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Motivation

The main motivation is a wish to quantize GR using complex
Ashtekar variables whose gauge group is SL(2, C).

GR can be quantized using real Ashtekar-Barbero variables (gauge
group SU(2)) but:

it lacks Lorentz invariance;

there is a quantization ambiguity (Immirzi parameter);

the application of the real variables makes the scalar
constraint much more complicated.
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SL(2, C) as a gauge group

Canonical quantization of GR expressed in terms of the complex
Ashtekar variables faces two obstacles:

1 SL(2, C) is non-compact:

this makes the task of constructing the space of quantum
states for the theory very difficult;

2 SL(2, C) is complex:

it implies the existence of some complicated constraints called
reality conditions which have to be included in the structure
of the resulting quantum theory.

We are going to focus solely on the non-compactness problem.



Problem: non-compact gauge groups 5/18

Space of quantum states built via inductive techniques

Consider a principle bundle P(Σ,G ) and connections on it.

Given graph γ embedded in Σ, define a Hilbert space

Hγ := L2(Aγ , dµγ),

where Aγ
∼= Gnumber of edges of γ is a space of holonomies along the

edges of γ.

For every pair γ′ ≥ γ define an embedding

pγ′γ : Hγ 7→ Hγ′

such that {Hγ , pγ′γ} is an inductive family. Then

Space of quantum states := inductive limit of {Hγ , pγ′γ}.
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Inductive techniques fail in the non-compact case

So far we know how to define embeddings {pγ′γ} only when the
gauge group G is compact.

This construction employs the fact that the constant function I of
the value equal to 1 is square-integrable over any GN . If

γ′ := γ ∪ γ0 ≥ γ, γ ∩ γ0 = ∅

then

Hγ 3 Ψ 7→ pγ′γ(Ψ) = Ψ⊗ I ∈ Hγ ⊗Hγ0 = Hγ′ .

In the non-compact case this particular construction breaks down
and we do not know how to use the inductive techniques to build
the space of quantum states.
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Systems and subsystems

A solution to the problem comes from [Kijowski, 1977]. Given a
pair

γ′ ≥ γ

of graphs, Kijowski treats them as a pair

system—subsystem

with the configuration spaces Aγ′ and Aγ , respectively.

and the Hilbert spaces Hγ′ and Hγ , resp.

If so, then it is not natural to look for the embedding

Hγ′
pγ′γ←− Hγ

since quantum mechanics does not provide any natural embedding
of the Hilbert space of the subsystem into the Hilbert space of the
system.
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Mixed states and partial trace projection

Thus, given a pair system—subsystem

γ′ ≥ γ,

instead of the embedding

Hγ′
pγ′γ←− Hγ

we should employ a projection

Dγ′
πγγ′
−→ Dγ

from the space Dγ′ of mixed states of the system γ′ onto the space
Dγ of mixed states of its subsystem γ.

The projection πγγ′ is defined by so-called partial trace.
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Space of quantum states built via projective techniques

Consequently, we obtain a projective family

{Dγ , πγγ′}

and define the space of quantum states

D := projective limit of {Dγ , πγγ′}.

Note that D is not a Hilbert space, but is a convex set!

Question: does D correspond to the space of positive linear
functionals on a C ∗-algebra?
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Algebra of quantum observables

Let Bγ be the C ∗-algebra of bounded operators on Hγ . Then Dγ

coincides with the set of (normal) states on Bγ .

Consequently, given γ′ ≥ γ, there is an embedding (dual to the
projection πγγ′)

π∗γγ′ : Bγ → Bγ′

such that {Bγ , π∗γγ′} is an inductive family.

The states in D can be naturally evaluated on the inductive limit B
of the family, hence we call B the C ∗-algebra of quantum
observables [Kijowski, 1977].

Thus the resulting quantum model consists of the spaces D and B
without any Hilbert space!



