Dirac Observables and (b, v)-Type Variables for Effective Polymer Black Holes

Fabio M. Mele & Johannes Münch
University of Regensburg

, ,

based on

arXiv:1911.12646 [gr-qc] & arXiv:1912.xxxxx [gr-qc] with

Norbert Bodendorfer

International Loop Quantum Gravity Seminar
03 December 2019
Elitenetzwerk

Bayern

Motivation

- BH are of interest in all main QG approaches
- May provide better understanding of full LQG
- Singularity resolution in AdS/CFT [Bodendorfer, Schäfer, Schliemann '16, Bodendorfer, FM, JM '18]
- Construct effective model inspired by LQG
- Lot of previous effort: [Ashtekar, Olmedo, Singh '18; Bianchi, Christodoulou,
 D'Ambrosio, Haggard, Rovelli '18; Olmedo, Saini, Singh '17; Perez '17; Corichi, Singh '16; Modesto '10; Pullin '07-,...]
- No consensus about BHs in LQG community
- BH interior has Kantowski-Sachs (cosmology) structure
- Use techniques of LQC (polymerisation)
- Subtleties: Dirac observables / Different schemes

Plan of the Talk

- PART I: Dirac observables (Johannes)
 - Classical theory
 - Effective quantum theory and previous models
- PART II: (b, v)-type variables (Fabio)
 - Adapted variables for effective polymer BHs
 - Overcome previous limitations for physical viability
- Conclusions and outlook

PART I

Mass and Horizon Dirac Observables in Polymer BH Models

Classical Setting

Spherically symmetric and static spacetime

[Vakili '18; Cavaglia, Alfaro, Filippov '94]

$$ds^{2} = -\bar{a}(r)dt^{2} + N(r)dr^{2} + \mathcal{E}(r)^{2}d\Omega_{2}^{2}$$

For \bar{a} , N < 0 t spacelike, r timelike \rightarrow Kantowski-Sachs-Cosmology

Regularisation: $L_{\scriptscriptstyle o}$ and $\mathscr{L}_{\scriptscriptstyle o} = \int_0^{L_{\scriptscriptstyle o}} \left. \sqrt{\bar{a}} \right|_{r=r_{\rm ref}} {\rm d}t$

$$\sqrt{a} = \int_0^{L_o} \sqrt{\bar{a}} \, \mathrm{d}t = L_o \sqrt{\bar{a}} \,, \quad n = Na$$

Connection variables for the interior

[Ashtekar, Olmedo, Singh '18; Olmedo, Saini, Singh '17; Corichi, Singh '16; Pullin '07-,...]

$$ds^{2} = -N_{T}^{2}(T) dT^{2} + \frac{p_{b}^{2}(T)}{L_{a}^{2}|p_{c}(T)|} dx^{2} + |p_{c}(T)| d\Omega_{2}^{2}$$

$$T=r$$
 , $x=t$, $|p_c|=\mathscr{C}^2$, $p_b^2=-a\mathscr{C}^2$, $-N=N_T^2$

Classical Integration Constants

$$\begin{split} b(T) &= \pm \gamma \sqrt{Ae^{-T}-1} \quad , \quad c(T) = c_o e^{-2T} \\ p_b(T) &\stackrel{\mathcal{H}\approx 0}{=} -\frac{2cp_c}{b+\frac{\gamma^2}{b}} = \mp \frac{2c_op_c^o}{\gamma} \sqrt{\frac{e^T}{A} \left(1-\frac{e^T}{A}\right)} \quad , \quad p_c(T) = p_c^o e^{2T} \; . \end{split}$$

Solving EoM \Rightarrow two integration constants c_o , p_c^o , $A = e^{T_o} = 1$ (w.l.o.g.)

Express $a = p_b^2/|p_c|$ in terms of $\mathscr{C} = \sqrt{|p_c|}$

$$\mathcal{E} = \sqrt{|p_c^o|} e^T \quad , \quad a(\mathcal{E}) = \frac{4c_o^2|p_c^o|}{\gamma^2 L_o^2} \left(\frac{\sqrt{|p_c^o|}}{\mathcal{E}} - 1 \right) \quad \Rightarrow \quad R_{hor} = \sqrt{|p_c^o|}$$

