
systems from violating the notion of event locality pre-
scribed by relativity.

The distinction between the two notions of locality is
particularly important when talking about local opera-
tions and classical communication (LOCC). While the
notion of system locality is operationally captured by the
‘L’ and the ‘O’, we often define what we mean by classi-
cal communication (the ‘CC’) in terms of event locality.
After all, what is classical communication if not sending
information from one event to another?

Many works in the literature which argue that the
BMV experiment can be used to probe the quantum
nature of gravity use an argument based on LOCC. In
essence, the argument goes as follows: LOCC does not in-
crease the entanglement between quantum systems, thus,
if the masses interact only gravitationally and get en-
tangled, the gravitational field which mediates the inter-
action is going beyond ‘CC’, hence the field cannot be
classical [1, 2, 13, 14]. However, this argument assumes
a relationship between event and system locality in or-
der to reach its conclusion: it assumes that, in order to
get them entangled, the field has to couple system-locally
to the masses. This assumption can be reworded as fol-
lows: mass A couples to the field and then the field car-
ries quantum information to mass B, or otherwise we
would have action-at-a-distance. However, the assump-
tion that the gravitational interaction is implemented
through system-local operations is not based on first prin-
ciples. It is reasonable to demand that gravity must sat-
isfy event locality to prevent action-at-a-distance, but it
is not unthinkable to consider that it may not necessar-
ily be system-local since this notion is just operational
rather than fundamental.

We know that if we use QFT to describe gravity, the in-
teraction will be both event-local and system-local. How-
ever, assuming this relationship between the two notions
of locality to interpret the results of the experiment im-
plicitly assumes a-pirori that the system is described by
a framework like QFT. This is not satisfactory if our ob-
jective is to prove the quantum nature of a relativistic
theory. For instance, the fact that a classical Coulomb
potential can entangle two charges is not why we believe
that the electromagnetic field is quantum: q�̂

r
is clearly

not a quantum field. The electromagnetic field has only
been proved to be quantum when QFT was required to
model experiments which no classical theory could ac-
count for.

Local classical fields can entangle.– We first set
up the local interaction between the masses by coupling

them via the gravitational field in the linear regime. Con-
sider the metric

gµ⌫ = ⌘µ⌫ +
p
16⇡Ghµ⌫ , (1)

where ⌘µ⌫ = diag(�1, 1, 1, 1) and hµ⌫ is a metric pertur-
bation with units of energy. We choose these conventions
so that the field propagators do not pick up factors of G.
We write the solution of the linearized Einstein’s equa-
tions for a source Tµ⌫ as

h
µ⌫(x) =

p
4⇡G

Z
dV 0

G
µ⌫
R ↵0�0(x, x0)T↵0�0

(x0), (2)

where G
µ⌫
R ↵0�0(x, x0) denotes a retarded Green’s function

for the linearized Einstein’s equations and dV 0 is the in-
variant spacetime volume element.
We now present a description of the BMV experiment

which does not rely on any quantum property of gravity
and is compatible with relativistic locality. Yet, we will
show that this description is able to predict the expected
results of the experiment. Consider two pointlike parti-
cles labelled by i 2 {1, 2} with masses m1 and m2, whose
centres of mass are quantum and can undergo two possi-
ble trajectories each, zRi(t) and zLi(t). We associate each
possible trajectory to states |Rii and |Lii (see Fig. 1).
Each possible path combination |R1R2i , |R1L2i , |L1R2i,
|L1L2i is associated with a di↵erent classical gravita-
tional interaction between the masses. In this sense, this
description is a quantum-controlled classical model for
the gravitational field, where gravity has no quantum
degrees of freedom. The total interaction Hamiltonian
can be written as

ĤI(t) =
X

p12{L1,R1}
p22{L2,R2}

�p1p2(t) |p1p2ihp1p2| , (3)

where �p1p2(t) denotes the retarded propagation of the
classical gravitational field between the two particles un-
dergoing trajectories zp1(t) and zp2(t), i.e.,

�p1p2(t) = �
p
⇡G

Z
d3x

�
T

µ⌫
p1

(x)hp2
µ⌫(x) + T

µ⌫
p2

(x)hp1
µ⌫(x)

