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Motivation and Results

@ The semiclassical consistency is an important requirement in LQG.

@ We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.
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Motivation and Results

@ The semiclassical consistency is an important requirement in LQG.
We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.

Semiclassical approximation = Large-j asymptotics of spinfoam amplitude.
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@ Asymtotics of the spinfoam amplitude relates to Regge calculus
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Motivation and Results

@ The semiclassical consistency is an important requirement in LQG.
We focus on 4-dimensional Lorentzian EPRL spinfoam formulation.

Semiclassical approximation = Large-j asymptotics of spinfoam amplitude.
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@ Asymtotics of the spinfoam amplitude relates to Regge calculus

@ Recent progress in numerics on spinfoam models

@ sl2cfoam based on 155 + boosters [Dowa. Fanizza, Sarmo. Spesiale, Gozzini 2015-2021]
@ Spinfoam renormalization [san:, Dittrich, Siei
@ Effective spinfoam model |rcante, Dittrich, Haggard 21]

@ Asymptotics expansion, Lefschetz thimble, Monte-Carlo [ru, fuane. Liv, DO, 2020202

@ Simplicial complex, sum over j — Flatness problem:

The EPRL spinfoam amplitude seems to be dominated only by flat Regge geometries
in the semiclassical regime. J
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The numerics demonstrates curved geometries whose contributions are not small in
EPRL spinfoam amplitudes. J

eA Re[61]
1:

Flat geometry
0.9 ® Curved geometry

0.8 1=101, y=01
0.7
0.6
0.5

-12 -8 Sn
1.5x10 1.5x10 0.00015
Horizontal axis: deficit angle &p; Vertical axis: oc Amplitudes
In spinfoam, large spin parameter X is a finite expansion parameter.

For any large but finite ), there exists relatively small deficit angles such that the
amplitude is not small.
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v=0.1 A=5x10

0.002 0.0010
0.0008
0.001
0.0006
& 0.000 §
0.0004
-0.001
0.0002
-0.002!! : : ; 0.0000
0 2x10"4x10"6x10'°8x10"1x10" 0.00

A

The non-blue regime of curved geometries where the amplitude is not small.
Effective action: Regge action plus “high curvature correction”

S = iZr[g(r)] + a28; + asdy + asbp + O(37),
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@ These curved geometries come from complex critical points.

@ A warm-up example

+oo i
Ax(r) = / A @ g >0, A

—o0

. . r=0 real critical point
Th 1 P e = o .
e critical polnt: e = 7= { r # 0 complex critical point ’

ﬁ A izzfv‘(;vp+l)2
An(r) = —YL__Aliwd—r@e+1)?]
A(r —1)
142 ()1
0.15]
A =100

Similar ideas appeared in
0.10 |[Asante, Dittrich, Haggard, 2020]

[Han, 2013]

[Engle, Kaminski, Oliveira 2020]
0.05|

‘ ‘ ‘ ‘ T
rig 5.x107* 0.001 0.005 0.010 0.050 0.100
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Motivation and Results

@ Aj: relaxing cosine problem.

@ 1-5 Pachner move: reduce the spinfoam amplitude to integral over Regge
geometries:

N 5
(%) 2 / H dlpme 52 g [1+O0@/N)],
|

Effective action S is Regge action plus “high curvature correction”.
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Outline

9 EPRL Spinfoam Model
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EPRL Spinfoam Model

< »
v ‘ > ’ L \ A=

Aa »

4-d triangulation K dual complex Kk

. . @ vertices: v
@ 4-simplices: o

@ ori :
@ tetrahedra: 7 oriented edges: e

@ oriented faces: f:

® triangles: ¢ h (internal), b (boundary)

A spinfoam assigns an SU(2) spin j; to each face f: jp, jo.
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EPRL Spinfoam Amplitude

The spinfoam amplitude in the integral representation:

Zdeh/dgdz (]h’gvevzvf?jbvgeb)7

{in} R

dgdZ] H dgve H dQ, Zoyf s

(vse) (v,f)

|76, €ep): SU(2) boundary coherent state.
Zyf € CPL.

