Complex critical points and curved geometries in Lorentzian EPRL spinfoam amplitude

Dongxue Qu

Florida Atlantic University

Collaborators: Muxin Han, Zichang Huang and Hongguang Liu

Oct. 5th, 2021@ILQGS

Outline

- 2 EPRL Spinfoam Model
- **3** Real and Complex critical points
- 4 Numerical Implementation: Δ_3
- 5 Numerical Implementation: 1-5 Pachner Move

Outline

- 2 EPRL Spinfoam Model
- 3 Real and Complex critical points
- 4 Numerical Implementation: Δ_3
- 5 Numerical Implementation: 1-5 Pachner Move

- The semiclassical consistency is an important requirement in LQG.
- We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.

- The semiclassical consistency is an important requirement in LQG.
- We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.
- Semiclassical approximation ⇒ Large-j asymptotics of spinfoam amplitude.
 [Asante, Bahr, Barrett, Bianchi, Bonzom, Conrady, Ding, Dittrich, Dona, Engle, Freidel, Gozzini, Haggard, Han, Hellmann, Huang, Kaminski, Kisielowski, Liu, Livine, Magliaro, Perini, Pereira, Riello, Rovelli, Sahlmann, Sarno, Speziale, Zhang, etc.]
- Asymtotics of the spinfoam amplitude relates to Regge calculus

- The semiclassical consistency is an important requirement in LQG.
- We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.
- Semiclassical approximation ⇒ Large-j asymptotics of spinfoam amplitude. [Asante, Bahr, Barrett, Bianchi, Bonzom, Conrady, Ding, Dittrich, Dona, Engle, Freidel, Gozzini, Haggard, Han, Hellmann, Huang, Kaminski, Kisielowski, Liu, Livine, Magliaro, Perini, Pereira, Riello, Rovelli, Sahlmann, Sarno, Speziale, Zhang, etc.]
- Asymtotics of the spinfoam amplitude relates to Regge calculus
- Recent progress in numerics on spinfoam models
 - sl2cfoam based on 15j + boosters [Dona, Fanizza, Sarno, Speziale, Gozzini 2018-2021]
 - Spinfoam renormalization [Bahr, Dittrich, Steinhaus, 2016-2021]
 - Effective spinfoam model [Asante, Dittrich, Haggard, 2020-2021]
 - Asymptotics expansion, Lefschetz thimble, Monte-Carlo [Han, Huang, Liu, DQ, 2020-2021]

- The semiclassical consistency is an important requirement in LQG.
- We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.
- Semiclassical approximation ⇒ Large-j asymptotics of spinfoam amplitude. [Asante, Bahr, Barrett, Bianchi, Bonzom, Conrady, Ding, Dittrich, Dona, Engle, Freidel, Gozzini, Haggard, Han, Hellmann, Huang, Kaminski, Kisielowski, Liu, Livine, Magliaro, Perini, Pereira, Riello, Rovelli, Sahlmann, Sarno, Speziale, Zhang, etc.]
- Asymtotics of the spinfoam amplitude relates to Regge calculus
- Recent progress in numerics on spinfoam models
 - sl2cfoam based on 15j + boosters [Dona, Fanizza, Sarno, Speziale, Gozzini 2018-2021]
 - Spinfoam renormalization [Bahr, Dittrich, Steinhaus, 2016-2021]
 - Effective spinfoam model [Asante, Dittrich, Haggard, 2020-2021]
 - Asymptotics expansion, Lefschetz thimble, Monte-Carlo [Han, Huang, Liu, DQ, 2020-2021]
- Simplicial complex, sum over $j \rightarrow$ Flatness problem:

The EPRL spinfoam amplitude seems to be dominated *only* by flat Regge geometries in the semiclassical regime. The numerics demonstrates curved geometries whose contributions are not small in EPRL spinfoam amplitudes.

Horizontal axis: deficit angle δ_h ; Vertical axis: \propto Amplitudes

In spinfoam, large spin parameter λ is a *finite* expansion parameter.

For any large but finite λ , there exists relatively small deficit angles such that the amplitude is not small.

Dongxue Qu (FAU)

Curved geometries in SF

The non-blue regime of curved geometries where the amplitude is not small.

Effective action: Regge action plus "high curvature correction"

$$\mathcal{S} = i\mathcal{I}_R[\mathbf{g}(r)] + a_2\delta_h^2 + a_3\delta_h^3 + a_4\delta_h^4 + O(\delta_h^5),$$

Dongxue Qu (FAU)

- These curved geometries come from complex critical points.
- A warm-up example

$$A_{\lambda}(r) = \int_{-\infty}^{+\infty} e^{\lambda \left[ix^2 - r(x+1)^2\right]} dx, \quad r \ge 0, \quad \lambda \gg 1$$

The critical point: $x_c = \frac{r}{r-i} \begin{cases} r=0 & \text{real critical point} \\ r \neq 0 & \text{complex critical point} \end{cases}$,

$$A_{\lambda}(r) = \frac{\sqrt{\pi}}{\sqrt{\lambda(r-i)}} e^{\lambda \left[ix_c^2 - r(x_c+1)^2\right]},$$

- Δ_3 : relaxing cosine problem.
- 1-5 Pachner move: reduce the spinfoam amplitude to integral over Regge geometries:

$$\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \int \prod_{m=1}^{5} \mathrm{d}l_{m6} \, e^{\lambda \mathcal{S}(r,Z(r))} \mathcal{N}_r \left[1 + O(1/\lambda)\right],$$

Effective action \mathcal{S} is Regge action plus "high curvature correction".

Outline

1) Motivation and Results

2 EPRL Spinfoam Model

Real and Complex critical points

4 Numerical Implementation: Δ_3

5 Numerical Implementation: 1-5 Pachner Move

EPRL Spinfoam Model

4-d triangulation ${\cal K}$

- 4-simplices: σ
- $\bullet\,$ tetrahedra: τ
- triangles: t

dual complex \mathcal{K}^*

- \bullet vertices: v
- ${\ensuremath{\bullet}}$ oriented edges: e
- oriented faces: f: h (internal), b (boundary)

A spinfoam assigns an SU(2) spin j_f to each face $f: j_h, j_b$.

The spinfoam amplitude in the integral representation:

$$A(\mathcal{K}) = \sum_{\{j_h\}} \prod_h d_{j_h} \int [\mathrm{d}g \mathrm{d}\mathbf{z}] e^{S(j_h, g_{ve}, \mathbf{z}_{vf}; j_b, \xi_{eb})},$$
$$[\mathrm{d}g \mathrm{d}\mathbf{z}] = \prod_{(v, e)} \mathrm{d}g_{ve} \prod_{(v, f)} \mathrm{d}\Omega_{\mathbf{z}_{vf}},$$

- $|j_b, \xi_{eb}\rangle$: SU(2) boundary coherent state.
- $\mathbf{z}_{vf} \in \mathbb{CP}^1$.
- $g_{ve} \in \mathrm{SL}(2,\mathbb{C}).$
- phase amplitude $d_{j_h} = 2j_h + 1$.
- dg_{ve} is the Haar measure, $d\Omega_{\mathbf{z}_{vf}}$ is a scaling invariant measure on \mathbb{CP}^1 .

