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Motivation

� Symmetry reduced models (FRW, Bianchi, Schwarzschild, Kerr, ...) allow
us to carry out concrete calculations (local and global properties of the
spacetime geometry, primordial power spectrum, Hawking radiation and
black hole evaporation, ...).

� Within loop quantum gravity, it takes lots of effort to obtain similar reduced
results ... and efforts have begun (Alesci, Cianfrani, Dapor, Liegener, Pawłowski, ...).

� The (loop) quantization of symmetry reduced models of GR is simpler
and has provided very useful lessons about the physics and mathematics
applicable into the full theory (singularity resolution, semiclassical sectors,
potential predictions, ...).

� The most fruitful example is loop quantum cosmology. Rigorous quanti-
zation of various cosmological spacetimes based on a difference (discrete)
quantum Hamiltonian operator.
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Motivation

� Spherically symmetric spacetimes in vacuum provide the simplest models
for black holes.

� They have important applications in quantum gravity. For instance:
I Singularity resolution and its role in the understanding of informa-

tion loss paradox (LQG viewpoint).
I Other approaches argue that BH singularities may persist.

� A lot of literature in the past years focused on the application of LQC ideas
(based on the analogs of µo and µ̄ schemes) to the interior of black holes.
But detailed predictions have physically undesirable features.

� Other alternatives (adopting an Abelian constraint) need to be further ex-
plored (Bojowald, Brahma, Campiglia, Corichi, Gambini, O, Pullin, Saeed, ...).
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The model

� Main ideas:
I We focus on spacetimes with spherical symmetry in vacuum (black

holes) using homogeneous slicings (trivial constraint algebra) and
adopt loop quantum cosmology techniques.

I We limit ourselves to effective descriptions (classical evolution equa-
tions modified to incorporate quantum geometry corrections).

� What is new:
I Extension to the exterior region.
I Judicious choices of plaquettes to define the curvature operator in the

Hamiltonian constraint (in the spirit of improved dynamics proposals).
� Consequences: We provide the quantum extension of the macroscopic

Kruskal black holes. The singular regions are replaced by regular
transition surfaces that separate trapped and anti-trapped regions. There,
curvature reaches universal upper bounds. Away from the Planck regi-
me, the spacetime metric (and then the curvature) is well approximated
by the classical theory. ADM masses are the same.
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Kinematical setting

� Topology of homogeneous Cauchy slices is R× S2. The fiducial metric q̊ab on Σ is

q̊abdxadxb = dx2 + r2
o(dθ2 + sin2 θdφ2), x ∈ (−∞,∞), ro = const. (1)

� Reduced connection and triad can be expressed as

Ai
a τi dxa = c̄ τ3 dx + b̄ ro τ2dθ − b̄ ro τ1 sin θ dφ+ τ3 cos θ dφ, (2)

Ea
i τ

i∂a = p̄c r2
o τ3 sin θ ∂x + p̄b ro τ2 sin θ ∂θ − p̄b ro τ1 ∂φ. (3)

� The symplectic structure (fiducial cell x ∈ [0, Lo]) takes the form

Ω̄ =
Lor2

o

2Gγ

(
2db̄ ∧ dp̄b + dc̄ ∧ dp̄c

)
. (4)

� New suitable variables b = rob̄, c = Loc̄, pb = Lorop̄b and pc = r2
o p̄c satisfying the Poisson

brackets:
{c, pc} = 2Gγ, {b, pb} = Gγ. (5)

These variables, under the transformation ro → βro, are invariant. Under a rescaling of fiducial
length Lo the combinations c/Lo and pb/Lo, and b, pc are invariant.

