Complex critical points and curved geometries in Lorentzian EPRL spinfoam amplitude

Dongxue Qu

Florida Atlantic University

Collaborators: Muxin Han, Zichang Huang and Hongguang Liu

Oct. 5th, 2021@ILQGS

Outline

(1) Motivation and Results
(2) EPRL Spinfoam Model
(3) Real and Complex critical points
(4) Numerical Implementation: Δ_{3}
(5) Numerical Implementation: 1-5 Pachner Move

Outline

(1) Motivation and Results
(2) EPRL Spinfoam Model
(3) Real and Complex critical points

4 Numerical Implementation: Δ_{3}
(5) Numerical Implementation: 1-5 Pachner Move

Motivation and Results

- The semiclassical consistency is an important requirement in LQG.
- We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.

Motivation and Results

- The semiclassical consistency is an important requirement in LQG.
- We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.
- Semiclassical approximation \Longrightarrow Large- j asymptotics of spinfoam amplitude.
[Asante, Bahr, Barrett, Bianchi, Bonzom, Conrady, Ding, Dittrich, Dona, Engle, Freidel, Gozzini, Haggard, Han, Hellmann, Huang,
Kaminski, Kisielowski, Liu, Livine, Magliaro, Perini, Pereira, Riello, Rovelli, Sahlmann, Sarno, Speziale, Zhang, etc.]
- Asymtotics of the spinfoam amplitude relates to Regge calculus

Motivation and Results

- The semiclassical consistency is an important requirement in LQG.
- We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.
- Semiclassical approximation \Longrightarrow Large- j asymptotics of spinfoam amplitude.
[Asante, Bahr, Barrett, Bianchi, Bonzom, Conrady, Ding, Dittrich, Dona, Engle, Freidel, Gozzini, Haggard, Han, Hellmann, Huang,
Kaminski, Kisielowski, Liu, Livine, Magliaro, Perini, Pereira, Riello, Rovelli, Sahlmann, Sarno, Speziale, Zhang, etc.]
- Asymtotics of the spinfoam amplitude relates to Regge calculus
- Recent progress in numerics on spinfoam models
- sl2cfoam based on $15 j+$ boosters [Dona, Fanizza, Sarno, Speziale, Gozzini 2018-2021]
- Spinfoam renormalization [Bahr, Dittrich, Steinhaus, 2016-2021]
- Effective spinfoam model [Asante, Dittrich, Haggard, 2020-2021]
- Asymptotics expansion, Lefschetz thimble, Monte-Carlo [Han, Huang, Liu, DQ, 2020-2021]

Motivation and Results

- The semiclassical consistency is an important requirement in LQG.
- We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.
- Semiclassical approximation \Longrightarrow Large- j asymptotics of spinfoam amplitude.
[Asante, Bahr, Barrett, Bianchi, Bonzom, Conrady, Ding, Dittrich, Dona, Engle, Freidel, Gozzini, Haggard, Han, Hellmann, Huang,
Kaminski, Kisielowski, Liu, Livine, Magliaro, Perini, Pereira, Riello, Rovelli, Sahlmann, Sarno, Speziale, Zhang, etc.]
- Asymtotics of the spinfoam amplitude relates to Regge calculus
- Recent progress in numerics on spinfoam models
- sl2cfoam based on $15 j+$ boosters [Dona, Fanizza, Sarno, Speziale, Gozzini 2018-2021]
- Spinfoam renormalization [Bahr, Dittrich, Steinhaus, 2016-2021]
- Effective spinfoam model [Asante, Dittrich, Haggard, 2020-2021]
- Asymptotics expansion, Lefschetz thimble, Monte-Carlo [Han, Huang, Liu, DQ, 2020-2021]
- Simplicial complex, sum over $j \rightarrow$ Flatness problem:

The EPRL spinfoam amplitude seems to be dominated only by flat Regge geometries in the semiclassical regime.

The numerics demonstrates curved geometries whose contributions are not small in EPRL spinfoam amplitudes.

Horizontal axis: deficit angle δ_{h}; Vertical axis: \propto Amplitudes
In spinfoam, large spin parameter λ is a finite expansion parameter.
For any large but finite λ, there exists relatively small deficit angles such that the amplitude is not small.
$\gamma=0.1$
$\lambda=5 \times 10^{10}$

The non-blue regime of curved geometries where the amplitude is not small.
Effective action: Regge action plus "high curvature correction"

$$
\mathcal{S}=i \mathcal{I}_{R}[\mathbf{g}(r)]+a_{2} \delta_{h}^{2}+a_{3} \delta_{h}^{3}+a_{4} \delta_{h}^{4}+O\left(\delta_{h}^{5}\right)
$$

- These curved geometries come from complex critical points.
- A warm-up example

$$
A_{\lambda}(r)=\int_{-\infty}^{+\infty} e^{\lambda\left[i x^{2}-r(x+1)^{2}\right]} d x, \quad r \geq 0, \quad \lambda \gg 1
$$

The critical point: $x_{c}=\frac{r}{r-i}\left\{\begin{array}{cc}r=0 & \text { real critical point } \\ r \neq 0 & \text { complex critical point }\end{array}\right.$,

$$
A_{\lambda}(r)=\frac{\sqrt{\pi}}{\sqrt{\lambda(r-i)}} e^{\lambda\left[i x_{c}^{2}-r\left(x_{c}+1\right)^{2}\right]}
$$

Similar ideas appeared in
[Asante, Dittrich, Haggard, 2020]
[Han, 2013]
[Engle, Kaminski, Oliveira 2020]

Motivation and Results

- Δ_{3} : relaxing cosine problem.
- 1-5 Pachner move: reduce the spinfoam amplitude to integral over Regge geometries:

$$
\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \int \prod_{m=1}^{5} \mathrm{~d} l_{m 6} e^{\lambda \mathcal{S}(r, Z(r))} \mathscr{N}_{r}[1+O(1 / \lambda)]
$$

Effective action \mathcal{S} is Regge action plus "high curvature correction".

Outline

(1) Motivation and Results

(2) EPRL Spinfoam Model

(3) Real and Complex critical points
(4) Numerical Implementation: Δ_{3}
(5) Numerical Implementation: 1-5 Pachner Move

EPRL Spinfoam Model

A spinfoam assigns an $\mathrm{SU}(2)$ spin j_{f} to each face $f: j_{h}, j_{b}$.

EPRL Spinfoam Amplitude

The spinfoam amplitude in the integral representation:

$$
\begin{aligned}
A(\mathcal{K})= & \sum_{\left\{j_{h}\right\}} \prod_{h} d_{j_{h}} \int[\mathrm{~d} g \mathrm{~d} \mathbf{z}] e^{S\left(j_{h}, g_{v e}, \mathbf{z}_{v f} ; j_{b}, \xi_{e b}\right)} \\
& {[\mathrm{d} g \mathrm{~d} \mathbf{z}]=\prod_{(v, e)} \mathrm{d} g_{v e} \prod_{(v, f)} \mathrm{d} \Omega_{\mathbf{z}_{v f}} }
\end{aligned}
$$

- $\left|j_{b}, \xi_{e b}\right\rangle: \mathrm{SU}(2)$ boundary coherent state.
- $\mathbf{z}_{v f} \in \mathbb{C P}^{1}$.
- $g_{v e} \in \operatorname{SL}(2, \mathbb{C})$.
- phase amplitude $d_{j_{h}}=2 j_{h}+1$.
- $d g_{v e}$ is the Haar measure, $\mathrm{d} \Omega_{\mathbf{z}_{v f}}$ is a scaling invariant measure on $\mathbb{C P}^{1}$.

