VACUUM STATE FOR LOOP QUANTUM COSMOLOGY

Rita Neves, Universidad Complutense de Madrid SFRH/BD/143525/2019

> Supervisors: Mercedes Martín Benito, Javier Olmedo

International Loop Quantum Gravity Seminars, March 23rd 2021

FCT Fundação para a Ciência e a Tecnologia

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MOTIVATION

- Cosmological perturbations in (L)QC: observational window;
- Freedom in choice of vacuum state;
- Natural vacuum?

MOTIVATION

• Cosmological perturbations in (L)QC: observational window;

- Freedom in choice of vacuum state;
- Natural vacuum?
 - Adiabatic,
 - Diagonalization of Hamiltonian¹
 - Minimization of renormalized stress-energy tensor², uncertainty relations³,
 - Minimization of smeared quantities⁴.

 $^1\mathsf{Fahn},$ et. al, Universe 5, 170 (2019), Elizaga Navascués, et. al, Class. Quant. Grav. 36, 185010 (2019)

²Agullo, et. al, PRD **91**, 064051 (2015), Handley, et. al, PRD **94**, 024041 (2016)

³Danielsson, PRD **66**, 023511 (2002), Ashtekar, et. al, Class. Quant. Grav. **34**, 035004 (2017)

⁴de Blas, et. al, JCAP **06**, 029 (2016), Elizaga Navascués, et. al, Class. Quant. Grav. **38**, 035001 (2020), Olbermann, Class. Quant. Grav. **24**, 5011 (2007)

ILQGS 23/03/2021

(ロト (周下 (王)) (王)

MOTIVATION

• Cosmological perturbations in (L)QC: observational window;

- Freedom in choice of vacuum state;
- Natural vacuum?
 - Adiabatic,
 - Diagonalization of Hamiltonian¹
 - Minimization of renormalized stress-energy tensor², uncertainty relations³,
 - Minimization of smeared quantities⁴.

 $^1\mathsf{Fahn},$ et. al, Universe 5, 170 (2019), Elizaga Navascués, et. al, Class. Quant. Grav. 36, 185010 (2019)

²Agullo, et. al, PRD **91**, 064051 (2015), Handley, et. al, PRD **94**, 024041 (2016)

³Danielsson, PRD **66**, 023511 (2002), Ashtekar, et. al, Class. Quant. Grav. **34**, 035004 (2017)

⁴de Blas, et. al, JCAP 06, 029 (2016), Elizaga Navascués, et. al, Class. Quant. Grav. 38, 035001 (2020), Olbermann, Class. Quant. Grav. 24, 5011 (2007)

- Inflaton field ϕ subject to potential $V(\phi)$,
- Scalar and tensor gauge invariant perturbations, minimally coupled: $\mathcal{Q}, \mathcal{T}^{I}$,

• Redefinition:
$$u = a \mathcal{Q}$$
, $\mu^I = a \mathcal{T}^I$,

Fourier modes:

$$u(\eta, \vec{x}) = \frac{1}{(2\pi)^{3/2}} \int d^3k \, u_{\vec{k}}(\eta) e^{i\vec{k}\vec{x}},$$

RITA NEVES, RNEVES@UCM.ES

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

• Equations of motion

$$u_{\vec{k}}''(\eta) + \left(k^2 + s^{(s)}(\eta)\right)u_{\vec{k}}(\eta) = 0,$$
$$\left[\mu_k^I(\eta)\right]'' + \left(k^2 + s^{(t)}(\eta)\right)\mu_{\vec{k}}^I(\eta) = 0,$$

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

Equations of motion

$$u_{\vec{k}}''(\eta) + \left(k^2 + s^{(s)}(\eta)\right)u_{\vec{k}}(\eta) = 0,$$
$$\left[\mu_k^I(\eta)\right]'' + \left(k^2 + s^{(t)}(\eta)\right)\mu_{\vec{k}}^I(\eta) = 0,$$

• in hybrid LQC:

$$s^{(t)} = -\frac{4\pi G}{3}a^2\left(\rho - 3P\right), \qquad s^{(s)} = s^{(t)} + \mathcal{U},$$