Line element

Redefining coordinates $\tau = \sqrt{|p_c^o|} e^T$, $y = \frac{2c_o \sqrt{|p_c^o|}}{\gamma L_o} x$

$$ds^{2} = -\frac{1}{\frac{R_{hor}}{-1}}d\tau^{2} + \left(\frac{R_{hor}}{\tau} - 1\right)dy^{2} + \tau^{2}d\Omega_{2}^{2},$$

Dirac Observables

Canonical degrees of freedom

4 phase space d.o.f + 1 first class constraint \Rightarrow 2 Dirac observables

$$\mathcal{R}_{hor} = \sqrt{|p_c|} \left(\frac{b^2}{\gamma^2} + 1 \right) \stackrel{\text{on-shell}}{=} R_{hor} = \sqrt{|p_c^o|} \quad , \quad \mathcal{D} = c p_c \stackrel{\text{on-shell}}{=} c_o p_c^o$$

Only \mathcal{R}_{hor} physical, \mathcal{D} is irrelevant (not in metric + fiducial cell dep.)

Residual diffeomorphisms

Redefining coordinates $y = \frac{2c_o\sqrt{|p_c^o|}}{\gamma L_o}x$ changes $\bar{a} \mapsto \left(\frac{2c_o\sqrt{|p_c^o|}}{\gamma L_o}\right)^{-2}\bar{a}$

$$\sqrt{a} = L_o \sqrt{\bar{a}} = \int_0^{L_o} \mathrm{d}x \sqrt{\bar{a}} = \int_{y(0)}^{y(L_o)} \mathrm{d}y \sqrt{\bar{a}} = y(L_o) \sqrt{\bar{a}} = \sqrt{a}$$

Transformation not present on phase space!

Canonical Dirac observables do **not know** about this remaining freedom. The physical metric **is affected**.

Conclusions Classical Theory

- Fiducial cell → residual diffeomorphisms
- Not present on the phase space \rightarrow visible through L_o dependence
- ullet go back to metric o $\mathcal D$ can be absorbed
- There are two Dirac observables, only one physically relevant
- T, x rescaling absorbs one Dirac observable
- Identification: Physical observable is $R_{hor} = 2M_{BH}$

Warning!!!

Observables of quantum theory in classical regime \neq Observables of classical theory

There, the second Dirac observable might be physically relevant!

 \rightarrow Examples

Define new variables

$$\begin{split} \left(p_b\right)^2 &= -8v_2 \quad , \quad |p_c| = \left(24v_1\right)^{\frac{2}{3}} \ , \\ b &= \mathrm{sign}(p_b) \; \frac{\gamma}{4} \; \sqrt{-8v_2} \; P_2 \quad , \quad c = -\mathrm{sign}(p_c) \; \frac{\gamma}{8} \; \left(24v_1\right)^{\frac{1}{3}} \; P_1 \; . \end{split}$$

Polymerisation with constant λ_i and $P_i \mapsto \sin(\lambda_i P_i)/\lambda_i$

$$\begin{split} \mathscr{O} &= \left(\frac{3v_1}{2}\right)^{\frac{1}{3}} = \frac{\mathscr{L}_o}{\lambda_2} \left(3DC^2\lambda_1^2\right)^{\frac{1}{3}} \frac{\left(\frac{\lambda_2^6}{16C^2\lambda_1^2\mathcal{L}_o^6} \left(\frac{\mathscr{L}_o r}{\lambda_2} + \sqrt{1 + \frac{\mathscr{L}_o^2 r^2}{\lambda_2^2}}\right)^6 + 1\right)^{\frac{1}{3}}}{\left(\frac{\mathscr{L}_o r}{\lambda_2} + \sqrt{1 + \frac{\mathscr{L}_o^2 r^2}{\lambda_2^2}}\right)} \;, \\ a &= \frac{v_2}{2b^2} \;, \quad v_2 = 2\mathscr{L}_o^2 \left(\frac{\lambda_2}{\mathscr{L}_o}\right)^2 \left(1 + \frac{\mathscr{L}_o^2 r^2}{\lambda_2^2}\right) \left(1 - \frac{3CD}{2\lambda_2} \frac{1}{\sqrt{1 + \frac{\mathscr{L}_o^2 r^2}{\lambda_2^2}}}\right) \end{split}$$

Again two integration constants C, D, now: can't absorb D in r

Mass Dirac Observables

$$\begin{split} F_{Q}(v_1, P_1, P_2) &\stackrel{\text{on-shell}}{=} \left(\frac{3}{2}D\right)^{\frac{4}{3}} \frac{C}{\mathscr{L}_o} \\ \bar{F}_{Q}(v_1, P_1, P_2) &\stackrel{\text{on-shell}}{=} \frac{3CD\mathscr{L}_o}{\lambda_2^2} \left(3DC^2\lambda_1^2\right)^{\frac{1}{3}} \end{split}$$

Both Dirac observables have physical meaning!