EPRL spinfoam action

The spinfoam action S is given by

$$
\begin{aligned}
& S= \sum_{\left(e^{\prime}, x\right)} j_{h} F_{\left(e^{\prime}, x\right)}+\sum_{(e, b)} j_{b} F_{(e, b)}+\sum_{\left(e^{\prime}, b\right)} j_{b} F_{\left(e^{\prime}, b\right)}, \\
& F_{(e, b)}= 2 \ln \frac{\left\langle Z_{v e b}, \xi_{e b}\right\rangle}{\left\|Z_{v e b}\right\|}+i \gamma \ln \left\|Z_{v e b}\right\|^{2}, \quad Z_{v e f}=g_{v e}^{\dagger} \mathbf{z}_{v f} \\
& \text { or } \quad 2 \ln \frac{\left\langle\xi_{e b}, Z_{v^{\prime} e b}\right\rangle}{\left\|Z_{v^{\prime} e b}\right\|}-i \gamma \ln \left\|Z_{v^{\prime} e b}\right\|^{2}, \\
& F_{\left(e^{\prime}, f\right)}= 2 \ln \frac{\left\langle Z_{v e^{\prime} f}, Z_{v^{\prime} e^{\prime} f}\right\rangle}{\left\|Z_{v e^{\prime} f}\right\|\left\|Z_{v^{\prime} e^{\prime} f}\right\|}+i \gamma \ln \frac{\left\|Z_{v e^{\prime} f}\right\|^{2}}{\left\|Z_{v^{\prime} e^{\prime} f}\right\|^{2}},
\end{aligned}
$$

EPRL spinfoam action

The spinfoam action S is given by

$$
\begin{aligned}
S= & \sum_{\left(e^{\prime}, x\right)} j_{h} F_{\left(e^{\prime}, x\right)}+\sum_{(e, b)} j_{b} F_{(e, b)}+\sum_{\left(e^{\prime}, b\right)} j_{b} F_{\left(e^{\prime}, b\right)}, \\
F_{(e, b)}= & 2 \ln \frac{\left\langle Z_{v e b}, \xi_{e b}\right\rangle}{\left\|Z_{v e b}\right\|}+i \gamma \ln \left\|Z_{v e b}\right\|^{2}, \quad Z_{v e f}=g_{v e}^{\dagger} \mathbf{z}_{v f} \\
\text { or } \quad & 2 \ln \frac{\left\langle\xi_{e b}, Z_{v^{\prime} e b}\right\rangle}{\left\|Z_{v^{\prime} e b}\right\|}-i \gamma \ln \left\|Z_{v^{\prime} e b}\right\|^{2}, \\
F_{\left(e^{\prime}, f\right)}= & 2 \ln \frac{\left\langle Z_{v e^{\prime} f}, Z_{v^{\prime} e^{\prime} f f}\right\rangle}{\left\|Z_{v e^{\prime} f}\right\|\left\|Z_{v^{\prime} e^{\prime} f}\right\|}+i \gamma \ln \frac{\left\|Z_{v e^{\prime} f}\right\|^{2}}{\left\|Z_{v^{\prime} e^{\prime} f}\right\|^{2}},
\end{aligned}
$$

Continuous gauge freedom and gauge fixing:

- For each $\mathbf{z}_{v f}, \mathbf{z}_{v f} \mapsto \lambda_{v f} \mathbf{Z}_{v f}, \lambda_{v f} \in \mathbb{C} \Longrightarrow \mathbf{z}_{v f}=\left(1, \alpha_{v f}\right)^{T}$.

EPRL spinfoam action

The spinfoam action S is given by

$$
\begin{aligned}
& S= \sum_{\left(e^{\prime}, x\right)} j_{h} F_{\left(e^{\prime}, x\right)}+\sum_{(e, b)} j_{b} F_{(e, b)}+\sum_{\left(e^{\prime}, b\right)} j_{b} F_{\left(e^{\prime}, b\right)}, \\
& F_{(e, b)}= 2 \ln \frac{\left\langle Z_{v e b}, \xi_{e b}\right\rangle}{\left\|Z_{v e b}\right\|}+i \gamma \ln \left\|Z_{v e b}\right\|^{2}, \quad Z_{v e f}=g_{v e}^{\dagger} \mathbf{z}_{v f} \\
& \text { or } \quad 2 \ln \frac{\left\langle\xi_{e b}, Z_{v^{\prime} e b}\right\rangle}{\left\|Z_{v^{\prime} e b}\right\|}-i \gamma \ln \left\|Z_{v^{\prime} e b}\right\|^{2}, \\
& F_{\left(e^{\prime}, f\right)}= 2 \ln \frac{\left\langle Z_{v e^{\prime} f}, Z_{v^{\prime} e^{\prime} f}\right\rangle}{\left\|Z_{v e^{\prime} f}\right\|\left\|Z_{v^{\prime} e^{\prime} f}\right\|}+i \gamma \ln \frac{\left\|Z_{v e^{\prime} f}\right\|^{2}}{\left\|Z_{v^{\prime} e^{\prime} f}\right\|^{2}},
\end{aligned}
$$

Continuous gauge freedom and gauge fixing:

- For each $\mathbf{z}_{v f}, \mathbf{z}_{v f} \mapsto \lambda_{v f} \mathbf{z}_{v f}, \lambda_{v f} \in \mathbb{C} \Longrightarrow \mathbf{z}_{v f}=\left(1, \alpha_{v f}\right)^{T}$.
- At each $v, g_{v e} \mapsto x_{v}^{-1} g_{v e}, \mathbf{z}_{v f} \mapsto x_{v}^{\dagger} \mathbf{z}_{v f}, x_{v} \in \mathrm{SL}(2, \mathbb{C}) \Longrightarrow$ one $g_{v e}=1$

EPRL spinfoam action

The spinfoam action S is given by

$$
\begin{aligned}
S= & \sum_{\left(e^{\prime}, x\right)} j_{h} F_{\left(e^{\prime}, x\right)}+\sum_{(e, b)} j_{b} F_{(e, b)}+\sum_{\left(e^{\prime}, b\right)} j_{b} F_{\left(e^{\prime}, b\right)}, \\
F_{(e, b)}= & 2 \ln \frac{\left\langle Z_{v e b}, \xi_{e b}\right\rangle}{\left\|Z_{v e b}\right\|}+i \gamma \ln \left\|Z_{v e b}\right\|^{2}, \quad Z_{v e f}=g_{v e} \mathbf{Z}_{v f} \\
\text { or } \quad & 2 \ln \frac{\left\langle\xi_{e b}, Z_{v^{\prime} e b}\right\rangle}{\left\|Z_{v^{\prime} e b}\right\|}-i \gamma \ln \left\|Z_{v^{\prime} e b}\right\|^{2}, \\
F_{\left(e^{\prime}, f\right)}= & 2 \ln \frac{\left\langle Z_{v e^{\prime} f}, Z_{v^{\prime} e^{\prime} f f}\right\rangle}{\left\|Z_{v e^{\prime} f}\right\|\left\|Z_{v^{\prime} e^{\prime} f}\right\|}+i \gamma \ln \frac{\left\|Z_{v e^{\prime} f}\right\|^{2}}{\left\|Z_{v^{\prime} e^{\prime} f}\right\|^{2}},
\end{aligned}
$$

Continuous gauge freedom and gauge fixing:

- For each $\mathbf{z}_{v f}, \mathbf{z}_{v f} \mapsto \lambda_{v f} \mathbf{z}_{v f}, \lambda_{v f} \in \mathbb{C} \Longrightarrow \mathbf{z}_{v f}=\left(1, \alpha_{v f}\right)^{T}$.
- At each $v, g_{v e} \mapsto x_{v}^{-1} g_{v e}, \mathbf{z}_{v f} \mapsto x_{v}^{\dagger} \mathbf{z}_{v f}, x_{v} \in \mathrm{SL}(2, \mathbb{C}) \Longrightarrow$ one $g_{v e}=1$
- At each $e, g_{v^{\prime} e} \mapsto g_{v^{\prime} e} h_{e}^{-1}, g_{v e} \mapsto g_{v e} h_{e}^{-1}, h_{e} \in \mathrm{SU}(2) \Longrightarrow g_{v^{\prime} e}$ to be upper-triangular matrix. (any $g \in \mathrm{SL}(2, \mathbb{C})$ can be written as $g=k h$ where k is upper-triangular and $h \in \mathrm{SU}(2)$).