guve € SL(2,C).

phase amplitude d;, = 2jn + 1.

dgve is the Haar measure, szvf is a scaling invariant measure on CP'.
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EPRL spinfoam action

The spinfoam action S is given by

S = Z JnFer 2y + Z.ij(e,b) + Z JoEer vy,

(e’ ) (e,b) (e’,b)
<Zveb7§eb> . 2
Few = 2700+ ornlZuls Zus = glezur
<§Ebv Zv’eb> . 2
or 2ln =———% —4vIn Z’u’e )
Zorasl YIn || Zyes |l
<Z'ue’fyzv/e’f> . HZ’Ue/fHQ
Fe,py = 2Ih—H——+iyln ———
() 1 Zver £l |1 Zorer | 1 Zorer¢lI?
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EPRL spinfoam action
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Continuous gauge freedom and gauge fixing:

@ For each zyf, Zuf = AufZuf, dof € C = 7,5 = (1, ).
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EPRL spinfoam action

The spinfoam action S is given by

S = Z JnFer 2y + Z.ij(e,b) + Z JoEer vy,
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<Zveb7§eb> . 2
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Continuous gauge freedom and gauge fixing:
@ For each zyf, Zuf = AufZuf, dof € C = 7,5 = (1, ).
@ At cach v, goe — Ty 'Gue, Zus > x}izvf, Zy € SL(2,C) = one goe =1
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EPRL spinfoam action

The spinfoam action S is given by
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Fe,py = 2Ih—H——+iyln ———
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Continuous gauge freedom and gauge fixing:
@ For each zyf, Zuf = AufZuf, dof € C = 7,5 = (1, ).
@ At cach v, goe — Ty 'Gue, Zus > x}izvf, Zy € SL(2,C) = one goe =1

@ At each e, gyre > gurche by Gue = gueha b, he € SU(2) = gure to be
upper-triangular matrix.
(any g € SL(2,C) can be written as g = kh where k is upper-triangular and h € SU(2)).
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Real parametrization:

1 I'}/’e z?}’e+iy121/e
Gv'e = év’e ( + vz V2 € SL(27C)7
0 Ho’e
14 Twetivpe  hetivg,
Jue = éve 23 +i\y/3§ V2 S SL(27C)
-2 Hoe
Zof = (1,805 + Tof +iyos) € CP'.

@ Zye,Yve, Tuf, Yoy are real numbers.

@ g € SL(2,C) and & € C will be a critical point of S.

Therefore,
S (jh, Gue, Z’Uf) = S(jh7 Tvey Yvey Tof, yvf)
will be analytic continued (locally) to the holomorphic function

S(jhvxvevyvmxvf:yvf)v Jhs Tve, Yve, Tuf, Yo € C
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EPRL Spinfoam Amplitude

LQG area spectrum: a = 87r7£129\/j(j +1), a> Zf, —ji>1

Semiclassical regime <= large-j regime.
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EPRL Spinfoam Amplitude

LQG area spectrum: a = 87r7€,2,\/j(j +1), a> 612, = ji>1
Semiclassical regime <= large-j regime.
To probe the semiclassical regime, we scale both boundary and internal spins

Jb = Ajb,  Jn = Ajn, A1
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EPRL Spinfoam Amplitude

LQG area spectrum: a = 87y02\/5(j + 1), a> 2 <= j>1
Semiclassical regime <= large-j regime.
To probe the semiclassical regime, we scale both boundary and internal spins
Jb = Aoy Jn = Ajn, A1

Apply the Poisson summation to the EPRL spinfoam amplitude:

(k )
AK) = > /Hd]hH2>\th/dgd] A8
{kpez}
S<k) = S+47Ti2jh/€h,
h

Jn is continuous.
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Outline

e Real and Complex critical points
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Real Critical Points
@ The integral in the spinfoam amplitude has the following form:
/de w(z) e N> 1,

where r is boundary data, = is integration variable.