The spinfoam action S is given by

$$\begin{split} S &= \sum_{(e',x)} j_h F_{(e',x)} + \sum_{(e,b)} j_b F_{(e,b)} + \sum_{(e',b)} j_b F_{(e',b)}, \\ F_{(e,b)} &= 2 \ln \frac{\langle Z_{veb}, \xi_{eb} \rangle}{\|Z_{veb}\|} + i\gamma \ln \|Z_{veb}\|^2, \quad Z_{vef} = g_{ve}^{\dagger} \mathbf{z}_{vf} \\ \text{or} & 2 \ln \frac{\langle \xi_{eb}, Z_{v'eb} \rangle}{\|Z_{v'eb}\|} - i\gamma \ln \|Z_{v'eb}\|^2, \\ F_{(e',f)} &= 2 \ln \frac{\langle Z_{ve'f}, Z_{v'e'f} \rangle}{\|Z_{ve'f}\| \|Z_{v'e'f}\|} + i\gamma \ln \frac{\|Z_{ve'f}\|^2}{\|Z_{v'e'f}\|^2}, \end{split}$$

The spinfoam action S is given by

$$S = \sum_{(e',x)} j_h F_{(e',x)} + \sum_{(e,b)} j_b F_{(e,b)} + \sum_{(e',b)} j_b F_{(e',b)},$$

$$F_{(e,b)} = 2 \ln \frac{\langle Z_{veb}, \xi_{eb} \rangle}{\|Z_{veb}\|} + i\gamma \ln \|Z_{veb}\|^2, \quad Z_{vef} = g_{ve}^{\dagger} \mathbf{z}_{vf}$$
or
$$2 \ln \frac{\langle \xi_{eb}, Z_{v'eb} \rangle}{\|Z_{v'eb}\|} - i\gamma \ln \|Z_{v'eb}\|^2,$$

$$F_{(e',f)} = 2 \ln \frac{\langle Z_{ve'f}, Z_{v'e'f} \rangle}{\|Z_{ve'f}\|} + i\gamma \ln \frac{\|Z_{ve'f}\|^2}{\|Z_{v'e'f}\|^2},$$

Continuous gauge freedom and gauge fixing:

• For each $\mathbf{z}_{vf}, \mathbf{z}_{vf} \mapsto \lambda_{vf} \mathbf{z}_{vf}, \lambda_{vf} \in \mathbb{C} \Longrightarrow \mathbf{z}_{vf} = (1, \alpha_{vf})^T$.

The spinfoam action S is given by

$$\begin{split} S &= \sum_{(e',x)} j_h F_{(e',x)} + \sum_{(e,b)} j_b F_{(e,b)} + \sum_{(e',b)} j_b F_{(e',b)}, \\ F_{(e,b)} &= 2 \ln \frac{\langle Z_{veb}, \xi_{eb} \rangle}{\|Z_{veb}\|} + i\gamma \ln \|Z_{veb}\|^2, \quad Z_{vef} = g_{ve}^{\dagger} \mathbf{z}_{vf} \\ \text{or} & 2 \ln \frac{\langle \xi_{eb}, Z_{v'eb} \rangle}{\|Z_{v'eb}\|} - i\gamma \ln \|Z_{v'eb}\|^2, \\ F_{(e',f)} &= 2 \ln \frac{\langle Z_{ve'f}, Z_{v'e'f} \rangle}{\|Z_{ve'f}\| \|Z_{v'e'f}\|} + i\gamma \ln \frac{\|Z_{ve'f}\|^2}{\|Z_{v'e'f}\|^2}, \end{split}$$

Continuous gauge freedom and gauge fixing:

- For each $\mathbf{z}_{vf}, \, \mathbf{z}_{vf} \mapsto \lambda_{vf} \mathbf{z}_{vf}, \, \lambda_{vf} \in \mathbb{C} \Longrightarrow \mathbf{z}_{vf} = (1, \alpha_{vf})^T.$
- At each $v, g_{ve} \mapsto x_v^{-1} g_{ve}, \mathbf{z}_{vf} \mapsto x_v^{\dagger} \mathbf{z}_{vf}, x_v \in \mathrm{SL}(2, \mathbb{C}) \Longrightarrow \text{ one } g_{ve} = 1$

The spinfoam action S is given by

$$S = \sum_{(e',x)} j_h F_{(e',x)} + \sum_{(e,b)} j_b F_{(e,b)} + \sum_{(e',b)} j_b F_{(e',b)},$$

$$F_{(e,b)} = 2 \ln \frac{\langle Z_{veb}, \xi_{eb} \rangle}{\|Z_{veb}\|} + i\gamma \ln \|Z_{veb}\|^2, \quad Z_{vef} = g_{ve}^{\dagger} \mathbf{z}_{vf}$$
or
$$2 \ln \frac{\langle \xi_{eb}, Z_{v'eb} \rangle}{\|Z_{v'eb}\|} - i\gamma \ln \|Z_{v'eb}\|^2,$$

$$F_{(e',f)} = 2 \ln \frac{\langle Z_{ve'f}, Z_{v'e'f} \rangle}{\|Z_{ve'f}\|} + i\gamma \ln \frac{\|Z_{ve'f}\|^2}{\|Z_{v'e'f}\|^2},$$

Continuous gauge freedom and gauge fixing:

- For each $\mathbf{z}_{vf}, \mathbf{z}_{vf} \mapsto \lambda_{vf} \mathbf{z}_{vf}, \lambda_{vf} \in \mathbb{C} \Longrightarrow \mathbf{z}_{vf} = (1, \alpha_{vf})^T$.
- At each $v, g_{ve} \mapsto x_v^{-1} g_{ve}, \mathbf{z}_{vf} \mapsto x_v^{\dagger} \mathbf{z}_{vf}, x_v \in \mathrm{SL}(2, \mathbb{C}) \Longrightarrow \mathrm{one} \ g_{ve} = 1$
- At each $e, g_{v'e} \mapsto g_{v'e} h_e^{-1}, g_{ve} \mapsto g_{ve} h_e^{-1}, h_e \in \mathrm{SU}(2) \Longrightarrow g_{v'e}$ to be upper-triangular matrix.

(any $g \in SL(2, \mathbb{C})$ can be written as g = kh where k is upper-triangular and $h \in SU(2)$).

Real parametrization:

$$g_{v'e} = \mathring{g}_{v'e} \begin{pmatrix} 1 + \frac{x_{v'e}^1}{\sqrt{2}} & \frac{x_{v'e}^2 + iy_{v'e}^2}{\sqrt{2}} \\ 0 & \mu_{v'e} \end{pmatrix} \in \mathrm{SL}(2,\mathbb{C}),$$

$$g_{ve} = \mathring{g}_{ve} \begin{pmatrix} 1 + \frac{x_{ve}^1 + iy_{ve}^1}{\sqrt{2}} & \frac{x_{ve}^2 + iy_{ve}^2}{\sqrt{2}} \\ \frac{x_{ve}^3 + iy_{ve}^3}{\sqrt{2}} & \mu_{ve} \end{pmatrix} \in \mathrm{SL}(2,\mathbb{C})$$

$$\mathbf{z}_{vf} = (1, \mathring{\alpha}_{vf} + x_{vf} + iy_{vf}) \in \mathbb{CP}^1.$$

• $x_{ve}, y_{ve}, x_{vf}, y_{vf}$ are real numbers.

• $\mathring{g} \in \mathrm{SL}(2,\mathbb{C})$ and $\mathring{\alpha} \in \mathbb{C}$ will be a critical point of S.