� The spacetime metric is

gabdxadxb ≡ ds2 = −N2
t dt2 +

p2
b

pcL2
o

dx2 + pc(dθ2 + sin2 θdφ2), (6)
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Classical dynamics of the interior region

� Classical dynamics in the interior dictated by the Hamiltonian constraint

Hcl[Ncl] = −
1

2Gγ

(
2c pc +

(
b +

γ2

b

)
pb

)
, Ncl = γ b−1 p1/2

c . (7)

� The solutions to the dynamical equations and Hamiltonian constraint (well adapted to Sch-
warzschild geometry) are

b(Tcl) = γ
(
e−Tcl − 1

)1/2
, pb(Tcl) = −2mL0 eTcl

(
e−Tcl − 1

)1/2
, (8)

c(Tcl) = γLo
4m e−2Tcl , pc(Tcl) = 4m2 e2Tcl , (9)

where −∞ < Tcl ≤ 0 and

cpc

Loγ
= m = −

1
2Loγ

(
b +

γ2

b

)
pb. (10)

� With τ = 2meTcl we get

ds2 = −
(2m
τ
− 1
)−1

dτ 2 +
(2m
τ
− 1
)

dx2 + τ 2(dθ2 + sin2 θdφ2). (11)

� Singularity located at τ = 0 (or Tcl = −∞). Horizon located at τ = 2m (or Tcl = 0).
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Extension to the exterior

� We keep a homogeneous slicing, i.e. time-like hypersurfaces with (−+ +) 3-metric.

� The connection and triad are now SU(1, 1) valued (instead of SU(2)).

Ai
a τ̃i dxa =

c̃
Lo
τ̃3 dx + b̃ τ̃2dθ − b̃ τ̃1 sin θ dφ+ τ̃3 cos θ dφ, (12)

Ea
i τ̃

i∂a = p̃c τ̃3 sin θ ∂x +
p̃b

Lo
τ̃2 sin θ ∂θ −

p̃b

Lo
τ̃1 ∂φ, (13)

or equivalently:

τ̃1 → iτ1, τ̃2 → iτ2, τ̃3 → τ3; b→ ib̃, pb → ip̃b; c→ c̃, pc → p̃c (14)

� The Poisson brackets are now given by:

{c̃, p̃c} = 2Gγ, {b̃, p̃b} = −Gγ. (15)

� The spacetime metric is

g̃abdxadxb ≡ ds̃2 = −
p̃2

b

p̃cL2
o

dx2 + Ñ2
τdτ 2 + p̃c(dθ2 + sin2 θdφ2). (16)
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Classical dynamics of the exterior region
� Classical dynamics in the exterior dictated by the Hamiltonian constraint

H̃cl[Ñcl] = −
1

2Gγ

(
2c̃ p̃c +

(
−b̃ +

γ2

b̃

)
p̃b

)
, Ñ = γb̃−1p̃1/2

c . (17)

� Solutions to the dynamical equations and Hamiltonian constraint are given by

b̃(Tcl) = ±γ
(
1− e−Tcl

)1/2
, p̃b(Tcl) = −2mL0 eTcl

(
1− e−Tcl

)1/2
, (18)

c̃(Tcl) = γLo
4m e−2Tcl , p̃c(Tcl) = 4m2 e2Tcl , (19)

where 0 ≤ Tcl <∞ and

c̃p̃c

Loγ
= m = −

1
2Loγ

(
−b̃ +

γ2

b̃

)
p̃b. (20)

� The exterior and interior regions match smoothly across the horizon (Tcl = 0). Spatial infinity
is located at Tcl =∞.

� With τ = 2meTcl we get

ds2 = −
(

1−
2m
τ

)
dx2 +

(
1−

2m
τ

)−1
dτ 2 + τ 2(dθ2 + sin2 θdφ2). (21)
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Classical Penrose diagram of the Kruskal spacetime
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Quantum corrected dynamics for the interior
� Quantum corrections to the classical theory.

i) H[N] contains curvature Fi
ab of the gravitational connection Ai

a.

ii) Fi
ab can be obtained from (h�/A�), where h� is a loop � of holonomies of Ai

a and
A� the area enclosed by � (we choose it to be equal to the LQG area gap
∆ = 4

√
3πγ`2

Pl).

iii) curvature operators F̂θ,φ , F̂x,θ, F̂x,φ are determined by the fractional lengths of the
links in these plaquettes: δc for the x-directional link and δb for links in the 2-spheres.