= (jb,&eb), T = {Jn,Tve,Yve, Tuf, Yuf} € RY
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Real Critical Points
@ The integral in the spinfoam amplitude has the following form:
/de w(z) e N> 1,

where r is boundary data, = is integration variable.

r:(jbageb), x:{jhyxvcyyvmxvf,yvf} GRN

@ Real critical point & is the solution of the critical equations

Re(S(2)) = 0.5(3) = 0,
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Real Critical Points

@ The integral in the spinfoam amplitude has the following form:
/de w(z) e N> 1,
where r is boundary data, = is integration variable.

r:(jbageb), x:{jhyxveyyvmxvf,yvf} GRN

@ Real critical point & is the solution of the critical equations

Re(S(2)) = 0.5(3) = 0,

@ The solution gives Regge geometries subject to the flatness constraint (up to
some “parity flips”):

v, =0 mod 47Z.

@ Spinfoam amplitudes seem to be dominated only by flat Regge geometries in the
semiclassical regime.
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Ag triangulation

[Dona, Gozzini, Sarno, 2020]

@ Aj contains three 4-simplices and a single internal face h.

@ All edges are on the boundary, boundary edge-lengths determine Regge
geometry on Ags.

@ r = {j», &} is the boundary data, determining boundary edge-lengths, and
Regge geometry g(r).

@ All tetrahedra and triangles are spacelike.
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Flatness Problem

@ Regime 1: fixing the boundary data r admits a flat geometry on the
triangulation

AV (o) 25 — (L % ) 1+ 0(1/N)].
[ et (5) Jaet Caseapm )

The dominant contribution comes from the real critical point.
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Flatness Problem

@ Regime 1: fixing the boundary data r admits a flat geometry on the
triangulation

Az p(z) M) = 1 B G 1+ 0(1/N)]. 1
[ e ua (3) o oo g O

The dominant contribution comes from the real critical point.

@ Regime 2: fixing the boundary data r only admits the curved geometry, no real
critical point, the amplitude is suppressed:

/de w(z) e = oK), VK >o0. (2)

Dongxue Qu (FAU) Curved geometries in SF Oct. 5th, 2021QILQGS 18 /39



Flatness Problem

@ Regime 1: fixing the boundary data r admits a flat geometry on the
triangulation

AV p(z) e = (L B G 1+0(1/))]. 1
[ e ua (3) o oo g O

The dominant contribution comes from the real critical point.

@ Regime 2: fixing the boundary data r only admits the curved geometry, no real
critical point, the amplitude is suppressed:

/de w(z) e = oK), VK >o0. (2)

@ We also let r vary, then we need an interpolation between two regimes (1) and
(2) in order to clarify contributions from curved geometries — the use of
complex critical point.
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Complex Critical Points
We consider the large-\ integral:

/ Az p(x) ) N =124 for As,
K

@ S(r,z) and p(x) are analytic functions for r € U C RF,z € K c RV,

@ U x K is a compact neighborhood of (7, ).

Analytic Extension

z—zeCY, S(rz)— S(rz2)

Complex critical points z = Z(r) are the
solutions of the complex critical equation

0:S=0
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Complex Critical Points

[Hormander, 1983; Melin, Sjéstrand, 1975|

Large-\ asymptotic expansion for the integral

N

AS(r Z(r)) (Z(?”))

J W en@e = <) et (—82 .5, (1) /27) o

@ The dominant contribution from the complex critical point.
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Complex Critical Points

[Hormander, 1983; Melin, Sjéstrand, 1975|

Large-\ asymptotic expansion for the integral

ﬂ

AS(r Z(r)) (Z(?”))

/dN:cu (@)e*5re) = < ) \/det STy 1+ O(1/N)]

@ The dominant contribution from the complex critical point.
@ Interpolating two regimes:

r=r, Re(S(F,Z(r)) =0, power-law decay.
r#7%, Re(S(r,Z(r)) <0, damping factor e*?e(5)
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Complex Critical Points

[Hormander, 1983; Melin, Sjéstrand, 1975|

Large-\ asymptotic expansion for the integral

N

AS(r Z(r)) (Z(?”))