Asymptotic Schwarzschild regions

For $r \to \pm \infty$ spacetime is asymptotically described by

$$ds_+^2 \simeq -\left(1 - \frac{F_Q}{\ell}\right)d\tau^2 + \frac{1}{1 - \frac{F_Q}{\ell}}d\ell^2 + \ell^2 d\Omega_2^2$$

Similar for ds_-^2 with \bar{F}_Q . Identify $2M_{BH}=F_Q$ and $2M_{WH}=\bar{F}_Q\Leftrightarrow$ Initial cond. $\mathcal{K}(\mathscr{E}_i)$ and $R(\mathscr{E}_i)$

Horizon Dirac Observables [Bodendorfer, FM, JM '19]

(generalised) μ_o -schemes

[Ashtekar, Olmedo, Singh '18; Corichi, Singh '16;...] and similar [Modesto '09; '10]

$$\begin{split} \dot{b} &= -\frac{1}{2} \left(\frac{\sin{(\delta_b b)}}{\delta_b} + \frac{\gamma^2 \delta_b}{\sin{(\delta_b b)}} \right) \quad , \quad \dot{c} &= -2 \frac{\sin(\delta_c c)}{\delta_c} \; , \\ \dot{p}_b &= \frac{p_b}{2} \cos{(\delta_b b)} \left(1 - \frac{\gamma^2 \delta_b^2}{\sin(\delta_b b)^2} \right) \quad , \quad \dot{p}_c &= 2 p_c \cos(\delta_c c) \; . \end{split}$$

Horizon Dirac observables

$$\begin{split} \mathcal{R}_{BH} &= \left[\frac{p_c \sin(\delta_c c)}{2} \left(\frac{\tan\left(\frac{\delta_c c}{2}\right)}{B_o^2} \left(\frac{b_o + \cos(\delta_b b)}{b_o - \cos(\delta_b b)} \right)^{\frac{2}{b_o}} + \frac{B_o^2}{\tan\left(\frac{\delta_c c}{2}\right)} \left(\frac{b_o - \cos(\delta_b b)}{b_o + \cos(\delta_b b)} \right)^{\frac{2}{b_o}} \right]^{\frac{1}{2}} \;, \\ \mathcal{R}_{WH} &= \left[\frac{p_c \sin(\delta_c c)}{2} \left(B_o^2 \tan\left(\frac{\delta_c c}{2}\right) \left(\frac{b_o + \cos(\delta_b b)}{b_o - \cos(\delta_b b)} \right)^{\frac{2}{b_o}} + \frac{1}{B_o^2 \tan\left(\frac{\delta_c c}{2}\right)} \left(\frac{b_o - \cos(\delta_b b)}{b_o + \cos(\delta_b b)} \right)^{\frac{2}{b_o}} \right]^{\frac{1}{2}} \;. \end{split}$$

For [Modesto '09; '10] also mass observables can be constructed

Two d.o.f. ⇒ Revisit arguments of [Ashtekar, Olmedo, Singh '18; Corichi, Singh '16;...]

General Statement

General observation

Fiducial cell dependence of one poly. scale

Two physical Dirac observables

Both scales **fiducial cell independent** [Bodendorfer, FM, JM '19] ⇒ Only **one** Dirac observable

Fiducial cell dependence

- Two masses are unrelated
- More freedom
- Restriction of initial conditions $M_{WH} = f(M_{BH})$ by quantum conditions
- Possibility to circumvent?

