Overview	(Complex) Regge calculus	Application to cosmology	Discussion and Outlook	WB
0	00000000000	0000000	0	o

Complex Regge Action: Causality Violations and Applications to Quantum Cosmology

José J. Padua-Argüelles^{1,a} jpaduaarguelles@perimeterinstitute.ca

¹Perimeter Institute for Theoretical Physics, Canada

March 8° , 2022

^aWork with Bianca Dittrich and Seth Asante: 2112.15387 Collaboration with Ding Jia.

Overview	(Complex) Regge calculus	Application to cosmology	Discussion and Outlook	WB

Table of contents

- 1 Overview
 - Why complex actions?
- (Complex) Regge calculus
 - Regge action
 - Lorentzian angles
 - Hinge-causality violations and spatial topology change.
 - Complex angles
 - Complex Regge action
- 3 Application to cosmology
 - Simplicial beginning of the Universe (no-boundary)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Picard-Lefschetz theory
- Ball model
- Shell model
- 4 Discussion and Outlook
- 5 WI

Overview	(Complex) Regge calculus	Application to cosmology	Discussion and Outlook	WB
•				
Why comple	ex actions?			

Highly oscillatory path integrals and failure of Monte-Carlo

• Holomorphic gradient flow

(Alexandru, Basar et al. 2020) (Jia 2021)

• Lefschetz thimbles

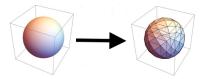
(Feldbrugge, Lehners, Turok 2017) (Han, Huang, et al. 2020)

Spatial topology change

(Louko Sorkin, 1995)

Analytical continuation of spin foams and signature mixing

(Han, Liu 2021)

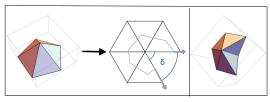

Path integral over complex metrics

(Witten 2021) (Jonas, Lehners, Meyer, 2021)

Overview 0	(Complex) Regge calculus	Application to cosmology 0000000	Discussion and Outlook 0	WB o
Regge action				
Regge	calculus			

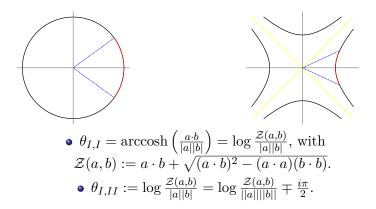
Discretize GR

We truncate degrees of freedom by <u>triangulating</u> regions of spacetime with simplices


Metric's information is encoded in segments' lengths.

Pseudo- <u>ansatz</u>	
$Z_{ riangle} \sim \oint d\mu e^{W_{ riangle}}$	
_	

Overview o	(Complex) Regge calculus $0 = 000000000000000000000000000000000$	Application to cosmology 0000000	Discussion and Outlook 0	WB o
Regge action				
Length	Regge action			


Bone: Sub-simplex of co-dimension 2.

Regge Action Curvature as deficit angle about bones. $S[g]_{EH} = \int_{\mathcal{M}} d^4x \sqrt{-g}R + Bdry$ \downarrow $S[lengths]_R = \sum_{b \in \text{Triangles}} Area(b)\delta\phi(b) + Bdry$

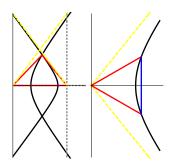
▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 - 釣A(で)

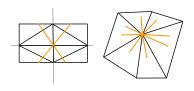
Overview o	(Complex) Regge calculus 0000000000	Application to cosmology 0000000	Discussion and Outlook o	WB o
Lorentzian	angles			
Lorent	tzian angles			

The Minkowski plane spans a Minkowskian angle of $\mp 2\pi i$ (Sorkin, 2019).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Overview	(Complex) Regge calculus	Application to cosmology	Discussion and Outlook	WB
	000000000			
Hinge-causa	lity violations and spatial topo	logy change.		

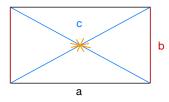

Hinge-causality violations

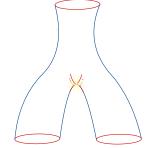

Deficit angle about a space-like bone

$$\epsilon_t = -2\pi i - \sum_{\sigma \supset t} \theta_{t \subset \sigma}$$

Complex action

A bone might have more or less than two light-cones attached (irregular light-cone structure).

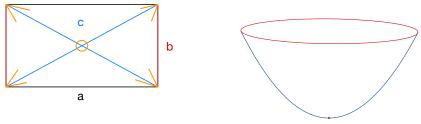




・ロット 全部 マート・トロッ

3

Overview o	(Complex) Regge calculus $000000000000000000000000000000000000$	Application to cosmology 0000000	Discussion and Outlook 0	WB o
Hinge-causa	lity violations and spatial topo	ology change.		
Trouse	er-like violation			



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

- All edges are space-like
- a, b > 2c

The center bone has four light cones 'attached'!