 $\mathcal{U} = \mathcal{U}\left[V(\phi), V_{,\phi}, V_{,\phi\phi}, \mathsf{bckg}\right].$

・ロ・・雪・・ヨ・・ヨ・ りゃぐ

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

• Equations of motion

$$u_{\vec{k}}''(\eta) + \left(k^2 + s^{(s)}(\eta)\right)u_{\vec{k}}(\eta) = 0,$$
$$\left[\mu_k^I(\eta)\right]'' + \left(k^2 + s^{(t)}(\eta)\right)\mu_{\vec{k}}^I(\eta) = 0,$$

• in hybrid LQC:

$$s^{(t)} = -\frac{4\pi G}{3}a^2(\rho - 3P), \qquad s^{(s)} = s^{(t)} + \mathcal{U},$$

$$\mathcal{U} = \mathcal{U}\left[V(\phi), V_{,\phi}, V_{,\phi\phi}, \mathsf{bckg}\right].$$

• Power spectra (
$$z = a\dot{\phi}/H$$
):
 $\mathcal{P}_{\mathcal{R}}(k) = \frac{k^3}{2\pi^2} \frac{|u_k|^2}{z^2} \Big|_{\eta = \eta_{\text{end}}}, \qquad \mathcal{P}_{\mathcal{T}}(k) = \frac{32k^3}{\pi} \frac{|\mu_k^I|^2}{a^2} \Big|_{\eta = \eta_{\text{end}}}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Adiabatic states

• ansatz
$$u_k(\eta) = \frac{1}{\sqrt{2W_k(\eta)}} e^{-i\int^{\eta} W_k(\bar{\eta})\mathrm{d}\bar{\eta}}$$
:
$$W_k^2 = k^2 + s(\eta) - \frac{1}{2}\frac{W_k''}{W_k} + \frac{3}{4}\left(\frac{W_k'}{W_k}\right)^2.$$

▲□ > ▲圖 > ▲目 > ▲目 > □ 目 - のへぐ

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

Adiabatic states

• ansatz
$$u_k(\eta) = \frac{1}{\sqrt{2W_k(\eta)}} e^{-i\int^{\eta} W_k(\bar{\eta})d\bar{\eta}}$$
:
 $W_k^2 = k^2 + s(\eta) - \frac{1}{2}\frac{W_k''}{W_k} + \frac{3}{4}\left(\frac{W_k'}{W_k}\right)^2$.
• $W_k^{(n)} \xrightarrow[k \to \infty]{} W_k$, at least as $\mathcal{O}\left(k^{n-\frac{1}{2}}\right)$:
 $\left(W_k^{(n+2)}\right)^2 = k^2 + s(\eta) - \frac{1}{2}\frac{W_k^{(n)''}}{W_k^{(n)}} + \frac{3}{4}\left(\frac{W_k^{(n)'}}{W_k^{(n)}}\right)^2$,
• $W_k^{(0)} = k$.

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ▲

STATES OF LOW ENERGY [OLBERMANN, CLASS. QUANT. GRAV. 24, 5011 (2007)]

- Fewster 2000 [Class. Quant. Grav. 17, 1897–1911 (2000)]:
 - Renormalized energy density, smeared along time-like curve, is bounded from below as function of state.
- Olbermann 2007:
 - Particularize for generic FLRW models, smearing function supported on worldline of isotropic observer,
 - Define procedure to find state that minimizes it mode by mode.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの(や

STATES OF LOW ENERGY [OLBERMANN, CLASS. QUANT. GRAV. 24, 5011 (2007)]

- Fewster 2000 [Class. Quant. Grav. 17, 1897–1911 (2000)]:
 - Renormalized energy density, smeared along time-like curve, is bounded from below as function of state.
- Olbermann 2007:
 - Particularize for generic FLRW models, smearing function supported on worldline of isotropic observer,
 - Define procedure to find state that minimizes it mode by mode.
- Candidates for vacuum of perturbations in LQC:
 - Minimization of regularized energy density,
 - Exact Hadamard states.