Fiducial cell independence

- One observable encodes both masses
- A relation $M_{WH} = f(M_{BH}) \ {\rm is}$ selected by dynamics
- $\begin{array}{l} \bullet \quad M_{BH} \leftrightarrow M_{WH} \text{ symmetry} \\ \Rightarrow M_{WH} \propto M_{BH}^{\pm 1} \end{array}$
- We found a model for -1

PART II

(b,v)-Type Variables for Effective Polymer Black Holes

New Canonical Variables: Curvature Variables

Previous model

$$\frac{P_1(\mathscr{O})}{\mathscr{L}_o} = \left(\frac{2}{3D}\right)^{\frac{1}{3}} \frac{2M_{BH}}{\mathscr{O}^3} \quad \propto \quad \sqrt{\mathcal{K}} \qquad \text{iff} \qquad D \text{ mass-independent}$$

mass indep. curvature upper bound for specific relations ${\cal M}_{WH}({\cal M}_{BH})$

New variables directly related to curvature

$$v_k = \left(\frac{3}{2}v_1\right)^{\frac{2}{3}}\frac{1}{P_2}$$
, $v_j = v_2 - \frac{3v_1P_1}{2P_2}$, $k = \left(\frac{3}{2}v_1\right)^{\frac{1}{3}}P_1P_2$, $j = P_2$

s.t.

$$k(\mathcal{E}) \approx R_{\mu\nu\alpha\beta} e^{\mu\nu} e^{\alpha\beta} = \frac{2M_{Misner-Sharp}(\mathcal{E})}{\mathcal{E}^3} \quad \stackrel{\text{on-shell}}{\longrightarrow} \quad \frac{2M_{BH}}{\mathcal{E}^3} \propto \sqrt{\mathcal{K}}$$

physical viability independently of the relation between the masses

Similar to (b, v)-variables in LQC, where $R \propto b^2$.

Classical Theory in (v_k, k, v_j, j) -Variables

Hamiltonian

$$H_{cl} = \sqrt{n}\mathcal{H}_{cl}$$
 , $\mathcal{H}_{cl} = 3v_k kj + v_j j^2 - 2 \approx 0$

One fiducial cell indep. Dirac observable (for two integration constants)

$$F = k (v_k j)^{\frac{3}{2}} = (D)^{\frac{3}{2}} C$$

Express
$$a=\frac{v_{j}j+v_{k}k}{2v_{k}j^{2}}$$
 in terms of $\mathscr{E}=\sqrt{v_{k}j}$

$$\mathscr{E} = \sqrt{D}r$$
 , $a(\mathscr{E}) = \frac{1}{D}\left(1 - \frac{F}{\mathscr{E}}\right)$ \Rightarrow $2M_{BH} = F$

Line element

Coordinate redefinition $\tau = t/\sqrt{D}$, $\mathscr{E} = \sqrt{D}r$

$$ds^{2} = -\left(1 - \frac{2M_{BH}}{\mathscr{C}}\right)d\tau^{2} + \frac{1}{1 - \frac{2M_{BH}}{\mathscr{C}}}d\mathscr{C}^{2} + \mathscr{C}^{2}d\Omega_{2}^{2}$$

Polymerisation of the Model

- Interior: r time-like \rightarrow homog. Cauchy slices with topology $\mathbb{R} \times \mathbb{S}^2$
- On-shell interpretation:

$$k(\mathcal{E}) = \frac{2M_{BH}}{\mathcal{E}^3} \propto \sqrt{\mathcal{K}} \qquad , \qquad j(\mathcal{E})\mathcal{L}_o = \frac{1}{\mathcal{E}} \left(\frac{3D}{2}\right)^{\frac{1}{3}}$$

• Polymerisation (constant $\lambda \to \mu_o$ -scheme):

$$k \mapsto \frac{\sin(\lambda_k k)}{\lambda_k}$$
, $j \mapsto \frac{\sin(\lambda_j j)}{\lambda_j}$

- $[\lambda_k] = L^2$ inverse curvature scale (large curv. qu.-effects)
- $[\lambda_j/\mathcal{L}_o] = L$ length scale (small areal radius qu.-effects)
- Effective Hamiltonian

$$H_{\rm eff} = \sqrt{n} \mathcal{H}_{\rm eff} , \quad \mathcal{H}_{\rm eff} = 3 v_k \frac{\sin \left(\lambda_k k\right)}{\lambda_k} \frac{\sin \left(\lambda_j j\right)}{\lambda_j} + v_j \frac{\sin^2 \left(\lambda_j j\right)}{\lambda_j^2} - 2 \approx 0$$