�
,

(4)

where

h
µ⌫
pi
(x) =

p
4⇡G

Z
dV 0

G
µ⌫
R ↵0�0(x, x0)T↵0�0

pi
(x0) (5)

denotes the gravitational field generated by particle i un-
dergoing path pi and

T
µ⌫
pi

(x) = mi u
µ
pi
(t)u⌫

pi
(t)

�
(3)(x� zpi(t))

u0
pi
(t)

p
�g

(6)

is the stress-energy tensor corresponding to each path
zpi(t) for the particles with four-velocities u

µ
pi
(t). This

approach is the relativistic (and thus causal) unap-
proximated version of the interaction Gm1m2/|x̂1 � x̂2|,
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which does not rely on any quantum property of the grav-
itational field whatsoever. It also does not involve any su-
perposition of gravitational fields since there is no Hilbert
space for gravity: a quantum-controlled classical field is
certainly not itself a quantum field. This is in tension
with the wording used in e.g., [3, 21, 22].

Figure 1. Schematic representation of the BMV setup, where
two particles labelled by i = 1, 2 can undergo a superposition
of two trajectories, zLi(t) and zRi(t), which correspond to
quantum states |Lii and |Rii.

The interaction (3) defines a quantum channel between
the particles that respects event locality. However estab-
lishing a quantum channel cannot be taken as proof that
gravity has quantum degrees of freedom: it is merely a
consequence of having quantum sources and not of any
assumptions about the field1. Indeed, this model does
not assume that the gravitational field has degrees of
freedom of its own that carry information between the
particles (i.e. gravity is not an active mediator). We use
the term “classical” to refer to (3) because it associates
to each state of the particles the classical field sourced by
each particle undergoing each path. The name “classical”
is given in contrast to the model presented later where
the field has local quantum degrees of freedom and acts
as a mediator for the interaction.

Since the gravitational interaction is implemented by
a classical field, ĤI(t) (Eq. (3)) commutes with itself at
di↵erent times. The time-evolution operator is

ÛI = exp

✓
�i

Z
dt ĤI(t)

◆

1
Notice that in the nomenclature of quantum information an in-

teraction between two systems of the form (3) is called quan-

tum because it establishes a quantum channel. However in this

manuscript we argue that establishing a quantum channel is not a

valid proof that the gravitational interaction has a Hilbert space

structure of any kind or any local quantum degrees of freedom.

A proof that gravity is quantum requires, in our opinion, to see

an experimental phenomenon that cannot be explained unless

there are local degrees of freedom for the gravitational field, as

we argue below.

=
X

p12{L1,R1}
p22{L2,R2}

e
2⇡iG�p1p2 |p1p2ihp1p2| , (7)

where �p1p2 is a double integral in spacetime of the re-
tarded plus advanced propagator

�µ⌫↵0�0
(x, x0) =

⇣
G

µ⌫↵0�0

R (x, x0) +G
µ⌫↵0�0

A (x, x0)
⌘

(8)

contracted with the stress-energy tensor of the sources
corresponding to each path:

�p1p2
:=

Z
dV dV 0

T
µ⌫
p1

(x)�µ⌫↵0�0(x, x0)T↵0�0

p2
(x0). (9)

Importantly, the time evolution generated by the clas-
sical field interaction is not local in the operational quan-
tum sense (that is, ÛI 6= Û1 ⌦ Û2 is not system-local),
although the interaction is intrinsically local in the rela-
tivistic sense and thus satisfies event locality. This means
that time evolution implemented by ÛI can create en-
tanglement, even though the gravitational field is classi-
cal and the interaction is event-local in this description.
The notion of event locality is the one that comes from
first principles and captures no-action-at-a-distance: the
classical field only interacts with the particles locally at
each instant of time, due to the (relativistically causal)
retarded propagation.
The specific BMV setup considers both particles to be

in a superposition of the two paths, so that the initial
state of the system is

| 0i =
1p
2
(|L1i+ |R1i)⌦

1p
2
(|L2i+ |R2i) , (10)

corresponding to the density operator

⇢̂0 = | 0ih 0| =
1

4

X

p12{L1,R1}
p22{L2,R2}

|p1p2ihq1q2| . (11)