ILQGS 23/03/2021

STATES OF LOW ENERGY

A field T_k :

$$\ddot{T}_k + 3H\dot{T}_k + \omega_k^2(t)T_k = 0,$$

• scalar or tensor perturbations:
$$\omega_k^2(t) = \frac{k^2 + s(t)}{a^2} + H^2 + \frac{\ddot{a}}{a}.$$

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

STATES OF LOW ENERGY

A field T_k :

$$\ddot{T}_k + 3H\dot{T}_k + \omega_k^2(t)T_k = 0,$$

• scalar or tensor perturbations:
$$\omega_k^2(t) = \frac{k^2 + s(t)}{a^2} + H^2 + \frac{\ddot{a}}{a}$$

Minimize mode contribution to smeared energy density:

$$E(T_k) = \frac{1}{2} \int dt \, f^2(t) \left(\frac{|\pi_{T_k}|^2}{a^6} + \omega_k^2 |T_k|^2 \right),$$

where $\pi_{T_k} = a^3 \dot{T}_k$, f(t) smearing function.

- Arbitrary solution S_k ,
- Bogoliubov transformation:

$$T_k = \lambda(k)S_k + \mu(k)\bar{S}_k,$$

with
$$|\lambda(k)|^2 - |\mu(k)|^2 = 1$$
, fixing $\mu(k) \in \mathbb{R}^+$,

- Arbitrary solution S_k,
- Bogoliubov transformation:

$$T_k = \lambda(k)S_k + \mu(k)\bar{S}_k,$$

with $|\lambda(k)|^2 - |\mu(k)|^2 = 1$, fixing $\mu(k) \in \mathbb{R}^+$,

• Defining:

$$c_1(k) := \frac{1}{2} \int dt \, f^2(t) \left(|\dot{S}_k|^2 + \omega_k^2 |S_k|^2 \right) = E(S_k),$$

$$c_2(k) := \frac{1}{2} \int dt \, f^2(t) \left(\dot{S}_k^2 + \omega_k^2 S_k^2 \right).$$

<ロト < 回 > < 三 > < 三 > < 三 > のへで

$$E(T_k) = (2\mu^2(k) + 1) c_1(k) + 2\mu(k) \operatorname{Re}[\lambda(k) c_2(k)]$$

 $2\mu|\lambda||c_2|\cos[\mathsf{Arg}(\lambda){+}\mathsf{Arg}(c_2)]$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

٠

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

$$E(T_k) = (2\mu^2(k) + 1) c_1(k) + \underbrace{2\mu(k) \operatorname{Re}[\lambda(k) c_2(k)]}_{2\mu|\lambda||c_2|\cos[\operatorname{Arg}(\lambda) + \operatorname{Arg}(c_2)]}.$$

Minimize $E(T_k) \Rightarrow \operatorname{Arg}[\lambda(k)] = \pi - \operatorname{Arg}[c_2(k)]$:

$$E(T_k) = (2\mu^2(k) + 1)c_1(k) - 2\mu(k)\sqrt{\mu^2(k) + 1}|c_2(k)|.$$

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

$$E(T_k) = (2\mu^2(k) + 1) c_1(k) + \underbrace{2\mu(k) \operatorname{Re}[\lambda(k) c_2(k)]}_{2\mu|\lambda||c_2|\cos[\operatorname{Arg}(\lambda) + \operatorname{Arg}(c_2)]} .$$

Minimize $E(T_k) \Rightarrow \operatorname{Arg}[\lambda(k)] = \pi - \operatorname{Arg}[c_2(k)]$:

$$E(T_k) = (2\mu^2(k) + 1)c_1(k) - 2\mu(k)\sqrt{\mu^2(k) + 1}|c_2(k)|$$

Minimizing $E(T_k)$ with respect to μ :

$$\begin{split} \mu(k) &= \sqrt{\frac{c_1(k)}{2\sqrt{c_1^2(k) - |c_2(k)|^2}} - \frac{1}{2}}, \\ \lambda(k) &= -e^{-i\operatorname{Arg}[c_2(k)]} \sqrt{\frac{c_1(k)}{2\sqrt{c_1^2(k) - |c_2(k)|^2}} + \frac{1}{2}} \ . \end{split}$$