Solutions of the Effective Dynamics

Metric coefficients (with $x = \mathcal{L}_o r / \lambda_j$):

$$\mathcal{E}^{2}(x) = \frac{1}{2} \left(\frac{\lambda_{k}}{M_{BH} M_{WH}} \right)^{\frac{2}{3}} \frac{1}{\sqrt{1 + x^{2}}} \frac{M_{BH}^{2} \left(x + \sqrt{1 + x^{2}} \right)^{6} + M_{WH}^{2}}{\left(x + \sqrt{1 + x^{2}} \right)^{3}}$$

$$\frac{a(x)}{\lambda_{j}^{2}} = 2\left(\frac{M_{BH}M_{WH}}{\lambda_{k}}\right)^{\frac{2}{3}} \left(1 - \left(\frac{M_{BH}M_{WH}}{\lambda_{k}}\right)^{\frac{1}{3}} \frac{1}{\sqrt{1+x^{2}}}\right) \frac{\left(1+x^{2}\right)^{\frac{3}{2}} \left(x+\sqrt{1+x^{2}}\right)^{3}}{M_{BH}^{2} \left(x+\sqrt{1+x^{2}}\right)^{6} + M_{WH}^{2}}$$

Main features

- solution extends to exterior, $r \in (-\infty, \infty)$, two asymp. regions
- two horizons at $r = r^{(\pm)}$ s.t. a(r) = 0:

$$\mathscr{C}_{+} \simeq 2M_{BH/WH} + \text{quant. corrections } (\to 0 \text{ as } \lambda \to 0)$$

- & has non-zero minimum (transition surface)
- ullet Two integration constants M_{BH} , M_{WH} , both physically relevant
- λ_i does not appear in the final metric

Integration Constants

Dirac observables

$$F_Q = \frac{\sin(\lambda_k k)}{\lambda_k} \cos\left(\frac{\lambda_k k}{2}\right) \left(\frac{2v_k}{\lambda_j \cot\left(\frac{\lambda_j j}{2}\right)}\right)^{\frac{3}{2}},$$

$$\bar{F}_{Q} = \frac{\sin(\lambda_{k}k)}{\lambda_{k}} \sin\left(\frac{\lambda_{k}k}{2}\right) \left(\frac{2\nu_{k}}{\lambda_{j}} \cot\left(\frac{\lambda_{j}j}{2}\right)\right)^{\frac{3}{2}}$$

Asymptotic Schwarzschild regions

For $r \to \pm \infty$ spacetime is asymptotically described by

$$ds_+^2 \simeq -\left(1 - \frac{F_Q}{\ell}\right)d\tau^2 + \left(1 - \frac{F_Q}{\ell}\right)^{-1}db^2 + \ell^2 d\Omega_2^2$$

Similarly for ds_-^2 with \bar{F}_Q .

$$\implies \quad \text{Identify} \quad 2M_{BH} = F_Q \quad \text{ and } \quad 2M_{WH} = \bar{F}_Q$$

Note: M_{BH} and M_{WH} independent!

Quantum-Corrected Effective Spacetime Structure

- Eff. metric smooth in the whole r-domain $r \in (-\infty, +\infty)$
- Quantum effects relevant in large curvature regime
- Singularity resolved by transition surface ${\cal T}$

(BH-to-WH transition)

- Infinetely many trapped (BH) and anti-trapped (WH) regions
- ullet Asymp. Schwarzschild spacetimes with alternating masses $M_{\it BH}, \, M_{\it WH}$

Curvature Upper Bound

Requirement

Unique (mass-indep.) Planckian upper bound for curvature invariants

- Analyse Kretschmann scalar at transition surface
- All mass relations fine
- Special is the range

$$\frac{1}{8} < \frac{M_{BH}}{M_{WH}} < 8$$

$$\lambda_k = \lambda_j = 1$$

$$--- M_{WH} = 8M_{BH},$$

$$--- M_{WH} = \frac{1}{8}M_{BH}.$$

Onset of Quantum Effects

For
$$M_{WH} = mM_{BH}$$
, $\lambda_k = \lambda_j = 1$

- For $\frac{1}{8} < \frac{M_{BH}}{M_{WH}} < 8$ *j*-sector dominates
- $\bullet \ \, \text{For} \,\, m=1 \,\, \text{only} \,\, \lambda_k \,\, \text{scale} \\ \text{relevant} \\$

$$\mathcal{K}_{cl}^{BH} = \frac{48 M_{BH}^2}{\mathcal{E}_+^6} \ll \frac{3}{4 \lambda_k^2} \left(\frac{M_{BH}}{M_{WH}}\right)^2$$

Quantum Theory: A Sketch

[Ashtekar, Corichi, Singh '07; Martín-Benito, Mena Marugán, Olmedo '09]