� LQC effective dynamics dictated by

Heff[N] = −
1

2Gγ

[
2

sin(δcc)

δc
pc +

( sin(δbb)

δb
+

γ2δb

sin(δbb)

)
pb

]
, N =

γ p1/2
c δb

sin(δb b)
. (22)

� The solutions to the dynamical equations, provided that δb and δc are chosen to be appropriate
constants of motion, take the form

cos
(
δb b(T)

)
=bo tanh

(
1
2

(
boT + 2 tanh−1 ( 1

bo

)))
, pb(T) = −2 sin(δc c(T))

δc
sin(δb b(T))

δb
pc(T)

sin2(δb b(T))

δ2
b

+γ2
, (23)

tan
(
δc c(T)

2

)
= ∓ γLoδc

8m e−2T , pc(T) = 4m2
(

e2T +
γ2L2

oδ
2
c

64m2 e−2T
)
, bo = (1 + γ2δ2

b)1/2, (24)

where [ sin(δc c)

γLoδc

]
pc = m = −

1

2

[ sin(δb b)

δb
+

γ2δb

sin(δb b)

] pb

γLo
(25)
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Causal structure

� The spacetime has the Killing vector field Xa∂a = ∂/∂x that becomes null when pb = 0
(horizons at T = 0 and T = −4/bo tanh−1(1/bo)).

� The expansions θ± of the null normal vectors `±a to the 2-spheres vanish at ṗc = 0 , i.e. at

TT = 1
2 ln
(
γLoδc

8m

)
. Each solution has one and only one transition surface T that separates a

trapped region in the past (BH region) and an anti-trapped region to the future (WH region).

� The entire geometry is smooth since the transition surfa-
ce T replaces the classical singularity by a regular high-
curvature region. Here pc(TT ) = 1

2γ (Loδc).

� In summary, the geometry consists of a boundary T bet-
ween a trapped region (BH type) in the past and an anti-
trapped region (WH type) to the future.
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Determination of δb and δc

� The quantum parameter δb has the interpretation of the fractional length of each link constitu-
ting the plaquette within the θ-φ 2-spheres, and δc, of the fractional length of the links in the
x-direction within the plaquettes in the θ-x and φ-x planes in a fiducial cell.

� Our proposal: Choose the plaquettes to lie on the transition surface where the space-time has
largest curvature. One then has:

2π δcδb |pb|
∣∣
T = ∆, (26)

(Physical (fractional) area of the annu-
lus around equators)

4π δ2
b pc
∣∣
T = ∆. (27)

(Physical (fractional) area of the sphe-
re)

� The solutions can be written in a closed form for macroscopic BHs (m� `Pl):

δb =
( √

∆
√

2πγ2m

)1/3
, Loδc =

1
2

( γ∆2

4π2m

)1/3
. (28)
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Physical consequences

� Several curvature invariants are bounded above, reaching a maximum value at the transition
surface that is mass independent, namely

CabcdCabcd |T = 1024π2

3γ4∆2 +O
((

∆
m2

) 1
3 ln m2

∆

)
, K |T = 768π2

γ4∆2 +O
((

∆
m2

) 1
3 ln m2

∆

)
. (29)
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Curvature invariant for m = 106.
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Physical consequences

� Quantum correction can be seen as an effective fluid with a stress-energy tensor Tab characte-
rized by the energy density ρ and the radial and tangential pressures px and p‖, respectively.
One can easily see that, at the transition surface, the strong energy condition is violated

(Tab −
1
2

gabT)TaTb
∣∣∣∣
T
< 0. (30)

−20 −15 −10 −5 0

T

10−20

10−17

10−14

10−11

10−8

10−5

10−2 ρ

(−ρ)

p||

(−p||)

Curvature invariant for m = 106.
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Physical consequences
� A puzzling aspect arises from considerations of the Komar mass at the horizons (T = 0

and T = −4/bo tanh−1(1/bo)) with respect to the Killing vector field X = Xa∂a = ∂x:

K[S] := −
1

8πG

∮
S
εab

cd∇cXd dSab, (31)

K[S2]− K[S1] = 2
∫

Σ̄

(
Tab − (T/2)gab

)
XadVb. (32)

� The 3-surface integral is large and negative because of
properties of Tab in the interior. But it is also delicately
balanced to make the volume integral precisely equal to
−2K[S1] (in the large m limit). Therefore,

K[S2] = −K[S1]. (33)

� Since ADM mass refers to the unit future pointing asymptotic time-like Killing vector field,
this is the sufficient condition for rB = rW when m2 � ∆.

� This shows that there are highly non-trivial constraints that our effective geometry satisfies:
singularity resolution and (nearly) unit amplification factor for the mass in the transition from
the trapped to the anti-trapped region.
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Comparison with other proposals

i) Constant µ0 schemes (physical results depend on fiducial cell)

δb ∝
√

∆

`Pl
, Loδc ∝

√
∆. (34)

ii) Improved dynamics µ̄ schemes (BV scheme)

δb ∝

√
∆

pc
, Loδc ∝

√
∆pc

(pb/Lo)
. (35)

iii) Schemes based on dimensional arguments (CS scheme)

δb ∝
√

∆

2m
, Loδc ∝

√
∆. (36)

iv) Our proposal (AOS scheme)

δb =
( √

∆
√

2πγ2m

)1/3
, Loδc =

1
2

( γ∆2

4π2m

)1/3
. (37)
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Comparison with other proposals
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Comparison for m = 104. In the classical theory, pc decreases steadily corresponding to the mono-
tonic decrease in the radius of the round 2-spheres. In ‘CS’ and ‘AOS’, it undergoes precisely one
bounce, with a trapped region to the past of the bounce and anti-trapped to the future. In BV, it un-
dergoes several bounces. The anti-trapped region after the first bounce is very short lived. After the
second bounce, this µ̄ scheme cannot be trusted because its underlying assumptions are violated.
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Comparison with other proposals
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Comparison for m = 104. This triad component signals the emergence of a black or white hole type
horizon when it vanishes. The white hole type horizon emerges much much later in the CS approach
(large mass amplification in the CS approach) than in AOS one (no amplification in the large m limit).
The BV approach becomes unreliable after T ∼ −12. Besides, very near the black hole type horizon,
the BV dynamics deviates from the classical theory. The AOS dynamics is indistinguishable from
classical dynamics near this horizon.
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Extension to the exterior

� We follow the same ideas discussed in the classical theory (homogeneous slicing and SU(1, 1)
valued triad and connection)

� The dynamics in the exterior is dictated by

H̃eff[Ñ] = −
1

2Gγ

[
2

sin(δ̃c c̃)

δ̃c
|p̃c| +

(
−

sinh(δb̃ b̃)

δb̃

+
γ2δb̃

sinh(δb̃ b̃)

)
p̃b

]
, Ñ =

γp̃1/2
c δb̃

sinh(δb̃ b̃)
. (38)

� The solutions to the dynamical equations take the form

cosh
(
δb̃ b̃(T)

)
= b̃o tanh

(
1
2

(
b̃oT + 2 tanh−1 ( 1

b̃o

)))
, p̃b(T) = −2

sin(δ̃c c̃(T))
δ̃c

sinh(δb̃ b̃(T))

δb̃

p̃c(T)

γ2−
sinh2(δb̃ b̃(T))

δ2
b̃

, (39)

tan
(
δ̃c c̃(T)

2

)
= ∓ γLo δ̃c

8m e−2T , p̃c(T) = 4m2
(

e2T +
γ2L2

oδ
2
c̃

64m2 e−2T
)
, b̃o = (1 + γ2δ2

b̃
)1/2. (40)

where
sin(δ̃c c̃)

γLoδ̃c
p̃c = m = −

1

2

[
−

sinh(δb̃ b)

δb̃

+
γ2δb̃

sinh(δb̃ b̃)

] p̃b

γLo
(41)