Real parametrization:

$$
\begin{aligned}
& g_{v^{\prime} e}=\stackrel{\circ}{g}_{v^{\prime} e}\left(\begin{array}{cc}
1+\frac{x_{v^{\prime} e}^{1}}{\sqrt{2}} & \frac{x_{v^{\prime} e}^{2}+i y_{v^{\prime} e}^{2}}{\sqrt{2}} \\
0 & \mu_{v^{\prime} e}
\end{array}\right) \in \mathrm{SL}(2, \mathbb{C}) \\
& g_{v e}=\stackrel{\circ}{g}_{v e}\left(\begin{array}{cc}
1+\frac{x_{v e}^{1}+i y_{v e}^{1}}{\sqrt{2}} & \frac{x_{v e}^{2}+i y_{v e}^{2}}{\sqrt{2}} \\
\frac{x_{v e}^{3}+i y_{v e}^{2}}{\sqrt{2}} & \mu_{v e}
\end{array}\right) \in \mathrm{SL}(2, \mathbb{C}) \\
& \mathbf{z}_{v f}=\left(1, \stackrel{\circ}{\alpha}_{v f}+x_{v f}+i y_{v f}\right) \in \mathbb{C P}^{1} .
\end{aligned}
$$

- $x_{v e}, y_{v e}, x_{v f}, y_{v f}$ are real numbers.
- $\stackrel{\circ}{g} \in \mathrm{SL}(2, \mathbb{C})$ and $\dot{\alpha} \in \mathbb{C}$ will be a critical point of S.

Therefore,

$$
S\left(j_{h}, g_{v e}, \mathbf{z}_{v f}\right)=S\left(j_{h}, x_{v e}, y_{v e}, x_{v f}, y_{v f}\right)
$$

will be analytic continued (locally) to the holomorphic function

$$
\mathcal{S}\left(j_{h}, x_{v e}, y_{v e}, x_{v f}, y_{v f}\right), \quad j_{h}, x_{v e}, y_{v e}, x_{v f}, y_{v f} \in \mathbb{C}
$$

EPRL Spinfoam Amplitude

LQG area spectrum: $\mathfrak{a}=8 \pi \gamma \ell_{p}^{2} \sqrt{j(j+1)}, \quad \mathfrak{a} \gg \ell_{p}^{2} \Longleftrightarrow j \gg 1$
Semiclassical regime \Longleftrightarrow large- j regime.

EPRL Spinfoam Amplitude

LQG area spectrum: $\mathfrak{a}=8 \pi \gamma \ell_{p}^{2} \sqrt{j(j+1)}, \quad \mathfrak{a} \gg \ell_{p}^{2} \Longleftrightarrow j \gg 1$
Semiclassical regime \Longleftrightarrow large- j regime.
To probe the semiclassical regime, we scale both boundary and internal spins

$$
j_{b} \rightarrow \lambda j_{b}, \quad j_{h} \rightarrow \lambda j_{h}, \quad \lambda \gg 1
$$

EPRL Spinfoam Amplitude

LQG area spectrum: $\mathfrak{a}=8 \pi \gamma \ell_{p}^{2} \sqrt{j(j+1)}, \quad \mathfrak{a} \gg \ell_{p}^{2} \Longleftrightarrow j \gg 1$
Semiclassical regime \Longleftrightarrow large- j regime.
To probe the semiclassical regime, we scale both boundary and internal spins

$$
j_{b} \rightarrow \lambda j_{b}, \quad j_{h} \rightarrow \lambda j_{h}, \quad \lambda \gg 1
$$

Apply the Poisson summation to the EPRL spinfoam amplitude:

$$
\begin{aligned}
A(\mathcal{K}) & =\sum_{\left\{k_{h} \in \mathbb{Z}\right\}} \int_{\mathbb{R}} \prod_{h} \mathrm{~d} j_{h} \prod_{h} 2 \lambda d_{\lambda j_{h}} \int[\mathrm{~d} g \mathrm{~d} \mathbf{z}] e^{\lambda S^{(k)}}, \\
S^{(k)} & =S+4 \pi i \sum_{h} j_{h} k_{h},
\end{aligned}
$$

j_{h} is continuous.

Outline

(1) Motivation and Results

(2) EPRL Spinfoam Model
(3) Real and Complex critical points
(4) Numerical Implementation: Δ_{3}
(5) Numerical Implementation: 1-5 Pachner Move

Real Critical Points

- The integral in the spinfoam amplitude has the following form:

$$
\int \mathrm{d}^{N} x \mu(x) e^{\lambda S(r, x)}, \quad \lambda \gg 1
$$

where r is boundary data, x is integration variable.

$$
r=\left(j_{b}, \xi_{e b}\right), \quad x=\left\{j_{h}, x_{v e}, y_{v e}, x_{v f}, y_{v f}\right\} \in \mathbb{R}^{N}
$$

Real Critical Points

- The integral in the spinfoam amplitude has the following form:

$$
\int \mathrm{d}^{N} x \mu(x) e^{\lambda S(r, x)}, \quad \lambda \gg 1
$$

where r is boundary data, x is integration variable.

$$
r=\left(j_{b}, \xi_{e b}\right), \quad x=\left\{j_{h}, x_{v e}, y_{v e}, x_{v f}, y_{v f}\right\} \in \mathbb{R}^{N}
$$

- Real critical point $\stackrel{\circ}{x}$ is the solution of the critical equations

$$
\operatorname{Re}(S(\grave{x}))=\partial_{x} S(\stackrel{\circ}{x})=0
$$

Real Critical Points

- The integral in the spinfoam amplitude has the following form:

$$
\int \mathrm{d}^{N} x \mu(x) e^{\lambda S(r, x)}, \quad \lambda \gg 1
$$

where r is boundary data, x is integration variable.

$$
r=\left(j_{b}, \xi_{e b}\right), \quad x=\left\{j_{h}, x_{v e}, y_{v e}, x_{v f}, y_{v f}\right\} \in \mathbb{R}^{N}
$$

- Real critical point $\stackrel{\circ}{x}$ is the solution of the critical equations

$$
\operatorname{Re}(S(\stackrel{\circ}{x}))=\partial_{x} S(\stackrel{\circ}{x})=0
$$

- The solution gives Regge geometries subject to the flatness constraint (up to some "parity flips"):

$$
\gamma \delta_{h}=0 \quad \bmod \quad 4 \pi \mathbb{Z}
$$

- Spinfoam amplitudes seem to be dominated only by flat Regge geometries in the semiclassical regime.

Δ_{3} triangulation

[Dona, Gozzini, Sarno, 2020]

- Δ_{3} contains three 4-simplices and a single internal face h.
- All edges are on the boundary, boundary edge-lengths determine Regge geometry on Δ_{3}.
- $r=\left\{j_{b}, \xi_{e b}\right\}$ is the boundary data, determining boundary edge-lengths, and Regge geometry $\mathbf{g}(r)$.
- All tetrahedra and triangles are spacelike.

Flatness Problem

- Regime 1: fixing the boundary data r admits a flat geometry on the triangulation

$$
\begin{equation*}
\int \mathrm{d}^{N} x \mu(x) e^{\lambda S(r, x)}=\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r, \stackrel{x}{x})} \mu(\stackrel{\circ}{x})}{\sqrt{\operatorname{det}\left(-\delta_{x, x}^{2} S(r, \stackrel{\circ}{x}) / 2 \pi\right)}}[1+O(1 / \lambda)] \tag{1}
\end{equation*}
$$

The dominant contribution comes from the real critical point.

Flatness Problem

- Regime 1: fixing the boundary data r admits a flat geometry on the triangulation

$$
\begin{equation*}
\int \mathrm{d}^{N} x \mu(x) e^{\lambda S(r, x)}=\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r, \stackrel{x}{x})} \mu(\stackrel{\circ}{x})}{\sqrt{\operatorname{det}\left(-\delta_{x, x}^{2} S(r, \stackrel{\circ}{x}) / 2 \pi\right)}}[1+O(1 / \lambda)] \tag{1}
\end{equation*}
$$

The dominant contribution comes from the real critical point.