The final density operator after the interaction can then
be written as

⇢̂c =
1

4

X

p12{L1,R1}
p22{L2,R2}

e
2⇡iG(�p1p2��q1q2 ) |p1p2ihq1q2| . (12)

The entanglement between the two particles can be eval-
uated through the negativity2 of the state ⇢̂c, which reads

Nc =
1

2
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⇣
⇡G
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2
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���+O(G2). (13)
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We use negativity instead of entanglement entropy to compare

this classical calculation with the quantum description for the

gravitational field below. When the field is quantum there will

be particle-field entanglement and the state of the particles will

not be pure. Entanglement entropy is therefore not a valid entan-

glement measure. Negativity is always a faithful entanglement

quantifier for bipartite two-level systems [23].
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�p1p2
:=

Z
dV dV 0

T
µ⌫
p1

(x)�µ⌫↵0�0(x, x0)T↵0�0

p2
(x0). (9)

Importantly, the time evolution generated by the clas-
sical field interaction is not local in the operational quan-
tum sense (that is, ÛI 6= Û1 ⌦ Û2 is not system-local),
although the interaction is intrinsically local in the rela-
tivistic sense and thus satisfies event locality. This means
that time evolution implemented by ÛI can create en-
tanglement, even though the gravitational field is classi-
cal and the interaction is event-local in this description.
The notion of event locality is the one that comes from
first principles and captures no-action-at-a-distance: the
classical field only interacts with the particles locally at
each instant of time, due to the (relativistically causal)
retarded propagation.
The specific BMV setup considers both particles to be

in a superposition of the two paths, so that the initial
state of the system is
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With the typical choice of paths for the BMV experiment
the above quantity is non-zero. Therefore, it is possible
to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density

ĤI(x) = �
p
4⇡G

X

pi2{Li,Ri}

|piihpi|Tµ⌫
pi

(x)ĥµ⌫(x), (14)

where ĥµ⌫(x) is the field corresponding to linearized
quantum gravitational perturbations, and T

µ⌫
pi

(x) is
given by (6). The interaction Hamiltonian is given by
ĤI(t) =

R
d3x ĤI(x) =
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ĥµ⌫(zpi(t)). (15)

Unlike in the classical description previously discussed,
this interaction Hamiltonian does not commute with it-
self at di↵erent times. The unitary time evolution oper-

ator is then given by ÛI = T exp
⇣
�i

R
dt Ĥ(t)

⌘
, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
standard (see Appendix B).

To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
lated by rotations and translations in space, so that the
local vacuum e↵ect in each trajectory is the same. Under
this assumption, the leading order negativity is

Ng=⇡G

⇣���GL1L2+GR1R2�GL1R2�GR1L2
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⌘
+O(G2),

(16)

where L is a local noise term associated to the particle’s
interaction with the gravitational field vacuum (see Ap-

pendix C),
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and Gµ⌫↵0�0(x, x0) = h0| T
�
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�
|0i is the

Feynman propagator of the linearized quantum gravita-
tional field. It can be written as

Gµ⌫↵0�0(x, x0) = � i

2
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(18)
where �µ⌫↵0�0(x, x0) is the state-independent part
of the Feynman propagator, which is already
present in a classical theory, and given by Eq. (8)
and Hµ⌫↵0�0(x, x0) = h0| {ĥµ⌫(x), ĥ↵0�0(x0)} |0i is the
Hadamard distribution, which corresponds to the
state-dependent part of the propagator and is not
present in the classical case, thus showcasing the
genuinely quantum nature of the field in this interaction.
Comparing Eqs. (18) and (16) with (13), we see that,

apart from the vacuum noise L that appears in the quan-
tum case the entanglement acquired in the quantum case
is larger than the one obtained in the classical descrip-
tion. In the regime of long interaction times, the noise
term L is insignificant compared to the e↵ect of the prop-
agators, so that it can be neglected. The contribution to
the negativity due to the imaginary part of the Feynman
propagator can be associated with entanglement medi-
ated by communication via the gravitational field [26],
while the real part of the propagator is associated with
the entanglement extracted from the vacuum state of
the gravitational field (in relativistic quantum informa-
tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.
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With the typical choice of paths for the BMV experiment
the above quantity is non-zero. Therefore, it is possible
to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density
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Unlike in the classical description previously discussed,
this interaction Hamiltonian does not commute with it-
self at di↵erent times. The unitary time evolution oper-

ator is then given by ÛI = T exp
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R
dt Ĥ(t)

⌘
, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
standard (see Appendix B).