RITA NEVES, RNEVES@UCM.ES

STATE OF LOW ENERGY ASSOCIATED WITH f(t)

$$\begin{split} T_k &= \lambda(k)S_k + \mu(k)\bar{S}_k, \\ \begin{cases} \mu(k) &= \sqrt{\frac{c_1(k)}{2\sqrt{c_1^2(k) - |c_2(k)|^2}} - \frac{1}{2}}, \\ \lambda(k) &= -e^{-i\mathrm{Arg}[c_2(k)]} \sqrt{\frac{c_1(k)}{2\sqrt{c_1^2(k) - |c_2(k)|^2}} + \frac{1}{2}} \,. \end{split}$$

 \hookrightarrow Dependence on smearing function (through c_1 and c_2).

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

STATE OF LOW ENERGY ASSOCIATED WITH f(t)

$$\begin{split} T_k &= \lambda(k)S_k + \mu(k)\bar{S}_k, \\ & \left\{ \begin{aligned} \mu(k) &= \sqrt{\frac{c_1(k)}{2\sqrt{c_1^2(k) - |c_2(k)|^2}} - \frac{1}{2}}, \\ \lambda(k) &= -e^{-i\mathrm{Arg}[c_2(k)]} \sqrt{\frac{c_1(k)}{2\sqrt{c_1^2(k) - |c_2(k)|^2}} + \frac{1}{2}} \end{aligned} \right. \end{split}$$

 \hookrightarrow Dependence on smearing function (through c_1 and c_2).

STATE OF MINIMAL ENERGY

The state T_k that is of low energy for any f(t). Only exists in ultrastatic spacetimes.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PROPERTIES

In maximally symmetric spacetimes:

- Minkowski: SLE trivially identical to Minkowski vacuum;
 - start with $S_k = \mathsf{Minkowski}$ vacuum
 - $c_2 = 0$ trivially $\Rightarrow |\lambda| = 1, \mu = 0$
 - $T_k = S_k$ (up to phase)

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

PROPERTIES

In maximally symmetric spacetimes:

- Minkowski: SLE trivially identical to Minkowski vacuum;
 - start with $S_k = \mathsf{Minkowski}$ vacuum
 - $c_2 = 0$ trivially $\Rightarrow |\lambda| = 1, \mu = 0$
 - $T_k = S_k$ (up to phase)
- de Sitter: singles out Bunch-Davies
 - support of $f \rightarrow \text{distant past}$
 - [massless case: our work]

ILQGS 23/03/2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの(や

PROPERTIES (BANERJEE, NIEDERMAIER, J. MATH. PHYS. 61, 103511 (2020))

- Independence of fiducial solution S_k ;
- T_k admits UV and IR expansions;
- UV aymptotic behavior of $|T_k|^2$ is independent of f;
- IR symptotic behavior is Minkowski-like for all f;
- As vacuum states of perturbations: agreement with observations for cosmological models with period of kinetic dominance prior to inflation.

イロト 不同 トイヨト イヨト ニヨー ろくで

- **1** Obtain S_k numerically
 - give initial conditions (irrelevant) \hookrightarrow 0th order adiabatic at bounce: $v_{i}(0) = \frac{1}{2} v_{i}'(0) = \frac{1}{2} v_{i}'(0)$

$$u_k(0) = \frac{1}{\sqrt{2k}}, \ u'_k(0) = -i\sqrt{\frac{2}{2k}}$$

-
$$V(\phi) = m^2 \phi^2/2$$

- $m = 1.2 \times 10^{-6} m_{\rm Pl}$
- $\phi_B = 1.225 \ m_{\rm Pl}$

ILQGS 23/03/2021

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- **1** Obtain S_k numerically
 - give initial conditions (irrelevant) \hookrightarrow 0th order adiabatic at bounce: $\left| \frac{k}{2} \right|$ 1

$$u_k(0) = \frac{1}{\sqrt{2k}}, \ u'_k(0) = -i\sqrt{2k}$$

- $V(\phi) = m^2 \phi^2 / 2$
- $m = 1.2 \times 10^{-6} m_{\rm Pl}$
- $\phi_B = 1.225 \ m_{\rm Pl}$

Planck 2018: predictive posterior plot of free-form Bayesian reconstruction of primordial power spectrum.