Therefore,

$$S(j_h, g_{ve}, \mathbf{z}_{vf}) = S(j_h, x_{ve}, y_{ve}, x_{vf}, y_{vf})$$

will be analytic continued (locally) to the holomorphic function

$$\mathcal{S}(j_h, x_{ve}, y_{ve}, x_{vf}, y_{vf}), \quad j_h, x_{ve}, y_{ve}, x_{vf}, y_{vf} \in \mathbb{C}$$

Dongxue Qu (FAU)

LQG area spectrum: $\mathfrak{a} = 8\pi\gamma \ell_p^2 \sqrt{j(j+1)}, \quad \mathfrak{a} \gg \ell_p^2 \Longleftrightarrow j \gg 1$

Semiclassical regime \iff large-j regime.

LQG area spectrum:
$$\mathfrak{a} = 8\pi\gamma \ell_p^2 \sqrt{j(j+1)}, \quad \mathfrak{a} \gg \ell_p^2 \Longleftrightarrow j \gg 1$$

Semiclassical regime \iff large-j regime.

To probe the semiclassical regime, we scale both boundary and internal spins

 $j_b \to \lambda j_b, \quad j_h \to \lambda j_h, \quad \lambda \gg 1$

LQG area spectrum: $\mathfrak{a} = 8\pi\gamma \ell_p^2 \sqrt{j(j+1)}, \quad \mathfrak{a} \gg \ell_p^2 \Longleftrightarrow j \gg 1$

Semiclassical regime \iff large-j regime.

To probe the semiclassical regime, we scale both boundary and internal spins

$$j_b \to \lambda j_b, \quad j_h \to \lambda j_h, \quad \lambda \gg 1$$

Apply the Poisson summation to the EPRL spinfoam amplitude:

$$\begin{aligned} A(\mathcal{K}) &= \sum_{\{k_h \in \mathbb{Z}\}} \int_{\mathbb{R}} \prod_h \mathrm{d}j_h \prod_h 2\lambda \, d_{\lambda j_h} \int [\mathrm{d}g \mathrm{d}\mathbf{z}] \, e^{\lambda S^{(k)}}, \\ S^{(k)} &= S + 4\pi i \sum_h j_h k_h, \end{aligned}$$

 j_h is continuous.

Outline

1 Motivation and Results

2 EPRL Spinfoam Model

Real and Complex critical points

Numerical Implementation: Δ_3

Real Critical Points

• The integral in the spinfoam amplitude has the following form:

$$\int \mathrm{d}^N x \, \mu(x) \, e^{\lambda S(r,x)}, \quad \lambda \gg 1,$$

where r is boundary data, x is integration variable.

$$r = (j_b, \xi_{eb}), \quad x = \{j_h, x_{ve}, y_{ve}, x_{vf}, y_{vf}\} \in \mathbb{R}^N$$

Real Critical Points

• The integral in the spinfoam amplitude has the following form:

$$\int \mathrm{d}^N x \,\mu(x) \, e^{\lambda S(r,x)}, \quad \lambda \gg 1,$$

where r is boundary data, x is integration variable.

$$r = (j_b, \xi_{eb}), \quad x = \{j_h, x_{ve}, y_{ve}, x_{vf}, y_{vf}\} \in \mathbb{R}^N$$

• Real critical point \dot{x} is the solution of the critical equations

$$\operatorname{Re}(S(\mathring{x})) = \partial_x S(\mathring{x}) = 0,$$

Dongxue Qu (FAU)

Real Critical Points

• The integral in the spinfoam amplitude has the following form:

$$\int \mathrm{d}^N x \, \mu(x) \, e^{\lambda S(r,x)}, \quad \lambda \gg 1,$$

where r is boundary data, x is integration variable.

$$r = (j_b, \xi_{eb}), \quad x = \{j_h, x_{ve}, y_{ve}, x_{vf}, y_{vf}\} \in \mathbb{R}^N$$

• Real critical point \dot{x} is the solution of the critical equations

$$\operatorname{Re}(S(\mathring{x})) = \partial_x S(\mathring{x}) = 0,$$

• The solution gives Regge geometries subject to the flatness constraint (up to some "parity flips"):

$$\gamma \delta_h = 0 \mod 4\pi \mathbb{Z}.$$

• Spinfoam amplitudes seem to be dominated *only* by flat Regge geometries in the semiclassical regime.

Dongxue Qu (FAU)

Δ_3 triangulation

[Dona, Gozzini, Sarno, 2020]

- Δ_3 contains three 4-simplices and a single internal face h.
- All edges are on the boundary, boundary edge-lengths determine Regge geometry on Δ_3 .
- $r = \{j_b, \xi_{eb}\}$ is the boundary data, determining boundary edge-lengths, and Regge geometry $\mathbf{g}(r)$.
- All tetrahedra and triangles are spacelike.

Flatness Problem

• Regime 1: fixing the boundary data r admits a flat geometry on the triangulation

$$\int d^{N}x \,\mu(x) \, e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,\dot{x})} \mu(\dot{x})}{\sqrt{\det\left(-\delta_{x,x}^{2}S(r,\dot{x})/2\pi\right)}} \left[1 + O(1/\lambda)\right].$$
(1)

The dominant contribution comes from the real critical point.

Flatness Problem

• Regime 1: fixing the boundary data r admits a flat geometry on the triangulation

$$\int d^{N}x \,\mu(x) \, e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,\mathring{x})} \mu(\mathring{x})}{\sqrt{\det\left(-\delta_{x,x}^{2}S(r,\mathring{x})/2\pi\right)}} \left[1 + O(1/\lambda)\right].$$
(1)

The dominant contribution comes from the real critical point.

• Regime 2: fixing the boundary data r only admits the curved geometry, no real critical point, the amplitude is suppressed:

$$\int \mathrm{d}^N x \,\mu(x) \, e^{\lambda S(r,x)} = O(\lambda^{-K}), \quad \forall K > 0.$$
⁽²⁾

Flatness Problem

Dongxue Qu (FAU)

• Regime 1: fixing the boundary data r admits a flat geometry on the triangulation

$$\int d^{N}x \,\mu(x) \, e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,\mathring{x})} \mu(\mathring{x})}{\sqrt{\det\left(-\delta_{x,x}^{2}S(r,\mathring{x})/2\pi\right)}} \left[1 + O(1/\lambda)\right].$$
(1)

The dominant contribution comes from the real critical point.

• Regime 2: fixing the boundary data r only admits the curved geometry, no real critical point, the amplitude is suppressed:

$$\int \mathrm{d}^N x \,\mu(x) \, e^{\lambda S(r,x)} = O(\lambda^{-K}), \quad \forall K > 0.$$
⁽²⁾

We also let r vary, then we need an interpolation between two regimes (1) and (2) in order to clarify contributions from curved geometries → the use of complex critical point.

We consider the large- λ integral:

$$\int_{K} \mathrm{d}^{N} x \, \mu(x) \, e^{\lambda S(r,x)}, \quad N = 124 \text{ for } \Delta_{3},$$

• S(r,x) and $\mu(x)$ are analytic functions for $r \in U \subset \mathbb{R}^k, x \in K \subset \mathbb{R}^N$.

• $U \times K$ is a compact neighborhood of $(\mathring{r}, \mathring{x})$.

Analytic Extension

$$x \to z \in \mathbb{C}^N, \quad S(r, x) \to \mathcal{S}(r, z)$$

Complex critical points z = Z(r) are the solutions of the complex critical equation

$$\partial_z \mathcal{S} = 0$$

Curved geometries in SF Oct. 5th, 2021@ILQGS 19/39

[Hörmander, 1983; Melin, Sjöstrand, 1975]

Large- λ asymptotic expansion for the integral

$$\int_{K} \mathrm{d}^{N} x \, \mu(x) e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))} \mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2} \mathcal{S}(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$$

• The dominant contribution from the complex critical point.