To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
lated by rotations and translations in space, so that the
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where L is a local noise term associated to the particle’s
interaction with the gravitational field vacuum (see Ap-

pendix C),

Gp1p2 =

Z
dV dV 0

T
µ⌫
p1

(x)Gµ⌫↵0�0(x, x0)T↵0�0

p2
(x0) (17)

and Gµ⌫↵0�0(x, x0) = h0| T
�
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Hadamard distribution, which corresponds to the
state-dependent part of the propagator and is not
present in the classical case, thus showcasing the
genuinely quantum nature of the field in this interaction.
Comparing Eqs. (18) and (16) with (13), we see that,

apart from the vacuum noise L that appears in the quan-
tum case the entanglement acquired in the quantum case
is larger than the one obtained in the classical descrip-
tion. In the regime of long interaction times, the noise
term L is insignificant compared to the e↵ect of the prop-
agators, so that it can be neglected. The contribution to
the negativity due to the imaginary part of the Feynman
propagator can be associated with entanglement medi-
ated by communication via the gravitational field [26],
while the real part of the propagator is associated with
the entanglement extracted from the vacuum state of
the gravitational field (in relativistic quantum informa-
tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.

4

With the typical choice of paths for the BMV experiment
the above quantity is non-zero. Therefore, it is possible
to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density
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⇣
�i

R
dt Ĥ(t)
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With local quantum degrees of freedom

With quantum-controlled classical gravity

2

cality comes from quantum mechanics, and states that
operations that independently a↵ect two quantum sys-
tems must be separable. We will call this notion system
locality. The notion of system locality alone is agnos-
tic about causal structure or any underlying notion of
spacetime. Although these notions of locality are di↵er-
ent there are particular frameworks in which we link the
two. For example, in quantum field theory (QFT) the
postulate of microcausality prevents operations in local
systems from violating the notion of event locality pre-
scribed by relativity.

The distinction between the two notions of locality is
particularly important when talking about local opera-
tions and classical communication (LOCC). While the
notion of system locality is operationally captured by the
‘L’ and the ‘O’, we often define what we mean by classi-
cal communication (the ‘CC’) in terms of event locality.
After all, what is classical communication if not sending
information from one event to another?

Many works in the literature which argue that the
BMV experiment can be used to probe the quantum
nature of gravity use an argument based on LOCC. In
essence, the argument goes as follows: LOCC does not in-
crease the entanglement between quantum systems, thus,
if the masses interact only gravitationally and get en-
tangled, the gravitational field which mediates the inter-
action is going beyond ‘CC’, hence the field cannot be
classical [1, 2, 13, 14]. However, this argument assumes
a relationship between event and system locality in or-
der to reach its conclusion: it assumes that, in order to
get them entangled, the field has to couple system-locally
to the masses. This assumption can be reworded as fol-
lows: mass A couples to the field and then the field car-
ries quantum information to mass B, or otherwise we
would have action-at-a-distance. However, the assump-
tion that the gravitational interaction is implemented
through system-local operations is not based on first prin-
ciples. It is reasonable to demand that gravity must sat-
isfy event locality to prevent action-at-a-distance, but it
is not unthinkable to consider that it may not necessar-
ily be system-local since this notion is just operational
rather than fundamental.

We know that if we use QFT to describe gravity, the in-
teraction will be both event-local and system-local. How-
ever, assuming this relationship between the two notions
of locality to interpret the results of the experiment im-
plicitly assumes a-pirori that the system is described by
a framework like QFT. This is not satisfactory if our ob-
jective is to prove the quantum nature of a relativistic
theory. For instance, the fact that a classical Coulomb
potential can entangle two charges is not why we believe
that the electromagnetic field is quantum: q�̂

r
is clearly

not a quantum field. The electromagnetic field has only
been proved to be quantum when QFT was required to
model experiments which no classical theory could ac-
count for.