- Regime 2: fixing the boundary data r only admits the curved geometry, no real critical point, the amplitude is suppressed:

$$
\begin{equation*}
\int \mathrm{d}^{N} x \mu(x) e^{\lambda S(r, x)}=O\left(\lambda^{-K}\right), \quad \forall K>0 \tag{2}
\end{equation*}
$$

Flatness Problem

- Regime 1: fixing the boundary data r admits a flat geometry on the triangulation

$$
\begin{equation*}
\int \mathrm{d}^{N} x \mu(x) e^{\lambda S(r, x)}=\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r, \dot{x})} \mu(\stackrel{\circ}{x})}{\sqrt{\operatorname{det}\left(-\delta_{x, x}^{2} S(r, \stackrel{\circ}{x}) / 2 \pi\right)}}[1+O(1 / \lambda)] \tag{1}
\end{equation*}
$$

The dominant contribution comes from the real critical point.

- Regime 2: fixing the boundary data r only admits the curved geometry, no real critical point, the amplitude is suppressed:

$$
\begin{equation*}
\int \mathrm{d}^{N} x \mu(x) e^{\lambda S(r, x)}=O\left(\lambda^{-K}\right), \quad \forall K>0 \tag{2}
\end{equation*}
$$

- We also let r vary, then we need an interpolation between two regimes (1) and (2) in order to clarify contributions from curved geometries \longrightarrow the use of complex critical point.

Complex Critical Points

We consider the large- λ integral:

$$
\int_{K} \mathrm{~d}^{N} x \mu(x) e^{\lambda S(r, x)}, \quad N=124 \text { for } \Delta_{3},
$$

- $S(r, x)$ and $\mu(x)$ are analytic functions for $r \in U \subset \mathbb{R}^{k}, x \in K \subset \mathbb{R}^{N}$.
- $U \times K$ is a compact neighborhood of $(\stackrel{r}{r}, \stackrel{x}{x})$.

Analytic Extension

$$
x \rightarrow z \in \mathbb{C}^{N}, \quad S(r, x) \rightarrow \mathcal{S}(r, z)
$$

Complex critical points $z=Z(r)$ are the solutions of the complex critical equation

$$
\partial_{z} \mathcal{S}=0
$$

Complex Critical Points

[Hörmander, 1983; Melin, Sjöstrand, 1975]

Large- λ asymptotic expansion for the integral

$$
\int_{K} \mathrm{~d}^{N} x \mu(x) e^{\lambda S(r, x)}=\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda \mathcal{S}(r, Z(r))} \mu(Z(r))}{\sqrt{\operatorname{det}\left(-\delta_{z, z}^{2} \mathcal{S}(r, Z(r)) / 2 \pi\right)}}[1+O(1 / \lambda)]
$$

- The dominant contribution from the complex critical point.

Complex Critical Points

[Hörmander, 1983; Melin, Sjöstrand, 1975]
Large- λ asymptotic expansion for the integral

$$
\int_{K} \mathrm{~d}^{N} x \mu(x) e^{\lambda S(r, x)}=\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda \mathcal{S}(r, Z(r))} \mu(Z(r))}{\sqrt{\operatorname{det}\left(-\delta_{z, z}^{2} \mathcal{S}(r, Z(r)) / 2 \pi\right)}}[1+O(1 / \lambda)]
$$

- The dominant contribution from the complex critical point.
- Interpolating two regimes:

$$
\left\{\begin{array}{lll}
r=\stackrel{\circ}{r}, & \operatorname{Re}(\mathcal{S}(\stackrel{\circ}{r}, Z(\stackrel{\circ}{r}))=0, & \text { power-law decay } \\
r \neq \stackrel{\circ}{r}, & \operatorname{Re}(\mathcal{S}(r, Z(r))<0, & \text { damping factor } e^{\lambda \operatorname{Re}(\mathcal{S})}
\end{array}\right.
$$

Complex Critical Points

[Hörmander, 1983; Melin, Sjöstrand, 1975]
Large- λ asymptotic expansion for the integral

$$
\int_{K} \mathrm{~d}^{N} x \mu(x) e^{\lambda S(r, x)}=\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda \mathcal{S}(r, Z(r))} \mu(Z(r))}{\sqrt{\operatorname{det}\left(-\delta_{z, z}^{2} \mathcal{S}(r, Z(r)) / 2 \pi\right)}}[1+O(1 / \lambda)]
$$

- The dominant contribution from the complex critical point.
- Interpolating two regimes:

$$
\left\{\begin{array}{lll}
r=\stackrel{\circ}{r}, & \operatorname{Re}(\mathcal{S}(\stackrel{\circ}{r}, Z(\stackrel{\circ}{r}))=0, & \text { power-law decay } \\
r \neq \stackrel{\circ}{r}, & \operatorname{Re}(\mathcal{S}(r, Z(r))<0, & \text { damping factor } e^{\lambda \operatorname{Re}(\mathcal{S})}
\end{array}\right.
$$

- $\frac{1}{\lambda}$ is a finite expansion parameter, like \hbar in quantum mechanics.

Complex Critical Points

[Hörmander, 1983; Melin, Sjöstrand, 1975]
Large- λ asymptotic expansion for the integral

$$
\int_{K} \mathrm{~d}^{N} x \mu(x) e^{\lambda S(r, x)}=\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda \mathcal{S}(r, Z(r))} \mu(Z(r))}{\sqrt{\operatorname{det}\left(-\delta_{z, z}^{2} \mathcal{S}(r, Z(r)) / 2 \pi\right)}}[1+O(1 / \lambda)]
$$

- The dominant contribution from the complex critical point.
- Interpolating two regimes:

$$
\left\{\begin{array}{lll}
r=\stackrel{\circ}{r}, & \operatorname{Re}(\mathcal{S}(\stackrel{\circ}{r}, Z(\stackrel{\circ}{r}))=0, & \text { power-law decay } \\
r \neq \stackrel{\circ}{r}, & \operatorname{Re}(\mathcal{S}(r, Z(r))<0, & \text { damping factor } e^{\lambda \operatorname{Re}(\mathcal{S})}
\end{array}\right.
$$

- $\frac{1}{\lambda}$ is a finite expansion parameter, like \hbar in quantum mechanics.
- Given any $\lambda, e^{\lambda \operatorname{Re}(\mathcal{S})}$ may not be small, e.g. $e^{\lambda \operatorname{Re}(\mathcal{S})}=e^{-1}$ if $\operatorname{Re}(\mathcal{S})=-1 / \lambda$.

Outline

(1) Motivation and Results

(2) EPRL Spinfoam Model
(3) Real and Complex critical points
(4) Numerical Implementation: Δ_{3}
(5) Numerical Implementation: 1-5 Pachner Move

Δ_{3} triangulation

- Δ_{3} contains three 4-simplices and a single internal face h.
- All edges are on the boundary, boundary edges-lengths determine Regge geometry on Δ_{3}.
- $r=\left\{j_{b}, \xi_{e b}\right\}$ is the boundary data, determining boundary edge-lengths, and Regge geometry $\mathbf{g}(r)$.
- All tetrahedra and triangles are spacelike.
[Dona, Gozzini, Sarno, 2020]

Algorithm of $A\left(\Delta_{3}\right)$

We numerically construct boundary data, flat geometry, and real critical point.