イロト イボト イヨト イヨト

- **1** Obtain S_k numerically
 - give initial conditions (irrelevant)
 ↔ 0th order adiabatic at bounce:

$$u_k(0) = \frac{1}{\sqrt{2k}}, \ u'_k(0) = -i\sqrt{\frac{\kappa}{2}}$$

- $V(\phi) = m^2 \phi^2/2$
- $m = 1.2 \times 10^{-6} m_{\rm Pl}$
- $\phi_B = 1.225 \ m_{\rm Pl}$

Planck 2018: predictive posterior plot of free-form Bayesian reconstruction of primordial power spectrum. In blue/green: **ILLUSTRATIVE** example of PS when varying ϕ_B

- **1** Obtain S_k numerically
 - give initial conditions (irrelevant) \hookrightarrow 0th order adiabatic at bounce: $\frac{k}{2}$ 1

$$u_k(0) = \frac{1}{\sqrt{2k}}, \ u'_k(0) = -i\sqrt{2k}$$

- $V(\phi) = m^2 \phi^2 / 2$
- $m = 1.2 \times 10^{-6} m_{\rm Pl}$
- $\phi_B = 1.225 \ m_{\rm Pl}$

Planck 2018: predictive posterior plot of free-form Bayesian reconstruction of primordial power spectrum. In blue/green: ILLUSTRATIVE example of PS when varying ϕ_B

- **1** Obtain S_k numerically
 - give initial conditions (irrelevant) \hookrightarrow 0th order adiabatic at bounce: 1 \sqrt{k}

$$u_k(0) = \frac{1}{\sqrt{2k}}, \ u'_k(0) = -i\sqrt{\frac{k}{2}}$$

- $V(\phi) = m^2 \phi^2/2$
- $m = 1.2 \times 10^{-6} m_{\rm Pl}$
- $\phi_B = 1.225 \ m_{\rm Pl}$

Planck 2018: predictive posterior plot of free-form Bayesian reconstruction of primordial power spectrum. In blue/green: **ILLUSTRATIVE** example of PS when varying ϕ_B

2 choose $f^2(t)$:

- usually in LQC, 2 strategies for choosing initial conditions of perturbations
 - at bounce
 - at asymptotic time well before bounce

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

2 choose $f^2(t)$:

- usually in LQC, 2 strategies for choosing initial conditions of perturbations
 - at bounce
 - at asymptotic time well before bounce
- here: no need for initial conditions, but need to choose f^2 :
 - support on "whole" evolution (since well before to well after bounce): \rightarrow results insensitive to shape and support of f^2 as long as it is wide enough
 - support on expanding branch only $(f^2$ is sharp (but smooth) step function starting at bounce):
 - $\rightarrow \mbox{results}$ insensitive to support as long as it is wide enough

ILQGS 23/03/2021

イロト 不同 トイヨト イヨト ニヨー ろくで

- **2** choose $f^2(t)$:
 - support on "whole" evolution vs expanding branch only

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

- **2** choose $f^2(t)$:
 - support on "whole" evolution vs expanding branch only
 - smooth step function:

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LOC

- **2** choose $f^2(t)$:
 - support on "whole" evolution vs expanding branch only
 - smooth step function:

RITA NEVES, RNEVES@UCM.ES

Initial conditions:

$$u_k(0) = \frac{1}{\sqrt{2D_k}},$$

 $u'_k(0) = \sqrt{\frac{D_k}{2}} (C_k - i),$

 D_k : positive function, C_k : any real function.

Initial conditions:

$$\begin{split} u_k(0) &= \frac{1}{\sqrt{2D_k}}, \\ u_k'(0) &= \sqrt{\frac{D_k}{2}} \left(C_k - i\right), \end{split}$$

 D_k : positive function, C_k : any real function.