[Hörmander, 1983; Melin, Sjöstrand, 1975]

Large- λ asymptotic expansion for the integral

$$\int_{K} \mathrm{d}^{N} x \,\mu(x) e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))} \mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2} \mathcal{S}(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$$

- The dominant contribution from the complex critical point.
- Interpolating two regimes:

$$\begin{cases} r = \mathring{r}, & \operatorname{Re}(\mathcal{S}(\mathring{r}, Z(\mathring{r})) = 0, \text{ power-law decay.} \\ r \neq \mathring{r}, & \operatorname{Re}(\mathcal{S}(r, Z(r)) < 0, \text{ damping factor } e^{\lambda \operatorname{Re}(\mathcal{S})} \end{cases} \end{cases}$$

[Hörmander, 1983; Melin, Sjöstrand, 1975]

Large- λ asymptotic expansion for the integral

$$\int_{K} \mathrm{d}^{N} x \, \mu(x) e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))} \mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2} \mathcal{S}(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$$

- The dominant contribution from the complex critical point.
- Interpolating two regimes:

$$\begin{cases} r = \mathring{r}, & \operatorname{Re}(\mathcal{S}(\mathring{r}, Z(\mathring{r})) = 0, & \text{power-law decay.} \\ r \neq \mathring{r}, & \operatorname{Re}(\mathcal{S}(r, Z(r)) < 0, & \text{damping factor } e^{\lambda \operatorname{Re}(\mathcal{S})} \end{cases} \end{cases}$$

• $\frac{1}{\lambda}$ is a *finite* expansion parameter, like \hbar in quantum mechanics.

[Hörmander, 1983; Melin, Sjöstrand, 1975]

Large- λ asymptotic expansion for the integral

$$\int_{K} \mathrm{d}^{N} x \, \mu(x) e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))} \mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2} \mathcal{S}(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$$

- The dominant contribution from the complex critical point.
- Interpolating two regimes:

$$\begin{cases} r = \mathring{r}, & \operatorname{Re}(\mathcal{S}(\mathring{r}, Z(\mathring{r})) = 0, & \text{power-law decay.} \\ r \neq \mathring{r}, & \operatorname{Re}(\mathcal{S}(r, Z(r)) < 0, & \text{damping factor } e^{\lambda \operatorname{Re}(\mathcal{S})} \end{cases} \end{cases}$$

- $\frac{1}{\lambda}$ is a *finite* expansion parameter, like \hbar in quantum mechanics.
- Given any λ , $e^{\lambda \operatorname{Re}(S)}$ may not be small, e.g. $e^{\lambda \operatorname{Re}(S)} = e^{-1}$ if $\operatorname{Re}(S) = -1/\lambda$.

Outline

- 2 EPRL Spinfoam Model
- B) Real and Complex critical points

Δ_3 triangulation

- Δ_3 contains three 4-simplices and a single internal face h.
- All edges are on the boundary, boundary edges-lengths determine Regge geometry on Δ₃.
- $r = \{j_b, \xi_{eb}\}$ is the boundary data, determining boundary edge-lengths, and Regge geometry $\mathbf{g}(r)$.
- All tetrahedra and triangles are spacelike.

[Dona, Gozzini, Sarno, 2020]

Algorithm of $A(\Delta_3)$

We numerically construct boundary data, flat geometry, and real critical point.

Sa,b D	1	2	3	4	5	
a		(10.01 + 0.01i)	(0.87,0.01+0.49i)	(0.87.0.46+0.17i)	(0.3, -0.55-0.78i)	
2	(1,-0.01,-0.01i)		(0.49,0.02+0.87i)	(0.49,0.82+0.31i)	(0.95,-0.17-0.25i)	1 -
3	(0.86,-0.01+0.51i)	(0.51, -0.02 + 0.86i)		(0.71,0.56-0.43i)	(0.71,-0.24+0.67i)	1 -
4	(0.86, 0.48 + 0.16i)	(0.51, 0.82 + 0.27i)	(0.71,0.59-0.39i)		(0.71, 0.71)	1 1
5	(0.3,-0.55-0.78i)	(0.95,-0.17-0.25i)	(0.71,-0.24+0.67i)	(0.71, 0.71)		1 L
Ea,b b	6	7	8	9	10	
6		(0.95,-0.17-0.25i)	(0.71, 0.71)	(0.71, 0.24+0.67i)	(0.3,-0.55-0.78i)	1
7	(0.95,-0.17-0.25i)		(0.29,-0.47+0.83i)	(0.88,-0.02-0.48i)	(1,-0.02-0.03i)	1
8	(0.71, 0.71)	(0.31, -0.57 + 0.76i)		(0.71, 0.25 + 0.66i)	(0.31,0.57-0.76i)	1
9	(0.71,-0.24+0.67i)	(0.85,0.02-0.52i)	(0.71,0.19+0.68i)	_	(0.85,-0.02+0.52i)	1
10	(0.3,-0.55-0.78i)	(1,0.02+0.03i)	(0.29,0.47-0.83i)	(0.88,0.02+0.48i)		1
						,
ξ _{a,b} ∖b	11	12	13	14	15	a
11	<hr/>	(0.71, 0.71)	(0.31,-0.57+0.76i)	(0.71,0.25+0.66i)	(0.31,0.57-0.76i)	\hat{g}_a
12	(0.71, 0.71)		(0.51,0.82+0.27i)	(0.71,0.59-0.39i)	(0.86,0.48+0.16i)	а
13	(0.31,-0.57+0.76i)	(0.51, 0.82 + 0.27i)		(0.5,0.87i)	(0,0.95+0.31i)	
14	(0.71,0.25+0.66i)	(0.71,0.59-0.39i)	(0.5, 0.87i)		(0.5,-0.87i)	\hat{g}_a
15	(0.31.0.57-0.76i)	$(0.86.0.48 \pm 0.16i)$	(00.95-0.31i)	(0.50.87i)		

area j _{e,b} b	2	3	4	5	area j _{a,b} b	7	8	9	10	area j _{a,b} b	12	13	14	15
1	2	2	2	5	6	5	5	5	5	11	5	4.71	4.71	4.71
2	/	2	2	5	7	/	4.71	5.19	5.19	12	~	2	2	2
3	/	/	2	5	8	1	<	4.71	4.71	13	~	~	3.18	3.18
4	/	/	/	5	9	/	<	<	5.19	14	/	1	/	3.18

a	1	2	3	
\hat{g}_a	$\begin{pmatrix} 1.16 & 0.06 - 0.09i \\ 0.06 + 0.09i & 0.87 \end{pmatrix}$	$\begin{pmatrix} 0.87 & 0.06 - 0.09i \\ 0.06 + 0.09i & 1.16 \end{pmatrix}$	$\begin{pmatrix} 1.02 & 0.06 + 0.17i \\ 0.06 - 0.17i & 1.02 \end{pmatrix}$	
a	4	5		
\hat{g}_a	$\begin{pmatrix} 1.03 & 0 \\ -0.36 & 0.97 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		