Overview	(Complex) Regge calculus $000000000000000000000000000000000000$	Application to cosmology	Discussion and Outlook	WB
Hinge-causa	lity violations and spatial topo			
Yarmu	ılke-like violatio	a		

c-edges are time-like

The center bone has zero light cones 'attached'!

◆□ ▶ < 圖 ▶ < 圖 ▶ < ■ ● の Q @</p>

Overview 0	(Complex) Regge calculus $000000000000000000000000000000000000$	Application to cosmology 0000000	Discussion and Outlook 0	WB o
Hinge-causa	lity violations and spatial topo	logy change.		
Spatia	l topology chang	ge		

- Frozen topology framework leads to inconsistencies?
- Singularities of matter fields at the crotch of a trouser spacetime.

Louko-Sorkin

Suppress trouser-like configurations

(Dowker, Surya 1998)

A D F A 目 F A E F A E F A Q Q

Overview	(Complex) Regge calculus	Application to cosmology	Discussion and Outlook	WB
	00000000000			
Complex an	gles			

Complex metric

$$(\vec{u}, \vec{v}) \in \mathbb{C}^2 \times \mathbb{C}^2, \quad \vec{u} \star \vec{v} := u_0 v_0 + u_1 v_1$$

Generalized Wick rotation

$$(\vec{u}, \vec{v}) \in \mathbb{R}^2 \times \mathbb{R}^2, \quad \vec{u} \star \vec{v} := e^{i\phi} u_0 v_0 + u_1 v_1$$

$$\theta^{\pm} = -\imath \log_{\mp} \left(\frac{a \star b + \imath \sqrt{\mp} \left((a \star a)(b \star b) - (a \star b)^2 \right)}{\sqrt{\pm} a \star a} \sqrt{\frac{\pm}{2} b \star b} \right)^2$$

Complex length variables

$$\theta^{\pm}(s_a, s_b, s_c) = -i \log_{\mp} \frac{\frac{1}{2}(s_a + s_b - s_c) + 2\sqrt{\pi} - \mathbb{A}(s_a, s_b, s_c)}{\sqrt{\pm} s_a \sqrt{\pm} s_b}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Overview	(Complex) Regge calculus	Application to cosmology	Discussion and Outlook	WB
	000000000000000000000000000000000000000			
Complex an	gles			

For
$$\phi \in (0, \pi)$$
,

$$\lim_{\phi \to 0\downarrow} \theta^+ = -\psi_E \quad \text{and} \quad \lim_{\phi \to \pi\uparrow} \theta^+ = -i\psi_{L+}. \quad (1)$$
For $\phi \in (-\pi, 0)$,

$$\lim_{\phi \to 0\uparrow} \theta^- = +\psi_E \quad \text{and} \quad \lim_{\phi \to -\pi\downarrow} \theta^- = -i\psi_{L-}. \quad (2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▼

Overview	(Complex) Regge calculus	Application to cosmology	Discussion and Outlook	WB
	00000000000			
Complex Re	gge action			

$$\ell_{\rm P}^2 W^{\pm} = \sum_t \sqrt{{}_{\pm} \mathbb{V}_t} \left(2\pi \pm \sum_{\sigma \supset t} \theta_{\sigma,t}^{\pm} \right) - \Lambda \sum_{\sigma} \sqrt{{}_{\pm} \mathbb{V}_{\sigma}}.$$
 (3)

For causally regular configurations

$$\hbar W^{+} = \hbar W^{-} = \begin{cases} -iS^{L-}, & \phi = -\pi; \\ -S^{E}, & \phi = 0; \\ +iS^{L+}, & \phi = \pi; \\ +S^{E}, & \phi = 2\pi. \end{cases}$$
(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Irregular light-cone structure leads to $S^{L_{-}} \neq S^{L_{+}}$.

Overview o	(Complex) Regge calculus $000000000000000000000000000000000000$	Application to cosmology 0000000	Discussion and Outlook 0	WB o
Complex Re	egge action			
Summ	lary			

- The Lorentzian Regge action has a sign ambiguity associated to wedges containing light-rays.
- When complexifying the ambiguity is associated to branch-cuts.
- This ambiguity can introduce an imaginary part to the action for irregular light-cone structures. Thus, this gives (exponential) enhancements/suppressions.
- Irregular light-cone structures can be associated with spatial topology change.

Should causally irregular configurations/topology changing processes contribute in the path integral?