� The spacetime metric is

g̃abdxadxb ≡ d̃s2
= −

p̃2
b

p̃cL2
o

dx2
+ Ñ2

τ dτ2
+ p̃c(dθ2

+ sin2
θdφ2

). (42)

� The horizon is located at T = 0 and the spatial infinity at T = +∞. The exterior and
interior regions match smoothly across the horizon.
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Quantum extension of the Kruskal diagram
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Summary

� We provide a quantum extension (effective description a la LQC) of an
eternal black hole with the following properties.

i) Physical quantities are insensitive to the fiducial structures necessary
to construct the classical phase space.

ii) It admits an infinite number of trapped, anti-trapped and asymptotic
regions.

iii) Consecutive asymptotic regions of macroscopic black holes have sa-
me ADM mass (macroscopic BHs).

iv) High-curvature regions are regular (singularity resolution).
v) The simplest curvature scalars have mass-independent upper bounds

(macroscopic BHs).
vi) At low curvatures, quantum effects are small.

� None of the previously proposed models so far meet all these properties
simultaneously.
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Limitations and future directions

� Full quantum dynamics need to be understood:
i) The quantum Hamiltonian constraint has a complicated action. Fortu-

nately, we have a proposal worth to be explored.
ii) Classical and quantum Hamiltonian framework have been recently

discussed in the literature for SU(1, 1) connections in 3+1 gravity.
Interesting possibility: Application to our model.

iii) Then, one could “derive” effective equations using the LQC strategy.
� This is not a collapsing black space-time. But many relevant calculations

already use the Kruskal space-time (vacuum states of linear field theories,
renormalized stress energy tensor, etc.).

� Extension to more general spacetimes.
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Implementation as functions of Dirac observables

� The quantum parameters δb and δc have been judiciously chosen as
Dirac observables. Subtlety: Since H depends on δb, δc and they have
to be so chosen that along dynamical trajectories determined by H,
they are constants of motion.

� We have found a way to meet this subtle self-consistency require-
ment:
I First extend the phase space by adding δb, δc as new phase space va-

riables, together with their conjugate momenta.
I Then restrict δb, δc to be desired functions of the original phase space

variables via new first class constraints.
I Finally, identify suitable gauge fixing conditions that eliminate those

new constraints (via gauge fixing) so that the reduced phase space is
naturally isomomorphic to the original one.

� To implement this strategy, it is simplest to replace (b, pb), (c, pc)
with other canonical coordinates (to get the solutions in closed form).
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Implementation as functions of Dirac observables

� Let us consider new coordinates in the phase space Γo

O1 := −
1

2γ

[ sin δbb
δb

+
γ2δb

sin δbb

] pb

Lo
, O2 :=

[ sin δcc
γLoδc

]
pc. (43)

and suitable conjugated momenta Pi such that {Oi,Pj} = δij.

� Let us extend the phase space (Γo,Ωo) to (Γ,Ω) where δb and δc are now phase space varia-
bles together with their momenta {δb,Pδb} = 1 and {δc,Pδc} = 1.

� Let us now introduce the desired conditions on δb and δc as constraints (first class with the
Hamiltonian). Φ1 = O1 − Fb(δb), Φ2 = O2 − Fc(δc). (44)

� The total Hamiltonian reads

HT = −
LoÑ
G

(O2 − O1) + λ1Φ1 + λ2Φ2, (45)

� We now require gauge fixing conditions such that i) the Hamiltonian vector field is tangential to
the constraint - gauge surfaces and ii) the pullback of Ω on those surfaces is symplectomorphic
to Ωo.

� One can see that the gauge fixing conditions that satisfy these requirements are φ1 = Pδb = 0
and φ2 = Pδc = 0.

� The resulting EOMs are equivalent to the ones we use in our approach.
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Determination of δb and δc
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The roots of δb obtained from solving the area conditions for m = 104. In the large m limit,
the central roots are extremely well approximated by previous equations. The leftmost and
rightmost roots turn out to have unphysical properties.
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