$\xi_{a, b}^{\xi_{a}} \cdot{ }^{\mathrm{b}}$	1	2	3	4	5
1	\checkmark	$(1.0 .0 .01+0.01 \mathrm{i})$	(0.87,0.01-0.49i)	(0.87,0.46+ 0.17 i)	(0.3, -0.55-0.78i)
2	(1,-0.01, -0.011)	-	(0.49,0.002-0.87i)	$(0.49,0.82+0.31 \mathrm{i})$	(0.95, -0.17-0.25i)
3	(0.86,-0.00-0.51i)	(0.51,-0.02+-0.86i)	\checkmark	(0.71,0.56-0.43i)	(0.71,-0.24-0.67i)
4	(0.86,0.48-0.16i)	(0.51,0.82-0.27i)	(0.71,0.59-0.39i)	\checkmark	(0.71, 0.71)
5	(0.3,-0.55-(0.78i)	(0.95.-0.17-0.25i)	$(0.71,-0.24-0.671)$	(0.71, 0.71)	-

a	1	2	3	
\dot{g}_{a}	$\left(\begin{array}{cc}1.16 & 0.06-0.09 i \\ 0.06+0.09 i & 0.87\end{array}\right)$	$\left(\begin{array}{cc}0.87 & 0.06-0.09 i \\ 0.06+0.09 i & 1.16\end{array}\right)$	$\left(\begin{array}{cc}1.02 & 0.06+0.17 i \\ 0.06-0.17 i & 1.02\end{array}\right)$	
a	4	5		
g_{a}	$\left(\begin{array}{cc}1.03 & 0 \\ -0.36 & 0.97\end{array}\right)$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$		

$\sum_{\mathrm{a}}^{\xi_{0, b}}{ }^{\mathrm{b}}$	6	7	8	9	10
6	\}	(0.95,-0.17-0.25i)	(0.71, 0.71)	(0.71,-0.24-0.67i)	(0.3,-0.55-0.78i)
7	(0.95,-0.17-0. 255 i$)$	\	(0.29,-0.47+0.83i)	(0.88,-0.022-0.48i)	(1,-0,02-0.03i)
8	(0.71, 0.71)	(0.31,-0.57+ 0.761$)^{\text {a }}$	入	$(0.71,0.25-0.661)$	(0.31,0.57-0.76i)
9	(0.71,-0.24-0.67i)	(0.85,0.02-0.0.52i)	(0.71,0.19+0.68i)	-	(0.85, -0.02+0.0.52i)
10	(0.3--0.55-0.78i)	(1,0,02-0.03i)	(0.29,0.47-0.83i)	$(0.88,0.02+0.48 i)$	-

a	6	7	8
\mathscr{g}_{a}	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}1.26 & -0.09+0.13 i \\ -0.09-0.13 i & 0.82\end{array}\right)$	$\left(\begin{array}{cc}0.97 & -0.34 \\ 0 & 1.03\end{array}\right)$
a	9	10	
\grave{g}_{a}	$\left(\begin{array}{cc}1.04 & -0.09-0.25 i \\ -0.09+0.25 i & 1.04\end{array}\right)$	$\left(\begin{array}{cc}0.82 & -0.09+0.13 i \\ -0.09-0.13 i & 1.26\end{array}\right)$	

	11	12	13	14	15
11	\checkmark	(0.71, 0.71)	(0.31--0.57-0.76i)	(0.71,0.25-0.66i)	(0.31,0.57-0.76i)
12	(0.71, 0.71)	-	(0.51,0.82-0.27i)	(0.71,0.59-0.0.39i)	$(0.86,0.48+0.16 \mathrm{i})$
13	(0.31,-0.57-0.76i)	(0.51,0.82-0.27i)	入	(0.5,0.87i)	(0,0.95-0.31i)
14	(0.71,0.25+0.66i)	(0.71,0,59-0.39i)	(0.5,0.87i)	\checkmark	(0.5,-0.87i)
15	(0.31,0.57-0.76i)	$(0.86,0.48+0.16 i)$	(0,-0.95-0.31i)	(0.5,-0.87i)	>

a	11	12	13
\dot{g}_{a}	$\left(\begin{array}{ll}1.04 & 0.02 \\ 0.36 & 0.97\end{array}\right)$	$\left(\begin{array}{cc}0.97 & 0.36 \\ 0 & 1.03\end{array}\right)$	$\left(\begin{array}{cc}1.02+0.0005 i & 0.19-0.003 i \\ 0.19+0.003 i & 1.01-0.0005 i\end{array}\right)$
a	14	15	
g_{a}	$\left(\begin{array}{cc}1.02-0.001 i & 0.19+0.006 i \\ 0.19-0.006 i & 1.02+0.001 i\end{array}\right)$	$\left(\begin{array}{cc}1.02+0.0005 i & 0.19-0.003 i \\ 0.19+0.003 i & 1.01-0.0005 i\end{array}\right)$	

area $j_{a, b}$	b	2	3	4
b	5			
1	2	2	2	5
2	$>$	2	2	5
3	λ	λ	2	5
4	$>$			5

$\frac{\left\|\tilde{z}_{a, b},\right\rangle}{\mathrm{a}} \mathrm{~b}^{\mathrm{b}}$	2	3	4	5
1	$(1,0.06+0.08 i)$	$(1,0.07+0.477)$	$(1,0.42+0.22 i)$	(1,-1.82-2.57i)
2	>	$(1,0.31+2.08 i)$	$(1,1.86+0.99 i)$	(1,-(0.18-0.26i)
3	-	-	(1,0.68-0.73i)	$(1,-0.33+0.94 i)$
4	\}	\backslash	-	$(1,1)$

Algorithm of $A\left(\Delta_{3}\right)$

- We vary the length l_{26}. It gives a family of boundary data $r=\stackrel{r}{r}+\delta r$. We obtain numerically a family of curved geometries $\mathbf{g}(r)$:

Length variation $\delta l_{26}: \quad 0.7 \times 10^{-12} \sim 10^{-4}$
Deficit angle $\delta_{h}: \quad 1.4 \times 10^{-12} \sim 0.0002$

- For each $\delta_{h} \neq 0$, the real critical point is absent.
- Numerically compute the complex critical point $z=Z(r)$ satisfying $\partial_{z} \mathcal{S}(r, z)=0$ with Newton-like recursive procedure:

Algorithm of $A\left(\Delta_{3}\right)$

(1) We linearize $\partial_{z} \mathcal{S}(r, z)=0$ at $x_{0} \in \mathbb{R}^{124}$ (satisfying $\operatorname{Re}(S)=\partial_{g} S=\partial_{\mathbf{z}} S=0$, but $\left.\partial_{j_{h}} S \neq 0\right)$

$$
\partial_{z} \mathcal{S}\left(r, x_{0}\right)+\partial_{z}^{2} \mathcal{S}\left(r, x_{0}\right) \cdot \delta z_{1}=0
$$

the solution is $z_{1}=x_{0}+\delta z_{1}$.
(2) Similarly, we linearize $\partial_{z} \mathcal{S}(r, z)=0$ at z_{1}, the solution is $z_{2}=z_{1}+\delta z_{2}$.
(8) We linearize $\partial_{z} \mathcal{S}(r, z)=0$ at z_{2}, \cdots.
(4) $\cdots \cdots$.
(5) We linearize $\partial_{z} \mathcal{S}(r, z)=0$ at z_{n-1}, the solution approximates the complex critical point $Z(r) \simeq z_{n}=z_{n-1}+\delta z_{n}$.
(6) Practically, we use $n=4$.
(7) Absolute Error: $\varepsilon=\max \left|\partial_{z} \mathcal{S}\left(r, z_{n}\right)\right| \approx 1.31 \delta_{h}^{5}$.

δ_{h}	2×10^{-16}	2×10^{-12}	3×10^{-8}	6×10^{-6}	4×10^{-5}	2×10^{-4}
ε	2×10^{-79}	4.27×10^{-59}	3.19×10^{-38}	1.02×10^{-26}	1.34×10^{-22}	4.2×10^{-19}

Numerical Results

We numerically compute the complex critical point $Z(r)$ for many r corresponding to curved geometries.