Local classical fields can entangle.– We first set
up the local interaction between the masses by coupling

them via the gravitational field in the linear regime. Con-
sider the metric

gµ⌫ = ⌘µ⌫ +
p
16⇡Ghµ⌫ , (1)

where ⌘µ⌫ = diag(�1, 1, 1, 1) and hµ⌫ is a metric pertur-
bation with units of energy. We choose these conventions
so that the field propagators do not pick up factors of G.
We write the solution of the linearized Einstein’s equa-
tions for a source Tµ⌫ as

h
µ⌫(x) =

p
4⇡G

Z
dV 0

G
µ⌫
R ↵0�0(x, x0)T↵0�0

(x0), (2)

where G
µ⌫
R ↵0�0(x, x0) denotes a retarded Green’s function

for the linearized Einstein’s equations and dV 0 is the in-
variant spacetime volume element.
We now present a description of the BMV experiment

which does not rely on any quantum property of gravity
and is compatible with relativistic locality. Yet, we will
show that this description is able to predict the expected
results of the experiment. Consider two pointlike parti-
cles labelled by i 2 {1, 2} with masses m1 and m2, whose
centres of mass are quantum and can undergo two possi-
ble trajectories each, zRi(t) and zLi(t). We associate each
possible trajectory to states |Rii and |Lii (see Fig. 1).
Each possible path combination |R1R2i , |R1L2i , |L1R2i,
|L1L2i is associated with a di↵erent classical gravita-
tional interaction between the masses. In this sense, this
description is a quantum-controlled classical model for
the gravitational field, where gravity has no quantum
degrees of freedom. The total interaction Hamiltonian
can be written as

ĤI(t) =
X

p12{L1,R1}
p22{L2,R2}

�p1p2(t) |p1p2ihp1p2| , (3)

where �p1p2(t) denotes the retarded propagation of the
classical gravitational field between the two particles un-
dergoing trajectories zp1(t) and zp2(t), i.e.,

�p1p2(t) = �
p
⇡G

Z
d3x

�
T

µ⌫
p1

(x)hp2
µ⌫(x) + T

µ⌫
p2

(x)hp1
µ⌫(x)

�
,

(4)

where

h
µ⌫
pi
(x) =

p
4⇡G

Z
dV 0

G
µ⌫
R ↵0�0(x, x0)T↵0�0

pi
(x0) (5)

denotes the gravitational field generated by particle i un-
dergoing path pi and

T
µ⌫
pi

(x) = mi u
µ
pi
(t)u⌫

pi
(t)

�
(3)(x� zpi(t))

u0
pi
(t)

p
�g

(6)

is the stress-energy tensor corresponding to each path
zpi(t) for the particles with four-velocities u

µ
pi
(t). This

approach is the relativistic (and thus causal) unap-
proximated version of the interaction Gm1m2/|x̂1 � x̂2|,

3

which does not rely on any quantum property of the grav-
itational field whatsoever. It also does not involve any su-
perposition of gravitational fields since there is no Hilbert
space for gravity: a quantum-controlled classical field is
certainly not itself a quantum field. This is in tension
with the wording used in e.g., [3, 21, 22].

Figure 1. Schematic representation of the BMV setup, where
two particles labelled by i = 1, 2 can undergo a superposition
of two trajectories, zLi(t) and zRi(t), which correspond to
quantum states |Lii and |Rii.

The interaction (3) defines a quantum channel between
the particles that respects event locality. However estab-
lishing a quantum channel cannot be taken as proof that
gravity has quantum degrees of freedom: it is merely a
consequence of having quantum sources and not of any
assumptions about the field1. Indeed, this model does
not assume that the gravitational field has degrees of
freedom of its own that carry information between the
particles (i.e. gravity is not an active mediator). We use
the term “classical” to refer to (3) because it associates
to each state of the particles the classical field sourced by
each particle undergoing each path. The name “classical”
is given in contrast to the model presented later where
the field has local quantum degrees of freedom and acts
as a mediator for the interaction.