Overview o	(Complex) Regge calculus 0000000000	Application to cosmology ••••••	Discussion and Outlook o	WB o
Simplicial b	eginning of the Universe (no-b	oundary)		
The n	o-boundary pror	oosal I		

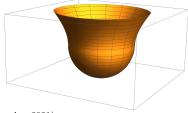
J

$$ds^{2} = -N(t)^{2}dt^{2} + a(t)^{2}(d\chi^{2} + \sin(\chi)^{2}(d\theta^{2} + \sin(\theta)^{2}d\phi^{2})$$

Mini super-space path integral leads to

$$\begin{aligned} G(a_0, a_1) &= \sqrt{\frac{3\pi i}{2}} \int_0^\infty \frac{\mathrm{d}\mathcal{N}}{\sqrt{\mathcal{N}}} e^{2\pi^2 i S_0}, \\ S_0 &= \mathcal{N}^3 \frac{\Lambda^2}{36} + \mathcal{N} \left(-\frac{\Lambda}{2} (a_0^2 + a_1^2) + 3k \right) + \frac{1}{\mathcal{N}} \left(-\frac{3}{4} (a_1^2 - a_0^2)^2 \right). \end{aligned}$$

(Feldbrugge, Lehners, Turok, 2017)


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Overview o	(Complex) Regge calculus 0000000000	Application to cosmology 0000000	Discussion and Outlook o	WB o
Simplicial b	eginning of the Universe (no-b	oundary)		
The n	o-boundary pror	oosal H		

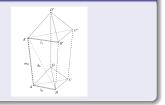
Stationary points

$$\mathcal{N} = \frac{3}{\Lambda} \left(\pm \sqrt{\frac{\Lambda}{3}a_0^2 - 1} \pm \sqrt{\frac{\Lambda}{3}a_1^2 - 1} \right), \quad a_\Lambda := \sqrt{\frac{3}{\Lambda}}$$

- Euclidean-Euclidean
- Euclidean-Lorentzian
- Lorentzian-Lorentzian

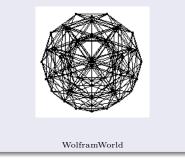
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

(Dittrich, Gielen, Schander, 2021)


Overview o	(Complex) Regge calculus 0000000000	Application to cosmology 00•0000	Discussion and Outlook o	WB o
Simplicial b	peginning of the Universe (no-b	oundary)		
Simpli	icial model			

Spherical shells

Glue triangulations of the 3-sphere



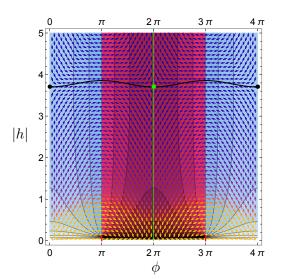
Building blocks

Triangulation of S^3

Boundaries of 4-dimensional convex polytopes which are triangulations, e.g. 600-cell.

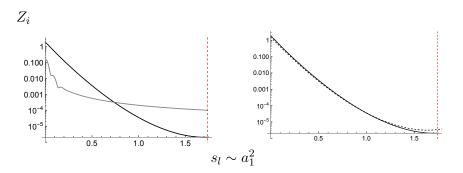
(Dittrich, Gielen, Schander, 2021)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで


Express the integration contour as a combination of <u>Lefschetz</u> thimbles:

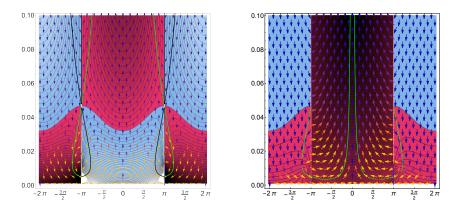
$$-\nabla \operatorname{Re}\left[W(z =: x + iy)\right] = \frac{\mathrm{d}z}{\mathrm{d}t},$$
$$\lim_{t \to -\infty} = z_*,$$

- Constant imaginary part
- Steepest descent for real part


Overview o	(Complex) Regge calculus 0000000000	Application to cosmology 0000000	Discussion and Outlook 0	WB o
Ball model				
Flow a	and thimbles			

イロト イヨト イヨト イヨト 三日

Overview 0	(Complex) Regge calculus 0000000000	Application to cosmology 0000000	Discussion and Outlook 0	WB o
Ball model				
Path i	ntegral results			



Exclusion of the irregular region seems to lead to worse results!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Overview	(Complex) Regge calculus	Application to cosmology 000000	Discussion and Outlook	WB
o	0000000000		0	o
Shell model				

Flow and thimbles (Lorentzian-Lorentzian)

Thimble crosses the branch-cut! Here we get the 'Hartle-Hawking sign'.

	Application to cosmology 0000000	Discussion and Outlook \bullet	WB 0

Complex Regge action

- Lefschetz thimbles
- Holomorphic gradient flow
- Unified framework for mixing signatures

Understand infinite integration ranges (spikes?)

Hinge causality violations and spatial topology change

Mechanism that produces suppressing contributions? \Rightarrow Numerical efficiency!

Which configurations should be summed over in Lorentzian path integrals?

Application to (effective) spin foams?

n and Outl
Discussion 0
on to cosmology
Application 0000000
Regge calculus 000
(Complex) 000000000
Overview 0

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