We compute numerically \mathcal{S} and the difference $\delta \mathcal{I}(r)$ from the Regge action of the curved geometry $\mathbf{g}(r)$:

$$
\mathcal{S}(r, Z(r))=i \mathcal{I}_{R}[\mathbf{g}(r)]+\delta \mathcal{I}(r), \quad \mathcal{I}_{R}[\mathbf{g}(r)]=\mathfrak{a}_{h}(r) \delta_{h}(r)+\sum_{b} \mathfrak{a}_{b}(r) \Theta_{b}(r)
$$

At $\lambda=10^{11}, \gamma=0.1$,

$$
\mathrm{e}^{\lambda \mathrm{Re}[\delta 7]}
$$

Numerical Results

We numerically fit $e^{\lambda \operatorname{Re}(\delta \mathcal{I})}$ (blue curve) and $e^{i \lambda \operatorname{Im}(\delta \mathcal{I})}$

$$
\delta \mathcal{I}=a_{2} \delta_{h}^{2}+a_{3} \delta_{h}^{3}+a_{4} \delta_{h}^{4}+O\left(\delta_{h}^{5}\right)
$$

The best fit coefficient a_{i} and the corresponding fitting errors at $\gamma=0.1$ are

$$
\begin{aligned}
a_{2} & =-0.00016_{ \pm 10^{-17}}-i 0.00083_{ \pm 10^{-16}} \\
a_{3} & =-0.0071_{ \pm 10^{-13}}-i 0.011_{ \pm 10^{-12}} \\
a_{4} & =-0.059_{ \pm 10^{-9}}+i 0.070_{ \pm 10^{-8}}
\end{aligned}
$$

The effective action \mathcal{S} is the Regge action plus "high curvature correction":

$$
\mathcal{S}(r, Z(r))=i \mathcal{I}_{R}[\mathbf{g}(r)]+\delta \mathcal{I}(r)
$$

Large- λ asymptotic expansion for the integral

$$
\int_{K} \mathrm{~d}^{N} x \mu(x) e^{\lambda S(r, x)}=\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda \mathcal{S}(r, Z(r))} \mu(Z(r))}{\sqrt{\operatorname{det}\left(-\delta_{z, z}^{2} \mathcal{S}(r, Z(r)) / 2 \pi\right)}}[1+O(1 / \lambda)]
$$

Numerical Results

The contour plots of $e^{\lambda \operatorname{Re}[\delta \mathcal{I}(r)]} \propto\left|A\left(\Delta_{3}\right)\right|$:

$$
\gamma=0.1 \quad \lambda=5 \times 10^{10}
$$

The non-blue regime of curved geometries where $A\left(\Delta_{3}\right)$ is not small.

Cosine Problem

Natively,

$$
\begin{aligned}
A\left(\Delta_{3}\right) & \sim\left(e^{i \mathcal{I}_{R}}+e^{-i \mathcal{I}_{R}}\right)\left(e^{i \mathcal{I}_{R}}+e^{-i \mathcal{I}_{R}}\right)\left(e^{i \mathcal{I}_{R}}+e^{-i \mathcal{I}_{R}}\right) \\
& =8 \text { terms }
\end{aligned}
$$

- 8 terms correspond to 2 continuous 4 -simplex orientations

$$
+++,---
$$

and 6 discontinuous 4 -simplex orientations:

$$
++-,+--,--+,-+-,+-+,-++
$$

Cosine Problem

- Flatness constraint changes to:

$$
\gamma \delta_{h}^{s}=\gamma \sum_{v \in h} s_{v} \Theta_{h}(v)=0 \quad \bmod \quad 4 \pi \mathbb{Z}
$$

$s_{v}= \pm$ are opposite orientations at the 4 -simplex v.

- Given the boundary data $\stackrel{\circ}{r}$,

s	+++	---	++-	--+	+--	-++	-+-	+-+
δ_{h}^{s}	0	0	0.043	-0.043	0.72	-0.72	-0.68	0.68

there are only 2 real critical points with all $s_{v}=+$ or $s_{v}=-$.

Asymptotics of $A\left(\Delta_{3}\right)$

- With $r=\stackrel{\circ}{r}+\delta r$ of curved geometries $\mathbf{g}(r)$

$$
A\left(\Delta_{3}\right) \sim\left(\frac{1}{\lambda}\right)^{62}\left[\mathscr{N}_{+} e^{i \lambda \mathcal{I}_{R}[\mathbf{g}(r)]+\lambda \delta \mathcal{I}(r)}+\mathscr{N}_{-} e^{-i \lambda \mathcal{I}_{R}[\mathbf{g}(r)]+\lambda \delta \mathcal{I}^{\prime}(r)}\right]
$$

contributed by the complex critical points close to these 2 real critical points.
Cosine problem is relaxed in this example.

$$
\text { Regge action: } \mathcal{I}_{R}=\mathfrak{a}_{h} \delta_{h}+\sum_{b} \mathfrak{a}_{b} \Theta_{b},
$$

High curvature correction: $\delta \mathcal{I}=a_{2} \delta_{h}^{2}+a_{3} \delta_{h}^{3}+a_{4} \delta_{h}^{4}+O\left(\delta_{h}^{5}\right)$,

$$
\delta \mathcal{I}^{\prime}=\bar{a}_{2} \delta_{h}^{2}-\bar{a}_{3} \delta_{h}^{3}+\bar{a}_{4} \delta_{h}^{4}+O\left(\delta_{h}^{5}\right)
$$

Outline

(1) Motivation and Results

(2) EPRL Spinfoam Model
(3) Real and Complex critical points
(4) Numerical Implementation: Δ_{3}
(5) Numerical Implementation: 1-5 Pachner Move

1-5 Pachner move

- σ_{1-5} : the complex of the 1-5 Pachner
 move refining a 4 -simplex into five 4 -simplices.
- Simplicial complex: 1 internal site, 5 internal segments (red), 10 boundary triangles b, and 10 internal triangles h.

$$
\begin{aligned}
A\left(\sigma_{1-5}\right) & =\int \mathrm{d} j_{12} \mathrm{~d} j_{13} \mathrm{~d} j_{14} \mathrm{~d} j_{15} \mathrm{~d} j_{23} \mathcal{Z}_{\sigma_{1-5}}\left(j_{12}, j_{13}, j_{14}, j_{15}, j_{23}\right) \\
\mathcal{Z}_{\sigma_{1-5}} & =\sum_{\left\{k_{h}\right\}} \int \prod_{\bar{h}=1}^{5} \mathrm{~d} j_{\bar{h}} \prod_{h=1}^{10}(2 \lambda) d_{\lambda j_{h}} \int[\mathrm{~d} g \mathrm{~d} \mathbf{z}] e^{\lambda S^{(k)}}
\end{aligned}
$$

1-5 Pachner move

- σ_{1-5} : the complex of the 1-5 Pachner
 move refining a 4 -simplex into five 4-simplices.
- Simplicial complex: 1 internal site, 5 internal segments (red), 10 boundary triangles b, and 10 internal triangles h.
- Regge geometries $\mathbf{g}(r)$ are determined by the boundary data and five lengths $l_{m 6}, m=1,2,3,4,5$.
- Locally change variables (Heron's formula): $l_{m 6} \rightarrow j_{12}, j_{13}, j_{14}, j_{15}, j_{23}$.

$$
\begin{aligned}
A\left(\sigma_{1-5}\right) & =\int \mathrm{d} j_{12} \mathrm{~d} j_{13} \mathrm{~d} j_{14} \mathrm{~d} j_{15} \mathrm{~d} j_{23} \mathcal{Z}_{\sigma_{1-5}}\left(j_{12}, j_{13}, j_{14}, j_{15}, j_{23}\right) \\
\mathcal{Z}_{\sigma_{1-5}} & =\sum_{\left\{k_{h}\right\}} \int \prod_{\bar{h}=1}^{5} \mathrm{~d} j_{\bar{h}} \prod_{h=1}^{10}(2 \lambda) d_{\lambda j_{h}} \int[\mathrm{~d} g \mathrm{~d} \mathbf{z}] e^{\lambda S^{(k)}}
\end{aligned}
$$

1-5 Pachner move

$$
\begin{aligned}
A\left(\sigma_{1-5}\right) & =\int \mathrm{d} j_{12} \mathrm{~d} j_{13} \mathrm{~d} j_{14} \mathrm{~d} j_{15} \mathrm{~d} j_{23} \mathcal{Z}_{\sigma_{1-5}}\left(j_{12}, j_{13}, j_{14}, j_{15}, j_{23}\right) \\
\mathcal{Z}_{\sigma_{1-5}} & =\sum_{\left\{k_{h}\right\}} \int \prod_{\bar{h}=1}^{5} \mathrm{~d} j_{\bar{h}} \prod_{h=1}^{10}(2 \lambda) d_{\lambda j_{h}} \int[\mathrm{~d} g \mathrm{~d} \mathbf{z}] e^{\lambda S^{(k)}}
\end{aligned}
$$

- We focus on the 195 -dim integral in $\mathcal{Z}_{\sigma_{1-5}}$ with $k_{h}=0$.