Since the gravitational interaction is implemented by
a classical field, ĤI(t) (Eq. (3)) commutes with itself at
di↵erent times. The time-evolution operator is

ÛI = exp

✓
�i

Z
dt ĤI(t)

◆

1
Notice that in the nomenclature of quantum information an in-

teraction between two systems of the form (3) is called quan-

tum because it establishes a quantum channel. However in this

manuscript we argue that establishing a quantum channel is not a

valid proof that the gravitational interaction has a Hilbert space

structure of any kind or any local quantum degrees of freedom.

A proof that gravity is quantum requires, in our opinion, to see

an experimental phenomenon that cannot be explained unless

there are local degrees of freedom for the gravitational field, as

we argue below.

=
X

p12{L1,R1}
p22{L2,R2}

e
2⇡iG�p1p2 |p1p2ihp1p2| , (7)

where �p1p2 is a double integral in spacetime of the re-
tarded plus advanced propagator
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(x, x0) =

⇣
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R (x, x0) +G
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(8)

contracted with the stress-energy tensor of the sources
corresponding to each path:

�p1p2
:=

Z
dV dV 0

T
µ⌫
p1

(x)�µ⌫↵0�0(x, x0)T↵0�0

p2
(x0). (9)

Importantly, the time evolution generated by the clas-
sical field interaction is not local in the operational quan-
tum sense (that is, ÛI 6= Û1 ⌦ Û2 is not system-local),
although the interaction is intrinsically local in the rela-
tivistic sense and thus satisfies event locality. This means
that time evolution implemented by ÛI can create en-
tanglement, even though the gravitational field is classi-
cal and the interaction is event-local in this description.
The notion of event locality is the one that comes from
first principles and captures no-action-at-a-distance: the
classical field only interacts with the particles locally at
each instant of time, due to the (relativistically causal)
retarded propagation.
The specific BMV setup considers both particles to be

in a superposition of the two paths, so that the initial
state of the system is

| 0i =
1p
2
(|L1i+ |R1i)⌦

1p
2
(|L2i+ |R2i) , (10)

corresponding to the density operator

⇢̂0 = | 0ih 0| =
1

4

X
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p22{L2,R2}

|p1p2ihq1q2| . (11)

The final density operator after the interaction can then
be written as

⇢̂c =
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4
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p12{L1,R1}
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e
2⇡iG(�p1p2��q1q2 ) |p1p2ihq1q2| . (12)

The entanglement between the two particles can be eval-
uated through the negativity2 of the state ⇢̂c, which reads

Nc =
1

2
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⇣
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���
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We use negativity instead of entanglement entropy to compare

this classical calculation with the quantum description for the

gravitational field below. When the field is quantum there will

be particle-field entanglement and the state of the particles will

not be pure. Entanglement entropy is therefore not a valid entan-

glement measure. Negativity is always a faithful entanglement

quantifier for bipartite two-level systems [23].

3

which does not rely on any quantum property of the grav-
itational field whatsoever. It also does not involve any su-
perposition of gravitational fields since there is no Hilbert
space for gravity: a quantum-controlled classical field is
certainly not itself a quantum field. This is in tension
with the wording used in e.g., [3, 21, 22].

Figure 1. Schematic representation of the BMV setup, where
two particles labelled by i = 1, 2 can undergo a superposition
of two trajectories, zLi(t) and zRi(t), which correspond to
quantum states |Lii and |Rii.

The interaction (3) defines a quantum channel between
the particles that respects event locality. However estab-
lishing a quantum channel cannot be taken as proof that
gravity has quantum degrees of freedom: it is merely a
consequence of having quantum sources and not of any
assumptions about the field1. Indeed, this model does
not assume that the gravitational field has degrees of
freedom of its own that carry information between the
particles (i.e. gravity is not an active mediator). We use
the term “classical” to refer to (3) because it associates
to each state of the particles the classical field sourced by
each particle undergoing each path. The name “classical”
is given in contrast to the model presented later where
the field has local quantum degrees of freedom and acts
as a mediator for the interaction.