а	6	7	8
\hat{g}_a	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1.26 & -0.09 + 0.13i \\ -0.09 - 0.13i & 0.82 \end{pmatrix}$	$\begin{pmatrix} 0.97 & -0.34 \\ 0 & 1.03 \end{pmatrix}$
а	9	10	
\hat{g}_a	$\begin{pmatrix} 1.04 & -0.09 - 0.25i \\ -0.09 + 0.25i & 1.04 \end{pmatrix}$	$\begin{pmatrix} 0.82 & -0.09 + 0.13i \\ -0.09 - 0.13i & 1.26 \end{pmatrix}$	

а	11	12	13
\mathring{g}_a	$\begin{pmatrix} 1.04 & 0.02 \\ 0.36 & 0.97 \end{pmatrix}$	$\begin{pmatrix} 0.97 & 0.36 \\ 0 & 1.03 \end{pmatrix}$	$\begin{pmatrix} 1.02 + 0.0005i & 0.19 - 0.003i \\ 0.19 + 0.003i & 1.01 - 0.0005i \end{pmatrix}$
а	14	15	
\dot{g}_a	$\begin{pmatrix} 1.02 - 0.001i & 0.19 + 0.006i \\ 0.19 - 0.006i & 1.02 + 0.001i \end{pmatrix}$	$\begin{pmatrix} 1.02 + 0.0005i & 0.19 - 0.003i \\ 0.19 + 0.003i & 1.01 - 0.0005i \end{pmatrix}$	

$ \hat{z}_{a,b}\rangle$ b	2	3	4	5
1	(1,0.06 + 0.08i)	(1,0.07 + 0.47i)	(1,0.42 + 0.22i)	(1,-1.82 - 2.57i)
2	/	(1,0.31 + 2.08i)	(1,1.86 + 0.99i)	(1,-0.18 - 0.26i)
3		/	(1,0.68 - 0.73i)	(1,-0.33 + 0.94i)
4	/	/	/	(1,1)

23 / 39

Algorithm of $A(\Delta_3)$

• We vary the length l_{26} . It gives a family of boundary data $r = \mathring{r} + \delta r$. We obtain numerically a family of curved geometries $\mathbf{g}(r)$:

Length variation δl_{26} : $0.7 \times 10^{-12} \sim 10^{-4}$ Deficit angle δ_h : $1.4 \times 10^{-12} \sim 0.0002$

- For each $\delta_h \neq 0$, the real critical point is absent.
- Numerically compute the complex critical point z = Z(r) satisfying $\partial_z S(r, z) = 0$ with Newton-like recursive procedure:

Algorithm of $A(\Delta_3)$

• We linearize $\partial_z S(r, z) = 0$ at $x_0 \in \mathbb{R}^{124}$ (satisfying $\operatorname{Re}(S) = \partial_g S = \partial_z S = 0$, but $\partial_{j_h} S \neq 0$)

$$\partial_z \mathcal{S}(r, x_0) + \partial_z^2 \mathcal{S}(r, x_0) \cdot \delta z_1 = 0,$$

the solution is $z_1 = x_0 + \delta z_1$.

2 Similarly, we linearize $\partial_z S(r, z) = 0$ at z_1 , the solution is $z_2 = z_1 + \delta z_2$.

3 We linearize
$$\partial_z \mathcal{S}(r, z) = 0$$
 at z_2, \dots

- 🕘
- (a) We linearize $\partial_z S(r, z) = 0$ at z_{n-1} , the solution approximates the complex critical point $Z(r) \simeq z_n = z_{n-1} + \delta z_n$.
- **6** Practically, we use n = 4.
- **(**) Absolute Error: $\varepsilon = \max |\partial_z \mathcal{S}(r, z_n)| \approx 1.31 \delta_h^5$.

δ_h	2×10^{-16}	2×10^{-12}	3×10^{-8}	6×10^{-6}	4×10^{-5}	2×10^{-4}
ε	2×10^{-79}	4.27×10^{-59}	3.19×10^{-38}	1.02×10^{-26}	1.34×10^{-22}	4.2×10^{-19}

Numerical Results

We numerically compute the complex critical point Z(r) for many r corresponding to curved geometries.

We compute numerically S and the difference $\delta \mathcal{I}(r)$ from the Regge action of the curved geometry $\mathbf{g}(r)$:

$$\mathcal{S}(r, Z(r)) = i\mathcal{I}_R[\mathbf{g}(r)] + \delta\mathcal{I}(r), \quad \mathcal{I}_R[\mathbf{g}(r)] = \mathfrak{a}_h(r)\delta_h(r) + \sum_b \mathfrak{a}_b(r)\Theta_b(r).$$

At $\lambda = 10^{11}, \gamma = 0.1$,

26 / 39

Numerical Results

We numerically fit $e^{\lambda \operatorname{Re}(\delta \mathcal{I})}$ (blue curve) and $e^{i\lambda \operatorname{Im}(\delta \mathcal{I})}$

$$\delta \mathcal{I} = a_2 \delta_h^2 + a_3 \delta_h^3 + a_4 \delta_h^4 + O(\delta_h^5)$$

The best fit coefficient a_i and the corresponding fitting errors at $\gamma = 0.1$ are

$$a_{2} = -0.00016_{\pm 10^{-17}} - i0.00083_{\pm 10^{-16}},$$

$$a_{3} = -0.0071_{\pm 10^{-13}} - i0.011_{\pm 10^{-12}},$$

$$a_{4} = -0.059_{\pm 10^{-9}} + i0.070_{\pm 10^{-8}}.$$

The effective action S is the Regge action plus "high curvature correction":

$$\mathcal{S}(r, Z(r)) = i \mathcal{I}_R[\mathbf{g}(r)] + \delta \mathcal{I}(r),$$

Large- λ asymptotic expansion for the integral

$$\int_{K} \mathrm{d}^{N} x \, \mu(x) e^{\lambda S(r,x)} = \left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \frac{e^{\lambda S(r,Z(r))} \mu(Z(r))}{\sqrt{\det\left(-\delta_{z,z}^{2} S(r,Z(r))/2\pi\right)}} \left[1 + O(1/\lambda)\right]$$

Dongxue Qu (FAU)

27/39

Numerical Results

The contour plots of $e^{\lambda \operatorname{Re}[\delta \mathcal{I}(r)]} \propto |A(\Delta_3)|$:

 $\gamma = 0.1 \qquad \qquad \lambda = 5 \times 10^{10}$

The non-blue regime of curved geometries where $A(\Delta_3)$ is not small.

Dongxue Qu (FAU)

Natively,

$$A(\Delta_3) \sim (e^{i\mathcal{I}_R} + e^{-i\mathcal{I}_R})(e^{i\mathcal{I}_R} + e^{-i\mathcal{I}_R})(e^{i\mathcal{I}_R} + e^{-i\mathcal{I}_R})$$

= 8 terms

• 8 terms correspond to 2 continuous 4-simplex orientations

+++, ---

and 6 discontinuous 4-simplex orientations:

$$++-, +--, --+, -+-, +-+, -++,$$

• Flatness constraint changes to:

$$\gamma \delta_h^s = \gamma \sum_{v \in h} s_v \Theta_h(v) = 0 \mod 4\pi \mathbb{Z},$$

 $s_v = \pm$ are opposite orientations at the 4-simplex v.

• Given the boundary data \mathring{r} ,

s	+ + +		+ + -	+	+	-++	-+-	+ - +
δ_h^s	0	0	0.043	-0.043	0.72	-0.72	-0.68	0.68

there are only 2 real critical points with all $s_v = +$ or $s_v = -$.