/ &%z () = <) \Jdet (=62..5(r, Z(r)) /27) o

@ The dominant contribution from the complex critical point.
@ Interpolating two regimes:

r=r, Re(S(F,Z(r)) =0, power-law decay.
r# R

e(S(r, Z(r)) <0, damping factor e ()

o % is a finite expansion parameter, like h in quantum mechanics.
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Complex Critical Points

975

[Hérmander, 1983; Melin, Sjéstrand, 1

Large-\ asymptotic expansion for the integral
ﬂ T, T
o LD i+ 00

/ dVa p(w)e D = () \/det (=62 .S(r, Z(r)) /2)

@ The dominant contribution from the complex critical point

@ Interpolating two regimes:
e(S(F, Z(7)) = 0,

power-law decay.

damping factor e*?e(5)

o % is a finite expansion parameter, like i in quantum mechanics
@ Given any ), e***(5) may not be small, e.g. e*¢(5) = ¢~1 if Re(S) = —1/A\.
Oct. 5th, 2021QILQGS 20 /39
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Outline

e Numerical Implementation: Ag
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Ag triangulation

A3 contains three 4-simplices and a single internal face h.

All edges are on the boundary, boundary edges-lengths determine Regge
geometry on Ags.

r = {Jb, s} is the boundary data, determining boundary edge-lengths, and
Regge geometry g(r).

All tetrahedra and triangles are spacelike.

[Dona, Gozzini, Sarno, 2020
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Algorithm of A(Aj3)

We numerically construct boundary data, flat geometry, and real critical point.

Curved geometries in SF

Oct. 5th, 2021QILQGS
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Algorithm of A(Aj3)

@ We vary the length lzs. It gives a family of boundary data r = 7 + or. We
obtain numerically a family of curved geometries g(r):
Length variation dl26 : 0.7x 1072 ~ 1074
Deficit angle 45 : 1.4 x 107'% ~ 0.0002

@ For each d;, # 0, the real critical point is absent.

@ Numerically compute the complex critical point z = Z(r) satisfying
0.8 (r, z) = 0 with Newton-like recursive procedure:
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Algorithm of A(Aj3)

@ We linearize 0.S(r, z) = 0 at xo € R'?* (satisfying Re(S) = 8,5 = 8,5 = 0, but
8th a 0)

8.S(r,x0) + 028(r, o) - 621 = 0,

the solution is 21 = zg + d21.
@ Similarly, we linearize 9.5(r, z) = 0 at z1, the solution is z2 = 21 + d2z2.

© We linearize 9.5(r,z) =0 at 29, -+« -+

@ We linearize 0.S(r,z) =0 at z,—1, the solution approximates the complex
critical point Z(r) ~ 2z, = zn—1 + d2n.

@ Practically, we use n = 4.
@ Absolute Error: € = max |0.5(r, z,)| &~ 1.3167.

[6p [ 2x10°16 T 2x10-12 | 3x10~ [ 6x107% [ ax10=° [ 2x10-% |
[ e [2x107™ [ 427x10°° [ 319x10° 3 [ 1.02x10 2% [ 1.34x10°%%2 [ 4.2x10_ 19 |
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Numerical Results

We numerically compute the complex critical point Z(r) for many r corresponding to
curved geometries.

We compute numerically S and the difference 6Z(r) from the Regge action of the
curved geometry g(r):

S(r, Z(r)) = iZrg(r)] + 6Z(r), Zrlg(r)] = an(r)on(r) + Z ay(r

At X =10 =0.1,

eA Re[61]

1: Flat geometry
0.9 ® Curved geometry
0.8 A=10", y=01
0.7
0.6
0.5

5
15x10"'2  15x10°  0.00015 "
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Numerical Results

iAIm(6T)

We numerically fit e*?e(D) (

blue curve) and e
0T = a20; + azdy + asdy, + O(5})

The best fit coefficient a; and the corresponding fitting errors at v = 0.1 are

as = —0.000164,0-17 —i0.00083 4 1015,
as = _0-0071:‘:10—13 — 7;0.0111107127
as = —0.059 00 +1i0.0704,-s.