Since the gravitational interaction is implemented by
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tanglement, even though the gravitational field is classi-
cal and the interaction is event-local in this description.
The notion of event locality is the one that comes from
first principles and captures no-action-at-a-distance: the
classical field only interacts with the particles locally at
each instant of time, due to the (relativistically causal)
retarded propagation.
The specific BMV setup considers both particles to be

in a superposition of the two paths, so that the initial
state of the system is

| 0i =
1p
2
(|L1i+ |R1i)⌦

1p
2
(|L2i+ |R2i) , (10)

corresponding to the density operator

⇢̂0 = | 0ih 0| =
1

4

X

p12{L1,R1}
p22{L2,R2}

|p1p2ihq1q2| . (11)

The final density operator after the interaction can then
be written as

⇢̂c =
1

4

X

p12{L1,R1}
p22{L2,R2}

e
2⇡iG(�p1p2��q1q2 ) |p1p2ihq1q2| . (12)

The entanglement between the two particles can be eval-
uated through the negativity2 of the state ⇢̂c, which reads

Nc =
1

2
sin

⇣
⇡G

����L1L2+�R1R2��L1R2��R1L2

���
⌘

=
⇡G

2

����L1L2+�R1R2��L1R2��R1L2

���+O(G2). (13)

2
We use negativity instead of entanglement entropy to compare

this classical calculation with the quantum description for the

gravitational field below. When the field is quantum there will

be particle-field entanglement and the state of the particles will

not be pure. Entanglement entropy is therefore not a valid entan-

glement measure. Negativity is always a faithful entanglement

quantifier for bipartite two-level systems [23].

4

With the typical choice of paths for the BMV experiment
the above quantity is non-zero. Therefore, it is possible
to model entanglement creation via an event-local clas-
sical interaction. This description does not involve any
quantum property of gravity and yet it is able to predict
the expected gravity-mediated entanglement generation
in the BMV experiment without violating the fundamen-
tal notion of event locality. This disqualifies the mere
presence of entanglement in the masses-system from be-
ing evidence of quantum gravity.

A quantum description of the experiment.– We
now describe the BMV experiment when the masses are
coupled to linearized quantum gravity. Linearized quan-
tum gravity is a weak field limit of the gravitational field
which can be quantized [24, 25]. This weak field limit
description should be a prediction of any theory of quan-
tum gravity. The quantum description of the experiment
involves two interactions of each of the particles with the
quantum gravitational field (i.e., event-local and system-
local within the framework of QFT). It is prescribed by
the interaction Hamiltonian density

ĤI(x) = �
p
4⇡G

X

pi2{Li,Ri}

|piihpi|Tµ⌫
pi

(x)ĥµ⌫(x), (14)

where ĥµ⌫(x) is the field corresponding to linearized
quantum gravitational perturbations, and T

µ⌫
pi

(x) is
given by (6). The interaction Hamiltonian is given by
ĤI(t) =

R
d3x ĤI(x) =

�
p
4⇡G

X

p12{L1,R1}
p22{L2,R2}

|piihpi|mi
u
µ
pi
(t)u⌫

pi
(t)

u0
pi
(t)

ĥµ⌫(zpi(t)). (15)

Unlike in the classical description previously discussed,
this interaction Hamiltonian does not commute with it-
self at di↵erent times. The unitary time evolution oper-

ator is then given by ÛI = T exp
⇣
�i

R
dt Ĥ(t)

⌘
, where

T exp denotes the time-ordered exponential. We analyze
this through perturbation theory. These calculations are
standard (see Appendix B).