1-5 Pachner move

$$
\begin{aligned}
A\left(\sigma_{1-5}\right) & =\int \mathrm{d} j_{12} \mathrm{~d} j_{13} \mathrm{~d} j_{14} \mathrm{~d} j_{15} \mathrm{~d} j_{23} \mathcal{Z}_{\sigma_{1-5}}\left(j_{12}, j_{13}, j_{14}, j_{15}, j_{23}\right) \\
\mathcal{Z}_{\sigma_{1-5}} & =\sum_{\left\{k_{h}\right\}} \int \prod_{\bar{h}=1}^{5} \mathrm{~d} j_{\bar{h}} \prod_{h=1}^{10}(2 \lambda) d_{\lambda j_{h}} \int[\mathrm{~d} g \mathrm{~d} \mathbf{z}] e^{\lambda S^{(k)}}
\end{aligned}
$$

- We focus on the 195 -dim integral in $\mathcal{Z}_{\sigma_{1-5}}$ with $k_{h}=0$.
- For $\mathcal{Z}_{\sigma_{1-5}}$, the external parameters: $r=\left\{j_{12}, j_{13}, j_{14}, j_{15}, j_{23} ; j_{b}, \xi_{e b}\right\}$. $\stackrel{\circ}{r}$ determines the flat geometry $\mathbf{g}(\stackrel{\circ}{r})$, and the real critical point $\left\{\dot{j}_{\bar{h}}, \stackrel{\circ}{v e}, \mathbf{Z}_{v f}\right\}$ with all $s_{v}=+$.

1-5 Pachner move

$$
\begin{aligned}
A\left(\sigma_{1-5}\right) & =\int \mathrm{d} j_{12} \mathrm{~d} j_{13} \mathrm{~d} j_{14} \mathrm{~d} j_{15} \mathrm{~d} j_{23} \mathcal{Z}_{\sigma_{1-5}}\left(j_{12}, j_{13}, j_{14}, j_{15}, j_{23}\right) \\
\mathcal{Z}_{\sigma_{1-5}} & =\sum_{\left\{k_{h}\right\}} \int \prod_{\bar{h}=1}^{5} \mathrm{~d} j_{\bar{h}} \prod_{h=1}^{10}(2 \lambda) d_{\lambda j_{h}} \int[\mathrm{~d} g \mathrm{~d} \mathbf{z}] e^{\lambda S^{(k)}}
\end{aligned}
$$

- We focus on the 195 -dim integral in $\mathcal{Z}_{\sigma_{1-5}}$ with $k_{h}=0$.
- For $\mathcal{Z}_{\sigma_{1-5}}$, the external parameters: $r=\left\{j_{12}, j_{13}, j_{14}, j_{15}, j_{23} ; j_{b}, \xi_{e b}\right\}$. $\stackrel{r}{r}$ determines the flat geometry $\mathbf{g}(\stackrel{\circ}{r})$, and the real critical point $\left\{j_{\bar{h}}, \dot{g}_{v e}, \mathbf{Z}_{v f}\right\}$ with all $s_{v}=+$.
- Fixing ${ }_{j}, \dot{\xi}_{e b}$, we deform $l_{m 6}=i_{m 6}+\delta l_{m 6}$, so that e.g. $j_{12}=\dot{j}_{12}+\delta j_{12}, \cdots$, and $r=\dot{r}+\delta r$, using Monte-Carlo method.

1-5 Pachner move

$$
\begin{aligned}
A\left(\sigma_{1-5}\right) & =\int \mathrm{d} j_{12} \mathrm{~d} j_{13} \mathrm{~d} j_{14} \mathrm{~d} j_{15} \mathrm{~d} j_{23} \mathcal{Z}_{\sigma_{1-5}}\left(j_{12}, j_{13}, j_{14}, j_{15}, j_{23}\right) \\
\mathcal{Z}_{\sigma_{1-5}} & =\sum_{\left\{k_{h}\right\}} \int \prod_{\bar{h}=1}^{5} \mathrm{~d} j_{\bar{h}} \prod_{h=1}^{10}(2 \lambda) d_{\lambda j_{h}} \int[\mathrm{~d} g \mathrm{~d} \mathbf{z}] e^{\lambda S^{(k)}}
\end{aligned}
$$

- We focus on the 195 -dim integral in $\mathcal{Z}_{\sigma_{1-5}}$ with $k_{h}=0$.
- For $\mathcal{Z}_{\sigma_{1-5}}$, the external parameters: $r=\left\{j_{12}, j_{13}, j_{14}, j_{15}, j_{23} ; j_{b}, \xi_{e b}\right\}$. $\stackrel{\circ}{r}$ determines the flat geometry $\mathbf{g}(\stackrel{\circ}{r})$, and the real critical point $\left\{\dot{j}_{\bar{h}}^{\circ}, \stackrel{\circ}{v e}, \mathbf{Z}_{v f}\right\}$ with all $s_{v}=+$.
- Fixing ${ }_{j}, \dot{\xi}_{e b}$, we deform $l_{m 6}=i_{m 6}+\delta l_{m 6}$, so that e.g. $j_{12}=\dot{j}_{12}+\delta j_{12}, \cdots$, and $r=\stackrel{\circ}{r}+\delta r$, using Monte-Carlo method.
- There are 4 DoFs of deformation δr keeping the geometry flat.
- There is 1 DoF $r=\stackrel{r}{r}+\delta r$. $\mathbf{g}(r)$ are curved geometries with small deficit angles $<10^{-3}$. The real critical point is absent.
- Compute numerically complex critical points $Z(r)$ for many r.
- $\mathcal{S}(r, Z(r))=i \mathcal{I}_{R}[\mathbf{g}(r)]+\delta \mathcal{I}(r)$,

1-5 Pachner move

$$
A\left(\sigma_{1-5}\right)=\int \mathrm{d} j_{12} \mathrm{~d} j_{13} \mathrm{~d} j_{14} \mathrm{~d} j_{15} \mathrm{~d} j_{23} \mathcal{Z}_{\sigma_{1-5}}\left(j_{12}, j_{13}, j_{14}, j_{15}, j_{23}\right)
$$

Insert the asymptotic expansion of $\mathcal{Z}_{\sigma_{1-5}}$ back in $A\left(\sigma_{1-5}\right)$, we obtain integral over Regge geometries:

$$
\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \int \prod_{m=1}^{5} \mathrm{~d} l_{m 6} e^{\lambda \mathcal{S}(r, Z(r))} \mathscr{N}_{r}[1+O(1 / \lambda)]
$$

we have changed $\mathrm{d} j \rightarrow \mathrm{~d} l$ and $r=r(l)$.
The action is Regge action plus "high curvature correction":

$$
\mathcal{S}(r, Z(r))=i \mathcal{I}_{R}[\mathbf{g}(r)]-a(\gamma) \delta(r)^{2}+O\left(\delta^{3}\right)
$$

$$
\gamma=1, a=8.88 \times 10_{ \pm 10^{-12}}^{-5}-i 0.033_{ \pm 10^{-10}}
$$

Summary

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.

Summary

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.

Summary

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.
- Regge geometries with small deficit angles are sufficient for approximating arbitrary smooth curved geometry.

Summary

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.
- Regge geometries with small deficit angles are sufficient for approximating arbitrary smooth curved geometry.
- The dominant contribution to the spinfoam amplitude is proportional to $e^{\mathcal{S}}$, \mathcal{S} is the Regge action of the curved geometry plus the curvature correction of order δ_{h}^{2} and higher.

$$
\mathcal{S}=i \mathcal{I}_{R}[\mathbf{g}(r)]+a_{2} \delta_{h}^{2}+a_{3} \delta_{h}^{3}+a_{4} \delta_{h}^{4}+O\left(\delta_{h}^{5}\right)
$$

Summary

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.
- Regge geometries with small deficit angles are sufficient for approximating arbitrary smooth curved geometry.
- The dominant contribution to the spinfoam amplitude is proportional to $e^{\mathcal{S}}$, \mathcal{S} is the Regge action of the curved geometry plus the curvature correction of order δ_{h}^{2} and higher.

$$
\mathcal{S}=i \mathcal{I}_{R}[\mathbf{g}(r)]+a_{2} \delta_{h}^{2}+a_{3} \delta_{h}^{3}+a_{4} \delta_{h}^{4}+O\left(\delta_{h}^{5}\right)
$$

- Δ_{3} : relaxing cosine problem.