The effective action S is the Regge action plus “high curvature correction”

S(r, Z(r)) = iZr[g(r)] + 6Z(r),

Large-\ asymptotic expansion for the integral

N AS(r,Z(r))
1 zZ
[ aVau@ese? - ()7 = LED) 4o/
K tht(—622503z(r»/2ﬁ)
Dongxue Qu (FAU) Curved geometries in SF Oct. 5th, 2021QILQGS
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Numerical Results

The contour plots of e PZM o |A(A3)[:

7=01 A=5x10"

0.0010

0.0008

0.0006
S

0.0004

0.0002

0.0000
10 10 10 10 1
0 2x104x10™6x108x10"°1x10 0.00 002 004 006 008 0.10

A Y

The non-blue regime of curved geometries where A(A3) is not small.
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Cosine Problem

Natively,

A(AS) ~ (eiIR + e*iIR)(eiIR + 677;113)(67;113 + 672’IR)

= &8 terms

@ 8 terms correspond to 2 continuous 4-simplex orientations
+++, —— -
and 6 discontinuous 4-simplex orientations:

++—, +—— = -+, +—+, -+,
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Cosine Problem

@ Flatness constraint changes to:
¥ = WZ $,Or(v) =0 mod 4rnZ,
vEh

s, = £ are opposite orientations at the 4-simplex v.

@ Given the boundary data r,

s [+++ [ ———[++- [ ——+ [+——[—++ ][ —+-

& 0 0 0.043 | —0.043 0.72 —-0.72 | —0.68

0.68

there are only 2 real critical points with all s, =+ or s, = —.
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Asymptotics of A(Aj3)

@ With r = 7 + dr of curved geometries g(r)

62
A(Ag) ~ (%) |:JI/+67J)\IR[g(r)]+)\6I(r) N e~ ATRIE()HAT (r)]

contributed by the complex critical points close to these 2 real critical points.

Cosine problem is relaxed in this example.

Regge action: Zp = apdn + Z a0y,
b
High curvature correction: 67 = a26; + asds + asdp + 0(83),
6T = a26; — asdy + asd + O(Sy)
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Outline

e Numerical Implementation: 1-5 Pachner Move
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1-5 Pachner move

@ 01_5: the complex of the 1-5 Pachner
move refining a 4-simplex into five
4-simplices.

@ Simplicial complex: 1 internal site, 5
internal segments (red), 10 boundary

2
. ’ triangles b, and 10 internal triangles
h.
3 4
Ao1s) = /dj12dj13dj14dj15dj23 Z41.5 (4125 J13, J14, J15, J23) 5

(k)

Zo1s = Z / H d]h ZA )dxjh, /[dgdz]exs )

{kn}" h=1
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1-5 Pachner move

@ 01_5: the complex of the 1-5 Pachner
move refining a 4-simplex into five
4-simplices.

@ Simplicial complex: 1 internal site, 5
internal segments (red), 10 boundary
triangles b, and 10 internal triangles
h.

@ Regge geometries g(r) are
determined by the boundary data
and five lengths l,,6,m = 1,2,3,4,5.

@ Locally change variables (Heron’s
formula): lmne — j12, 713, J145 J15, j23-

A(ors) = /dj12dj13dj14dj15dj23 Zo1.5 (J12, J13, J14, J15, Jo3) »

(k)
Zo1s = Z/deh 2/\ )dxjh, /[dgdz]exs )

{kn}" h=1
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1-5 Pachner move

A(o1.5) = /djlzdjlsdj14dj15dj23Za1_5 (J12,913,714, 515, J23) .
5 10 ()
Zors = X [ T1 4 [Ny, [lagaes™,
{(kpt? h=1 h=1

@ We focus on the 195-dim integral in Z,, ; with k, = 0.
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1-5 Pachner move

A(o1.5) = /djlzdjlsdj14dj15dj23Za1_5 (412,313,514, J15,923)
5 10 ()
Zo1s > [ I s TT Ny, [ganes™
{(kpt? h=1 h=1

@ We focus on the 195-dim integral in Z,, ; with k, = 0.