Initial conditions:

$$\begin{split} u_k(0) &= \frac{1}{\sqrt{2D_k}}, \\ u_k'(0) &= \sqrt{\frac{D_k}{2}} \left(C_k - i\right), \end{split}$$

- D_k : positive function, C_k : any real function.
- scalar \sim tensor *at bounce* - $s^{(s)} = s^{(t)} + \mathcal{U} \simeq s^{(t)}$
 - $S_k(0) \leftrightarrow$ 0th order adiabatic $(D_k = k, C_k = 0)$

• Power spectra (
$$z=a\dot{\phi}/H$$
):

$$\begin{aligned} \mathcal{P}_{\mathcal{R}}(k) &= \frac{k^3}{2\pi^2} \frac{|u_k|^2}{z^2} \Big|_{\eta=\eta_{\text{end}}}, \\ \mathcal{P}_{\mathcal{T}}(k) &= \frac{32k^3}{\pi} \frac{|\mu_k^I|^2}{a^2} \Big|_{\eta=\eta_{\text{end}}}. \end{aligned}$$

VACUUM STATE FOR LQC

• Power spectra (
$$z=a\dot{\phi}/H$$
):

$$\begin{aligned} \mathcal{P}_{\mathcal{R}}(k) &= \frac{k^3}{2\pi^2} \frac{|u_k|^2}{z^2} \Big|_{\eta=\eta_{\text{end}}}, \\ \mathcal{P}_{\mathcal{T}}(k) &= \frac{32k^3}{\pi} \frac{|\mu_k^I|^2}{a^2} \Big|_{\eta=\eta_{\text{end}}}. \end{aligned}$$

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

• Power spectra (
$$z=a\dot{\phi}/H$$
):

$$\begin{aligned} \mathcal{P}_{\mathcal{R}}(k) &= \frac{k^3}{2\pi^2} \frac{|u_k|^2}{z^2} \Big|_{\eta=\eta_{\text{end}}}, \\ \mathcal{P}_{\mathcal{T}}(k) &= \frac{32k^3}{\pi} \frac{|\mu_k^I|^2}{a^2} \Big|_{\eta=\eta_{\text{end}}}. \end{aligned}$$

Observationally: close to 2nd order Adiabatic;

• Power spectra (
$$z=a\dot{\phi}/H$$
):

$$\begin{split} \mathcal{P}_{\mathcal{R}}(k) &= \frac{k^3}{2\pi^2} \frac{|u_k|^2}{z^2} \Big|_{\eta = \eta_{\text{end}}}, \\ \mathcal{P}_{\mathcal{T}}(k) &= \frac{32k^3}{\pi} \frac{|\mu_k^I|^2}{a^2} \Big|_{\eta = \eta_{\text{end}}}. \end{split}$$

- Observationally: close to 2nd order Adiabatic;
- Fundamentally different, SLEs:
 - minimize smeared energy density,
 - are exact Hadamard states: computation of stress-energy tensor

- Tensor-to-scalar ratio
 - scale invariance from smaller k.

イロト イヨト イヨト イヨト

• Tensor-to-scalar ratio: $r_{0.002} \simeq 0.117$

• Spectral index: $n_s \simeq 0.969$

Planck 2018: Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020)

ヘロト ヘヨト ヘヨト ヘヨト

• Tensor-to-scalar ratio: $r_{0.002} \simeq 0.117$

• Spectral index: $n_s \simeq 0.969$

Planck 2018: Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020)

ヘロト ヘヨト ヘヨト ヘヨト

= nar

SUMMARY AND OUTLOOK

- SLEs are good candidates for vacua:
 - Hadamard states,
 - Minimize smeared energy density,
 - IR and UV asymptotic behaviors independent of test function;
- IR and UV agreement with observations when KD precedes inflation;
- In LQC:
 - qualitative agreement with observations,
 - insensitive to choice of test function;
- Rigorous statistical analysis:
 - parameters of the background,
 - quantization,
 - $V(\phi)$.

Thank you for your attention

RITA NEVES, RNEVES@UCM.ES

VACUUM STATE FOR LQC

ILQGS 23/03/2021

21/2