Asymptotics of $A(\Delta_3)$

• With
$$r = \mathring{r} + \delta r$$
 of curved geometries $\mathbf{g}(r)$

$$A(\Delta_3) \sim \left(\frac{1}{\lambda}\right)^{62} \left[\mathscr{N}_+ e^{i\lambda \mathcal{I}_R[\mathbf{g}(r)] + \lambda\delta \mathcal{I}(r)} + \mathscr{N}_- e^{-i\lambda \mathcal{I}_R[\mathbf{g}(r)] + \lambda\delta \mathcal{I}'(r)}\right]$$

contributed by the complex critical points close to these 2 real critical points. Cosine problem is relaxed in this example.

Regge action:
$$\mathcal{I}_R = \mathfrak{a}_h \delta_h + \sum_b \mathfrak{a}_b \Theta_b$$
,
High curvature correction: $\delta \mathcal{I} = a_2 \delta_h^2 + a_3 \delta_h^3 + a_4 \delta_h^4 + O(\delta_h^5)$,
 $\delta \mathcal{I}' = \bar{a}_2 \delta_h^2 - \bar{a}_3 \delta_h^3 + \bar{a}_4 \delta_h^4 + O(\delta_h^5)$

Outline

- 2 EPRL Spinfoam Model
- 3 Real and Complex critical points
- 4 Numerical Implementation: Δ_3

- σ₁₋₅: the complex of the 1-5 Pachner move refining a 4-simplex into five 4-simplices.
- Simplicial complex: 1 internal site, 5 internal segments (red), 10 boundary triangles b, and 10 internal triangles h.

$$\begin{aligned} A(\sigma_{1-5}) &= \int \mathrm{d}j_{12} \mathrm{d}j_{13} \mathrm{d}j_{14} \mathrm{d}j_{15} \mathrm{d}j_{23} \, \mathcal{Z}_{\sigma_{1-5}} \left(j_{12}, j_{13}, j_{14}, j_{15}, j_{23} \right), \\ \mathcal{Z}_{\sigma_{1-5}} &= \sum_{\{k_h\}} \int \prod_{\bar{h}=1}^5 \mathrm{d}j_{\bar{h}} \, \prod_{h=1}^{10} (2\lambda) d_{\lambda j_h} \int [\mathrm{d}g \mathrm{d}\mathbf{z}] e^{\lambda S^{(k)}}, \end{aligned}$$

Dongxue Qu (FAU)

- σ₁₋₅: the complex of the 1-5 Pachner move refining a 4-simplex into five 4-simplices.
- Simplicial complex: 1 internal site, 5 internal segments (red), 10 boundary triangles b, and 10 internal triangles h.
- Regge geometries g(r) are determined by the boundary data and five lengths l_{m6}, m = 1, 2, 3, 4, 5.
- Locally change variables (Heron's formula): $l_{m6} \rightarrow j_{12}, j_{13}, j_{14}, j_{15}, j_{23}$.

$$\begin{aligned} A(\sigma_{1-5}) &= \int \mathrm{d}j_{12} \mathrm{d}j_{13} \mathrm{d}j_{14} \mathrm{d}j_{15} \mathrm{d}j_{23} \, \mathcal{Z}_{\sigma_{1-5}} \left(j_{12}, j_{13}, j_{14}, j_{15}, j_{23} \right), \\ \mathcal{Z}_{\sigma_{1-5}} &= \sum_{\{k_h\}} \int \prod_{\bar{h}=1}^5 \mathrm{d}j_{\bar{h}} \, \prod_{h=1}^{10} (2\lambda) d_{\lambda j_h} \int [\mathrm{d}g \mathrm{d}\mathbf{z}] e^{\lambda S^{(k)}}, \end{aligned}$$

$$\begin{split} A(\sigma_{1\text{-}5}) &= \int \mathrm{d} j_{12} \mathrm{d} j_{13} \mathrm{d} j_{14} \mathrm{d} j_{15} \mathrm{d} j_{23} \, \mathcal{Z}_{\sigma_{1\text{-}5}} \, (j_{12}, j_{13}, j_{14}, j_{15}, j_{23} \, \mathcal{Z}_{\sigma_{1\text{-}5}} \, g_{1\text{-}5} \, g_{1\text{-$$

• We focus on the 195-dim integral in $\mathcal{Z}_{\sigma_{1-5}}$ with $k_h = 0$.

$$\begin{split} A(\sigma_{1\text{-}5}) &= \int \mathrm{d}j_{12}\mathrm{d}j_{13}\mathrm{d}j_{14}\mathrm{d}j_{15}\mathrm{d}j_{23}\,\mathcal{Z}_{\sigma_{1\text{-}5}}\,\left(j_{12},j_{13},j_{14},j_{15},j_{23}\right)\\ \mathcal{Z}_{\sigma_{1\text{-}5}} &= \sum_{\left\{k_h\right\}}\int\prod_{\bar{h}=1}^{5}\mathrm{d}j_{\bar{h}}\,\prod_{h=1}^{10}(2\lambda)d_{\lambda j_h}\int[\mathrm{d}g\mathrm{d}\mathbf{z}]e^{\lambda S^{\left(k\right)}}\,, \end{split}$$

- We focus on the 195-dim integral in $\mathcal{Z}_{\sigma_{1-5}}$ with $k_h = 0$.
- For $\mathcal{Z}_{\sigma_{1-5}}$, the external parameters: $r = \{j_{12}, j_{13}, j_{14}, j_{15}, j_{23}; j_b, \xi_{eb}\}$. \mathring{r} determines the flat geometry $\mathbf{g}(\mathring{r})$, and the real critical point $\{\mathring{j}_{\bar{h}}, \mathring{g}_{ve}, \mathring{\mathbf{z}}_{vf}\}$ with all $s_v = +$.

$$\begin{split} A(\sigma_{1\text{-}5}) &= \int \mathrm{d}j_{12}\mathrm{d}j_{13}\mathrm{d}j_{14}\mathrm{d}j_{15}\mathrm{d}j_{23}\,\mathcal{Z}_{\sigma_{1\text{-}5}}\,(j_{12},j_{13},j_{14},j_{15},j_{23}\\ \mathcal{Z}_{\sigma_{1\text{-}5}} &= \sum_{\{k_h\}}\int \prod_{\bar{h}=1}^5 \mathrm{d}j_{\bar{h}}\,\prod_{h=1}^{10}(2\lambda)d_{\lambda j_h}\int [\mathrm{d}g\mathrm{d}\mathbf{z}]e^{\lambda S^{(k)}}, \end{split}$$

- We focus on the 195-dim integral in $\mathcal{Z}_{\sigma_{1-5}}$ with $k_h = 0$.
- For $\mathcal{Z}_{\sigma_{1-5}}$, the external parameters: $r = \{j_{12}, j_{13}, j_{14}, j_{15}, j_{23}; j_b, \xi_{eb}\}$. \mathring{r} determines the flat geometry $\mathbf{g}(\mathring{r})$, and the real critical point $\{\mathring{j}_{\tilde{h}}, \mathring{g}_{ve}, \mathring{\mathbf{z}}_{vf}\}$ with all $s_v = +$.
- Fixing j_b, ξ_{eb} , we deform $l_{m6} = l_{m6} + \delta l_{m6}$, so that e.g. $j_{12} = j_{12} + \delta j_{12}, \cdots$, and $r = r + \delta r$, using Monte-Carlo method.