Application: quantization of a ’toy theory’ 11/18

’Toy theory’—Lagrangian formulation

Let M× R be a principle bundle over 4-dimensional ’spacetime’
M with the additive group R as the structure group.

The ’toy theory’ is defined by the following action [Oko lów, 2006]:

S [A, σ, Ψ] :=

∫
M

σ ∧ F − 1

2
Ψ σ ∧ σ,

where

A is a connection on the bundle and F = dA is its curvature
form;

σ is a two-form valued in the Lie algebra of R;

Ψ is a Lagrange multiplier (a real function on M).



Application: quantization of a ’toy theory’ 12/18

Motivation—Plebański action for GR

Let M× SL(2, C) be a principle bundle.

Plebański action is defined as follows:

S [AA
B , ΣA

B , ΨABCD ] =

∫
M

ΣAB ∧ FAB −
1

2
ΨABCD ΣAB ∧ ΣCD ,

where

AA
B is a connection on the bundle and FA

B is its curvature
form;

ΣA
B is a two-form valued in the Lie algebra of SL(2, C);

ΨABCD = Ψ(ABCD) is a Lagrange multiplier (a symmetric
spinor field on M).
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’Toy theory’—Hamiltonian formulation

Assume that M = Σ× R and that coordinates (x i , x0) are
adapted to the decomposition.

The Hamiltonian is of the form:

H[Ẽ i ,Ai ,C ,N i ] = −
∫

Σ
d3x (C∂i Ẽ

i + N i Ẽ jFij),

where

Ẽ i := 1
2 ε̃ijkσjk is the momentum variable;

Ai is the configuration variable;

C ,N i are Lagrange multipliers.

Note that

the Hamiltonian is a sum of Gauss and vector constraints;

there is no scalar constraint!
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Interpretation of the ’toy theory’

Let

the fields (Ẽ iA
B ,Aj

C
D) on Σ be the complex Ashtekar variables

valued in the Lie algebra sl(2, C);

R̃ be a subgroup of SL(2, C) isomorphic to R.

We restrict

the phase space of GR to fields (Ẽ iA
B ,Aj

C
D) valued in the Lie

algebra of R̃;

the gauge group SL(2, C) to R̃.

The restricted theory just defined coincides with the ’toy theory’ !

Thus the ’toy theory’ describes 1 + 1 degenerate sector of GR
[Jacobson, 1996].
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Quantum states of the ’toy theory’

Let L be a finite set of analytic loops embedded in Σ and

AL ∼= Rnumber of loops in L

be the set of holonomies along the loops in L. Define

HL := L2(AL, dµLebesque).

Given L′ ≥ L i.e. L′ ⊃ L, we have

AL′ = AL′\L ×AL =⇒ HL′ = HL′\L ⊗HL.

Hence the projection πLL′ : DL′ → DL is given by the partial trace
with respect to HL′\L.

Thus we obtain the projective family {Dγ , πγγ′}, and the space D
of Yang-Mills gauge invariant quantum states (note that each
holonomy along a loop is gauge invariant).
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Quantum ’toy theory’

There is a C ∗-algebra B of quantum observables associated with D.

The observables in B are Yang-Mills gauge invariant therefore we
treat the pair (D,B) as the quantum ’toy theory’ with the Gauss
constraint solved.

To solve the vector constraint we need to find diffeomorphism
invariant states in D. It turned out that the set Ddiff ⊂ D of such
states is quite large.

The resulting quantum ’toy theory’ is a pair (Ddiff ,B).

Remark: there are no non-trivial diff. invariant observables in B,
however each expectation value

ρ(b), where ρ ∈ Ddiff and b ∈ B

is diff. invariant.
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Summary

Kijowski’s projective techniques may, hopefully, solve the
non-compactness problem in GR;

in particular, they were successfully applied to the ’toy theory’
whose gauge group is non-compact.

Warnings!!!

SL(2, C) unlike R is non-Abelian, hence it generates
non-trivial gauge transformations and the non-vanishing scalar
constraint!!!

What about the reality conditions???
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