• For $\lambda_k = \lambda_i = 2$ and $\sqrt{n} = v_i$, we choose the ordering:

$$\begin{split} H_{\text{eff}} &= 3\sqrt{v_k} \left(\frac{\sin(2k)}{4} \text{sign}(v_k) + \text{sign}(v_k) \frac{\sin(2k)}{4} \right) \sqrt{v_k} \\ &\times \sqrt{v_j} \left(\frac{\sin(2j)}{4} \text{sign}(v_j) + \text{sign}(v_j) \frac{\sin(2j)}{4} \right) \sqrt{v_j} \\ &+ \left(\sqrt{v_j} \left(\frac{\sin(2j)}{4} \text{sign}(v_j) + \text{sign}(v_j) \frac{\sin(2j)}{4} \right) \sqrt{v_j} \right)^2 - 2v_j \approx 0 \end{split}$$

• Hilbert space:
$$|\chi\rangle = \sum_{v_k,v_j \in \mathbb{Z}} \tilde{\chi}(v_k,v_j) |v_k,v_j\rangle$$

$$\hat{v}_k |v_k,v_i\rangle = v_k |v_k,v_i\rangle \quad , \quad \hat{e^{-i\rho k}} |v_k,v_i\rangle = |v_k+\rho,v_i\rangle \quad (\rho \in \mathbb{Z})$$

• Rescaling $\tilde{\chi}(v_k, v_j) = \sqrt{|v_k v_j|} \tilde{\psi}(v_k, v_j)$ and changing variables $y_i = \log(\sinh(x_i))$ with $x_1 = \log(\tan(k/2))$ and $x_2 = \log(\tan(j/2))$:

$$\hat{H} = \left(-3\partial_{y_1} - \partial_{y_2} + 4i\cosh(y_2)\right)\partial_{y_2}$$

• Solution of $\hat{H} | \psi \rangle = 0$:

$$\psi_{\rm phys}(y_1,y_2) = g(y_1) + \int^{y_2} d\,y_2'\,e^{4i\sinh(y_2')}\,f\left(y_2' - \frac{1}{3}\,y_1\right)$$

Conclusion and Outlook

Summary

- Key role of Dirac observables in effective polymer BH models
- new canonical variables for quantum-corrected Schwarzschild BH (constant polymerisation scales)
- singularity resolved by BH-to-WH transition
- physical viability for all mass relations (symmetric bounce preferred)
- $\bullet \ \ remarkably \ simple \ Hamiltonian \ \rightarrow \ Quantum \ theory \ analytically \ solvable!$

Future work

- complete quantum theory (role of Dirac obs?)
- relation with full LQG
- other spacetimes:
 - gravitational collapse
 - higher dimensions and asymptotically AdS → holography?

Conclusion and Outlook

Summary

- Key role of Dirac observables in effective polymer BH models
- new canonical variables for quantum-corrected Schwarzschild BH (constant polymerisation scales)
- singularity resolved by BH-to-WH transition
- physical viability for all mass relations (symmetric bounce preferred)
- remarkably simple Hamiltonian → Quantum theory analytically solvable!

Future work

- complete quantum theory (role of Dirac obs?)
- relation with full LQG
- other spacetimes:
 - gravitational collapse
 - higher dimensions and asymptotically AdS → holography?

Relation with Connection Variables

Our model in connection variables

Our (v_k,k,v_j,j) -variables are related to connection variables as:

$$\begin{split} p_b^2 &= -\frac{8\left(v_k k + v_j j\right)}{j} \quad , \quad |p_c| = 4 \; 2^{\frac{2}{3}} v_k j \; , \\ b &= \mathrm{sign}(p_b) \; \frac{\gamma}{4} \; \sqrt{-8\left(v_k k + v_j j\right) j} \quad , \quad c = -\mathrm{sign}(p_c) \; \frac{\gamma}{4} \; 2^{\frac{1}{3}} \frac{k}{j} \; . \end{split}$$

Demanding

$$\lambda_j j \stackrel{!}{=} \lambda_2 P_2 = \delta_b b$$
 , $\lambda_k k \stackrel{!}{=} \lambda_1 P_1 = \delta_c c$

our model with const. λ 's corresponds to the following (generalised) $\bar{\mu}$ -scheme:

$$\delta_b = \pm \frac{4\lambda_j}{\gamma |p_b|} \qquad , \qquad \delta_c = \pm \frac{64 \ 2^{\frac{1}{3}}}{\gamma^2} \frac{b}{p_b} \lambda_k$$