Dongxue Qu (FAU)

$$\begin{split} A(\sigma_{1\text{-}5}) &= \int \mathrm{d}j_{12}\mathrm{d}j_{13}\mathrm{d}j_{14}\mathrm{d}j_{15}\mathrm{d}j_{23}\,\mathcal{Z}_{\sigma_{1\text{-}5}}\,(j_{12},j_{13},j_{14},j_{15},j_{23}\\ \mathcal{Z}_{\sigma_{1\text{-}5}} &= \sum_{\{k_h\}}\int \prod_{\bar{h}=1}^5 \mathrm{d}j_{\bar{h}}\,\prod_{h=1}^{10}(2\lambda)d_{\lambda j_h}\int [\mathrm{d}g\mathrm{d}\mathbf{z}]e^{\lambda S^{(k)}}, \end{split}$$

- We focus on the 195-dim integral in $\mathcal{Z}_{\sigma_{1-5}}$ with $k_h = 0$.
- For $\mathcal{Z}_{\sigma_{1.5}}$, the external parameters: $r = \{j_{12}, j_{13}, j_{14}, j_{15}, j_{23}; j_b, \xi_{eb}\}$. \mathring{r} determines the flat geometry $\mathbf{g}(\mathring{r})$, and the real critical point $\{\mathring{j}_{\bar{h}}, \mathring{g}_{ve}, \mathring{\mathbf{z}}_{vf}\}$ with all $s_v = +$.
- Fixing j_b, ξ_{eb} , we deform $l_{m6} = l_{m6} + \delta l_{m6}$, so that e.g. $j_{12} = j_{12} + \delta j_{12}, \cdots$, and $r = r + \delta r$, using Monte-Carlo method.
- There are 4 DoFs of deformation δr keeping the geometry flat.
- There is 1 DoF $r = \mathring{r} + \delta r$. $\mathbf{g}(r)$ are curved geometries with small deficit angles $< 10^{-3}$. The real critical point is absent.

Dongxue Qu (FAU)

Oct. 5th, 2021@ILQGS 35 / 39

$$A(\sigma_{1-5}) = \int dj_{12} dj_{13} dj_{14} dj_{15} dj_{23} \mathcal{Z}_{\sigma_{1-5}}(j_{12}, j_{13}, j_{14}, j_{15}, j_{23}),$$

Insert the asymptotic expansion of $\mathcal{Z}_{\sigma_{1-5}}$ back in $A(\sigma_{1-5})$, we obtain integral over Regge geometries:

$$\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \int \prod_{m=1}^{5} \mathrm{d}l_{m6} \, e^{\lambda \mathcal{S}(r,Z(r))} \, \mathscr{N}_r \left[1 + O(1/\lambda)\right],$$

we have changed $dj \to dl$ and r = r(l).

The action is Regge action plus "high curvature correction":

$$\mathcal{S}(r, Z(r)) = i\mathcal{I}_R[\mathbf{g}(r)] - a(\gamma)\delta(r)^2 + O(\delta^3),$$

 $\gamma = 1, a = 8.88 \times 10^{-5}_{\pm 10^{-12}} - i0.033_{\pm 10^{-10}}.$

• EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.
- Regge geometries with small deficit angles are sufficient for approximating arbitrary smooth curved geometry.

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.
- Regge geometries with small deficit angles are sufficient for approximating arbitrary smooth curved geometry.
- The dominant contribution to the spinfoam amplitude is proportional to e^S,
 S is the Regge action of the curved geometry plus the curvature correction of order δ²_h and higher.

$$\mathcal{S} = i\mathcal{I}_R[\mathbf{g}(r)] + a_2\delta_h^2 + a_3\delta_h^3 + a_4\delta_h^4 + O(\delta_h^5),$$

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.
- Regge geometries with small deficit angles are sufficient for approximating arbitrary smooth curved geometry.
- The dominant contribution to the spinfoam amplitude is proportional to e^S,
 S is the Regge action of the curved geometry plus the curvature correction of order δ²_h and higher.

$$\mathcal{S} = i\mathcal{I}_R[\mathbf{g}(r)] + a_2\delta_h^2 + a_3\delta_h^3 + a_4\delta_h^4 + O(\delta_h^5),$$

• Δ_3 : relaxing cosine problem.

- EPRL spinfoam amplitudes allow curved Regge geometries with small deficit angles.
- The curved geometries correspond to complex critical points that are slightly away from the real integration domain.
- Regge geometries with small deficit angles are sufficient for approximating arbitrary smooth curved geometry.
- The dominant contribution to the spinfoam amplitude is proportional to e^S,
 S is the Regge action of the curved geometry plus the curvature correction of order δ²_h and higher.

$$\mathcal{S} = i\mathcal{I}_R[\mathbf{g}(r)] + a_2\delta_h^2 + a_3\delta_h^3 + a_4\delta_h^4 + O(\delta_h^5),$$

- Δ_3 : relaxing cosine problem.
- 1-5 Pachner move: reduce the spinfoam amplitude to integral over Regge geometries:

$$\left(\frac{1}{\lambda}\right)^{\frac{N}{2}} \int \prod_{m=1}^{5} \mathrm{d}l_{m6} \, e^{\lambda \mathcal{S}(r,Z(r))} \, \mathscr{N}_r \left[1 + O(1/\lambda)\right].$$

Dongxue Qu (FAU)

- Other spinfoam models.
- Observables, e.g., correlation functions.
- More complicated complex.
- Lattice Refinement.
- Classical limit.
- Larger deficit angles and higher order correction.

• ...

Thank You!

Dongxue Qu (FAU)

Poisson summation

The spinfoam amplitude in the integral representation:

$$\begin{aligned} A(\mathcal{K}) &= \sum_{\{j_h\}}^{j^{\max}} \prod_h d_{j_h} \int [\mathrm{d}g \mathrm{d}\mathbf{z}] \, e^{S\left(j_h, g_{ve}, \mathbf{z}_{vf}; j_b, \xi_{eb}\right)}, \\ [\mathrm{d}g \mathrm{d}\mathbf{z}] &= \prod_{(v,e)} \mathrm{d}g_{ve} \prod_{(v,f)} \mathrm{d}\Omega_{\mathbf{z}_{vf}}, \end{aligned}$$

Without changing $A(\mathcal{K})$, we insert $\tau_{[-\epsilon,j^{\max}+\epsilon]}(j_h)$ with $0 < \epsilon < 1/2$ satisfying:

$$\begin{aligned} \tau_{[-\epsilon,j^{\max}+\epsilon]}(j_h) &= d_{j_h}, \quad j_h \in [0,j^{\max}], \\ \tau_{[-\epsilon,j^{\max}+\epsilon]}(j_h) &= 0, \quad j \not\in [-\epsilon,j^{\max}+\epsilon] \end{aligned}$$

We apply the Poisson summation formula $\sum_{n \in \mathbb{Z}} f(n) = \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}} dn f(n) e^{2\pi i k n}$ to the sum over j_h :

$$A(\mathcal{K}) = \sum_{\{k_h \in \mathbb{Z}\}} \int_{\mathbb{R}} \prod_h \mathrm{d}j_h \prod_h 2\tau_{[-\epsilon,j^{\max}+\epsilon]}(j_h) \int [\mathrm{d}g\mathrm{d}\mathbf{z}] e^{S^{(k)}},$$

$$S^{(k)} = S + 4\pi i \sum_h j_h k_h.$$

Dongxue Qu (FAU)

Curved geometries in SF

Boundary Geometry

- Each 4-simplex is Lorentzian 4-simplex.
- All triangles and tetrahedra are space-like.