Summary

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.
- Regge geometries with small deficit angles are sufficient for approximating arbitrary smooth curved geometry.
- The dominant contribution to the spinfoam amplitude is proportional to $e^{\mathcal{S}}$, \mathcal{S} is the Regge action of the curved geometry plus the curvature correction of order δ_{h}^{2} and higher.

$$
\mathcal{S}=i \mathcal{I}_{R}[\mathbf{g}(r)]+a_{2} \delta_{h}^{2}+a_{3} \delta_{h}^{3}+a_{4} \delta_{h}^{4}+O\left(\delta_{h}^{5}\right)
$$

- Δ_{3} : relaxing cosine problem.
- 1-5 Pachner move: reduce the spinfoam amplitude to integral over Regge geometries:

$$
\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \int \prod_{m=1}^{5} \mathrm{~d} l_{m 6} e^{\lambda \mathcal{S}(r, Z(r))} \mathscr{N}_{r}[1+O(1 / \lambda)]
$$

Outlook

- Other spinfoam models.
- Observables, e.g., correlation functions.
- More complicated complex.
- Lattice Refinement.
- Classical limit.
- Larger deficit angles and higher order correction.

Thank You!

Poisson summation

The spinfoam amplitude in the integral representation:

$$
\begin{aligned}
A(\mathcal{K})= & \sum_{\left\{j_{h}\right\}}^{j^{\max }} \prod_{h} d_{j_{h}} \int[\mathrm{~d} g \mathrm{~d} \mathbf{z}] e^{S\left(j_{h}, g_{v e}, \mathbf{z}_{v f} ; j_{b}, \xi_{e b}\right)} \\
& {[\mathrm{d} g \mathrm{~d} \mathbf{z}]=\prod_{(v, e)} \mathrm{d} g_{v e} \prod_{(v, f)} \mathrm{d} \Omega_{\mathbf{z}_{v f}} }
\end{aligned}
$$

Without changing $A(\mathcal{K})$, we insert $\tau_{\left[-\epsilon, j^{\max }+\epsilon\right]}\left(j_{h}\right)$ with $0<\epsilon<1 / 2$ satisfying:

$$
\begin{aligned}
& \tau_{\left[-\epsilon, j^{\max }+\epsilon\right]}\left(j_{h}\right)=d_{j_{h}}, \quad j_{h} \in\left[0, j^{\max }\right] \\
& \tau_{\left[-\epsilon, j^{\max }+\epsilon\right]}\left(j_{h}\right)=0, \quad j \notin\left[-\epsilon, j^{\max }+\epsilon\right]
\end{aligned}
$$

We apply the Poisson summation formula $\sum_{n \in \mathbb{Z}} f(n)=\sum_{k \in \mathbb{Z}} \int_{\mathbb{R}} \mathrm{d} n f(n) e^{2 \pi i k n}$ to the sum over j_{h} :

$$
\begin{aligned}
A(\mathcal{K}) & =\sum_{\left\{k_{h} \in \mathbb{Z}\right\}} \int_{\mathbb{R}} \prod_{h} \mathrm{~d} j_{h} \prod_{h} 2 \tau_{\left[-\epsilon, j^{\max }+\epsilon\right]}\left(j_{h}\right) \int[\mathrm{d} g \mathrm{~d} \mathbf{z}] e^{S^{(k)}} \\
S^{(k)} & =S+4 \pi i \sum_{h} j_{h} k_{h}
\end{aligned}
$$

Boundary Geometry

- Each 4-simplex is Lorentzian 4-simplex.
- All triangles and tetrahedra are space-like.

The length symmetry

$$
\begin{gathered}
l_{12}=l_{13}=l_{15}=l_{23}=l_{25}=l_{35} \approx 3.40 \\
l_{14}=l_{24}=l_{34}=l_{45} \approx 2.07 \\
l_{26} \approx 5.44, l_{46} \approx 3.24
\end{gathered}
$$

The coordinates for vertices:

$$
\begin{gathered}
P_{1}=(0,0,0,0), P_{2}=\left(0,0,0,-2 \sqrt{5} / 3^{1 / 4}\right) \\
P_{3}=\left(0,0,-3^{1 / 4} \sqrt{5},-3^{1 / 4} \sqrt{5}\right) \\
P_{4}=\left(0,-2 \sqrt{10} / 3^{3 / 4},-\sqrt{5} / 3^{3 / 4},-\sqrt{5} / 3^{1 / 4}\right) \\
P_{5}=\left(-3^{-1 / 4} 10^{-1 / 2},-\sqrt{5 / 2} / 3^{3 / 4},-\sqrt{5} / 3^{3 / 4},-\sqrt{5} / 3^{1 / 4}\right), \\
P_{6}=(0.90,2.74,-0.98,-1.70)
\end{gathered}
$$

δ_{h}^{s} graph

Numerical data for Pachner move

a	1	2	3
\dot{g}_{a}	$\left(\begin{array}{cc}1.02 & -0.06-0.17 i \\ -0.06+0.17 i & 1.02\end{array}\right)$	$\left(\begin{array}{cc}0.99 & -0.06-0.17 i \\ 0 & 1.01\end{array}\right)$	$\left(\begin{array}{cc}0.83 & -0.12-0.61 i \\ 0 & 1.20\end{array}\right)$
a	4	5	
\dot{g}_{a}	$\left(\begin{array}{cc}0.99 & 0.55+0.29 i \\ 0.25 & 1.14+0.074 i\end{array}\right)$	$\left(\begin{array}{cc}0.94 & -0.12-0.45 i \\ 0 & 1.02\end{array}\right)$	

a	6	7	8
g_{a}	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}0.99 & -0.06-0.17 i \\ 0 & 1.01\end{array}\right)$	$\left(\begin{array}{cc}1.03 & -0.03+0.045 i \\ 0 & 0.96\end{array}\right)$
a	9	10	
g_{a}	$\left(\begin{array}{cc}0.98 & 0.25 \\ 0 & 1.02\end{array}\right)$	$\left(\begin{array}{cc}0.98 & -0.02+0.02 i \\ 0 & 1.02\end{array}\right)$	

a	16	17	18
\dot{g}_{a}	$\left(\begin{array}{cc}1.00 & -0.07 \\ -0.07 & 1.00\end{array}\right)$	$\left(\begin{array}{cc}0.96 & 0.27+0.28 i \\ 0 & 1.04\end{array}\right)$	$\left(\begin{array}{cc}1.02 & 0 \\ -0.26 & 0.98\end{array}\right)$
a	19	20	
\dot{g}_{u}	$\left(\begin{array}{cc}0.96+0.01 i & 0.19-0.06 i \\ -0.26-0.38 i & 0.99\end{array}\right)$	$\left(\begin{array}{cc}1.01 & -0.12-0.01 i \\ 0 & 0.99\end{array}\right)$	

$\frac{\left\|z_{n, A}\right\rangle}{a} b^{b}$	16	17	18	19	20
16	\checkmark	\cdots	-	-	(1,-1.7-0.688)
17	(1,0.87-0.48i)	\cdots	(1,-0.82+0.58i)	(1,-0.76+0.75i)	\cdots
18	(1, -1)	\cdots	\cdots	(1,1.21+0.14i)	\cdots
19	(1,1.51+0.427)	\checkmark	,	-	\sim
20	-	(1,0.88 - 0.59i)	$(1,-1.20-0.13 i)$	(1,2.54+0.65i)	\cdots

a	21	22	23
g_{a}	$\left(\begin{array}{cc}0.87 & -0.06+0.086 i \\ -0.06-0.085 i & 1.16\end{array}\right)$	$\left(\begin{array}{cc}0.97 & -0.13-0.45 i \\ 0 & 1.03\end{array}\right)$	$\left(\begin{array}{cc}0.98 & -0.016+0.023 i \\ 0 & 1.02\end{array}\right)$
a	24	25	
g_{a}	$\left(\begin{array}{cc}1.64 & -0.17+0.24 i \\ -0.05-0.07 i & 0.62\end{array}\right)$	$\left(\begin{array}{cc}1.04 & -0.14-0.017 \\ 0.26 & 0.99-0.003 i\end{array}\right)$	