To obtain the final state of the two-particle system we
assume that the field is initially in the vacuum state. Af-
ter the interaction, one must trace out the gravitational
degrees of freedom. This results in a mixed state for the
two masses, in contrast to the classical case: here the
particles become entangled with the gravitational field,
which has true quantum degrees of freedom. In order to
simplify the result, we assume that all trajectories are re-
lated by rotations and translations in space, so that the
local vacuum e↵ect in each trajectory is the same. Under
this assumption, the leading order negativity is

Ng=⇡G

⇣���GL1L2+GR1R2�GL1R2�GR1L2

����L
⌘
+O(G2),

(16)

where L is a local noise term associated to the particle’s
interaction with the gravitational field vacuum (see Ap-

pendix C),

Gp1p2 =

Z
dV dV 0

T
µ⌫
p1

(x)Gµ⌫↵0�0(x, x0)T↵0�0

p2
(x0) (17)

and Gµ⌫↵0�0(x, x0) = h0| T
�
ĥµ⌫(x)ĥ↵0�0(x0)

�
|0i is the

Feynman propagator of the linearized quantum gravita-
tional field. It can be written as

Gµ⌫↵0�0(x, x0) = � i

2
�µ⌫↵0�0(x, x0) +

1

2
Hµ⌫↵0�0(x, x0),

(18)
where �µ⌫↵0�0(x, x0) is the state-independent part
of the Feynman propagator, which is already
present in a classical theory, and given by Eq. (8)
and Hµ⌫↵0�0(x, x0) = h0| {ĥµ⌫(x), ĥ↵0�0(x0)} |0i is the
Hadamard distribution, which corresponds to the
state-dependent part of the propagator and is not
present in the classical case, thus showcasing the
genuinely quantum nature of the field in this interaction.
Comparing Eqs. (18) and (16) with (13), we see that,

apart from the vacuum noise L that appears in the quan-
tum case the entanglement acquired in the quantum case
is larger than the one obtained in the classical descrip-
tion. In the regime of long interaction times, the noise
term L is insignificant compared to the e↵ect of the prop-
agators, so that it can be neglected. The contribution to
the negativity due to the imaginary part of the Feynman
propagator can be associated with entanglement medi-
ated by communication via the gravitational field [26],
while the real part of the propagator is associated with
the entanglement extracted from the vacuum state of
the gravitational field (in relativistic quantum informa-
tion this phenomenon is known as entanglement harvest-
ing [26–28]). In this sense, the real part of the propagator
is the one which captures the entanglement associated to
the quantum degrees of freedom of the gravitational field.
Violating Bell inequalities with this entanglement would
then be proof of the quantum behaviour of gravity. In
many setups where the paths are causally connected, the
contribution of the real part of the propagator is negli-
gible compared to its imaginary counterpart. In partic-
ular, the proposed implementations of the BMV experi-
ment use masses with smallest separation of the order of
L ⇠ 10�6m and interaction times of the order of T ⇠ 1s.
For these parameters we find that the imaginary part
contribution of the propagator is 1014 times larger than
its real part, casting doubts on whether quantum e↵ects
can be acknowledged in this regime.
However, it is possible to adapt the BMV experiment

to acknowledge the quantum nature of the gravitational
field: if it could be implemented for times of the order of
the light-crossing time of the separation between paths,
then the real part of the Feynman propagator would
be larger than its imaginary part. Only if the experi-
ment can be adapted to implement these short interac-
tion times (or can be sensitive to changes in negativity
of the order of 10�14 with the current proposed parame-
ters [1]) one can claim to witness this genuine quantum
behaviour of the gravitational field.
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Big difference: Entanglement when spacelike separated

Comparison with quantum gravity

When space like separation we have entanglement harvesting 
From the gravitational field

If you want to identify local quantum degrees of freedom, 
observing entanglement while the masses are space like 

separated is a smoking gun

However the current proposals work with regimes where 
the masses are well within causal contact
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The experiment does:

-Prove that semiclassical gravity fails to describe the experiment

-Prove that Gravity has quantum degrees of freedom

-Prove that gravity can set up a quantum channel between masses

The experiment does not:

What the current proposals for GIE can tell 
and cannot tell

(no Hilbert space for the field)

-Prove that there is a quantum superposition of 
gravitational fields or quantum superposition of spacetimes 
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The detection of entanglement in the BMV experiment is agnostic 
to the existence of quantum degrees of freedom in gravity

Summary

Unless one assumes a connection between event locality 
and system locality (but that is assuming a framework like 

QFT from the start)

A smoking gun for the existence of quantum gravity would 
be the detection of space like gravitational entanglement 

Thank you!