The length symmetry

$$l_{12} = l_{13} = l_{15} = l_{23} = l_{25} = l_{35} \approx 3.40,$$

$$l_{14} = l_{24} = l_{34} = l_{45} \approx 2.07,$$

$$l_{26} \approx 5.44, l_{46} \approx 3.24$$

The coordinates for vertices:

$$P_{1} = (0, 0, 0, 0), P_{2} = \left(0, 0, 0, -2\sqrt{5}/3^{1/4}\right),$$

$$P_{3} = \left(0, 0, -3^{1/4}\sqrt{5}, -3^{1/4}\sqrt{5}\right)$$

$$P_{4} = \left(0, -2\sqrt{10}/3^{3/4}, -\sqrt{5}/3^{3/4}, -\sqrt{5}/3^{1/4}\right),$$

$$P_{5} = \left(-3^{-1/4}10^{-1/2}, -\sqrt{5/2}/3^{3/4}, -\sqrt{5}/3^{3/4}, -\sqrt{5}/3^{1/4}\right),$$

$$P_{6} = (0.90, 2.74, -0.98, -1.70).$$

Dongxue Qu (FAU)

 δ_h^s graph

Dongxue Qu (FAU)

Numerical data for Pachner move

a	1	1 2	
\tilde{g}_a	$\begin{pmatrix} 1.02 & -0.06 - 0.17i \\ -0.06 + 0.17i & 1.02 \end{pmatrix}$	$\begin{pmatrix} 0.99 & -0.06 - 0.17i \\ 0 & 1.01 \end{pmatrix}$	$\begin{pmatrix} 0.83 & -0.12 - 0.61i \\ 0 & 1.20 \end{pmatrix}$
а	4	5	
\bar{g}_a	$\begin{pmatrix} 0.99 & 0.55 + 0.29i \\ 0.25 & 1.14 + 0.074i \end{pmatrix}$	$\begin{pmatrix} 0.94 & -0.12 - 0.45i \\ 0 & 1.02 \end{pmatrix}$	

а	6	7	8
\tilde{g}_{a}	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0.99 & -0.06 - 0.17i \\ 0 & 1.01 \end{pmatrix}$	$\begin{pmatrix} 1.03 & -0.03 + 0.045i \\ 0 & 0.96 \end{pmatrix}$
а	9	10	
\tilde{g}_{a}	$\begin{pmatrix} 0.98 & 0.25 \\ 0 & 1.02 \end{pmatrix}$	$\begin{pmatrix} 0.98 & -0.02 + 0.02i \\ 0 & 1.02 \end{pmatrix}$	

а	11	12	13
\tilde{g}_a	$\begin{pmatrix} 1.08 & -0.03 + 0.04i \\ -0.03 - 0.04i & 0.93 \end{pmatrix}$	$\begin{pmatrix} 0.77 & -0.08 - 0.62i \\ 0.02 + 0.04i & 1.32 - 0.02i \end{pmatrix}$	$\begin{pmatrix} 0.96 & 0\\ 0.03 + 0.04i & 1.04 \end{pmatrix}$
а	14	15	
\tilde{g}_{a}	$\begin{pmatrix} 0.85 & 0.45 - 0.11i \\ 0 & 1.18 \end{pmatrix}$	$\begin{pmatrix} 1.52 & -0.14 + 0.2i \\ 0 & 0.66 \end{pmatrix}$	

a	16	17	18
\bar{g}_{α}	$\begin{pmatrix} 1.00 & -0.07 \\ -0.07 & 1.00 \end{pmatrix}$	$\begin{pmatrix} 0.96 & 0.27 + 0.28i \\ 0 & 1.04 \end{pmatrix}$	$\begin{pmatrix} 1.02 & 0 \\ -0.26 & 0.98 \end{pmatrix}$
а	19	20	
\bar{g}_{α}	$\begin{pmatrix} 0.96 + 0.01i & 0.19 - 0.06i \\ -0.26 - 0.38i & 0.99 \end{pmatrix}$	$\begin{pmatrix} 1.01 & -0.12 - 0.01i \\ 0 & 0.99 \end{pmatrix}$	

a	21	22	23	
\tilde{g}_{a}	$\begin{pmatrix} 0.87 & -0.06 + 0.086i \\ -0.06 - 0.085i & 1.16 \end{pmatrix}$	$\begin{pmatrix} 0.97 & -0.13 - 0.45i \\ 0 & 1.03 \end{pmatrix}$	$\begin{pmatrix} 0.98 & -0.016 + 0.023i \\ 0 & 1.02 \end{pmatrix}$	
a	24	25		
\tilde{g}_{a}	$\begin{pmatrix} 1.64 & -0.17 + 0.24i \\ -0.05 - 0.07i & 0.62 \end{pmatrix}$	$\begin{pmatrix} 1.04 & -0.14 - 0.01i \\ 0.26 & 0.99 - 0.003i \end{pmatrix}$		

(ža, b) b	2	3	4	5
1	(1,-0.33 + 0.94 i)	(1,0.08 - 0.69 i)	(0.68 - 0.73i)	(1,0.18 - 1.43 i)
2	/	(1,-0.14 + 1.50 i)	(1,-0.93 + 0.37i)	(1,-0.16 + 0.77i)
3		/	(1,-0.93 + 0.48i)	(1,0.078 - 0.58 i)
4	~	/	/	(1,0.64 - 0.88i)

a b	6	6 7 8		9	10
6	/	/	(1,1.82 + 2.57i)	(1,-1)	(0.18 + 0.26i)
7	(1,-0.33 + 0.94i)	/	/	/	/
8	/	(1,-0.14+1.50i)	/	(1,1.36 + 0.27i)	(1, 4.60 + 6.50i)
9	/	(1, -0.93 + 0.37i)	/	/	(1,-1.11 - 0.072i)
10	/	(1, -0.16 + 0.77i)	/	/	/

(ž _{a,b}) b	11	12	13	14	15
11	/	/	/	(1, 1.77 + 0.806)	(1,9.6 + 13.58i)
12	(1,0.03 - 0.62i)	/	(1,-0.23 + 1.31i)	/	/
13	(1,1.82 + 2.57i)	/	/	/	/
14	/	(1,-0.84 + 0.33i)	(1,1.21 + 0.14i)	/	(1,5.92 + 4.04i)
15	/	(1,0.027 - 0.53i)	(1,6.48 + 9.17i)	/	/

(±,,,)) b	16	17	18	19	20
16	/	~		~	(1,-1.7 - 0.68i)
17	(1,0.87 - 0.48i)	/	(1,-0.82 + 0.58i)	(1, -0.76 + 0.75i)	/
18	(1,-1)	/	/	(1,1.21 + 0.14i)	/
19	(1,1.51 + 0.42i)	/	/	/	/
20	/	(1,0.88 - 0.59i)	(1,-1.20 - 0.13i)	(1,2.54 + 0.65i)	/

(12m,k) b	21	22	23	24	25
22	(1, 0.18 - 1.43i)	/	(1, -0.15 + 0.78i)	(1,0.078 - 0.58i)	(1,0.64 - 0.88i)
23	(1,0.18 + 0.26i)	/	~	(1,4.6 + 6.5i)	(1,-1.11 - 0.072i)
24	(1,5.72 + 8.08i)	/	/	/	(1,4.58 + 3.90i)
25	(1,-1.41 - 0.3li)	/	/	/	~

5/5