@ For Z,, ., the external parameters: r = {j12, j13, j14, J15, J23; Jb, Eeb }- T
determines the flat geometry g(7), and the real critical point {J7, Jve, Zvf} With
all s, = +.
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1-5 Pachner move

A(o1.5) = /djlzdjlsdj14dj15dj23Za1_5 (412,313,514, J15,923)
5 10 ()
Zos = 3 [ I1din I]@Vaxs, [lagaze>s ™,
{kp} h=1 h=1

@ We focus on the 195-dim integral in Z,, ; with k, = 0.

@ For Z,, ., the external parameters: r = {j12, j13, j14, J15, J23; Jb, Eeb }- T
determines the flat geometry g(7), and the real critical point {J7, Jve, Zvf} With
all s, = +.

@ Fixing ]D'b,foeb, we deform [,,6 = loms + 6lme, so that e.g. ji12 = 312 +d0j12, -, and
r =7 4+ 0r, using Monte-Carlo method.
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1-5 Pachner move

A(o1.5) = /djlzdjlsdjmdjwdjzzZal_s (412,313,514, J15,923)
5 10 ()
Zos = 3 [ I1din I]@Vaxs, [lagaze>s ™,
{(kpt? h=1 h=1

@ We focus on the 195-dim integral in Z,, ; with k, = 0.

@ For Z,, ., the external parameters: r = {j12, j13, j14, J15, J23; Jb, Eeb }- T
determines the flat geometry g(7), and the real critical point {J7, Jve, Zvf} With
all s, = +.

@ Fixing j'b,foeb, we deform [,,6 = loms + 6lme, so that e.g. ji12 = }12 +d0j12, -, and
r =7 4+ 0r, using Monte-Carlo method.

@ There are 4 DoFs of deformation dr keeping the geometry flat.

@ There is 1 DoF r =7 + dr. g(r) are curved geometries with small deficit angles
< 1073, The real critical point is absent.
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@ Compute numerically complex critical points Z(r) for many 7.
® S(r, Z(r)) = iZr(g(r)] + 0Z(r),
e*ReléTl o |A(0y )|

1.0 * Flat geometry
e Curved geometry
0.8
A=10"1, y=1
0.6
0.4
5 s/
s 0= 82 /10
10—14 10-12 10-10 10—8 10-6 10-4 h=1

y=1 A =5x10'°
0.002f, . . .

0.001

@ 0.000 w0 0.0015-fi

-0.001

-0.002
0

‘. 0.0000°
2x1004x10"6x10°8x10" 1x 10" 0.000 0.002 0.004 0.006 0.008 0.010

Y

A
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1-5 Pachner move

A(o15) = /djlzdj13dj14dj15dj23 2515 (412,713, 14,315, 323)

Insert the asymptotic expansion of Z,, ; back in A(o1-5), we obtain integral over

Regge geometries:

N 5!
Y [ o isesonsis o,
m=1

we have changed dj — dl and r = r(I).

The action is Regge action plus “high curvature correction”:

S(r, Z(r)) = iZrlg(r)] — a(y)s(r)* + O(5%),

v=1a=888x10° —40.033 L, 9—10.

+10—-12
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Summary

@ EPRL spinfoam amplitudes allow curved Regge geometries with small deficit
angles.
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Summary

@ EPRL spinfoam amplitudes allow curved Regge geometries with small deficit
angles.

@ The curved geometries correspond to complex critical points that are slightly
away from the real integration domain.
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Summary

@ EPRL spinfoam amplitudes allow curved Regge geometries with small deficit
angles.

@ The curved geometries correspond to complex critical points that are slightly
away from the real integration domain.

@ Regge geometries with small deficit angles are sufficient for approximating
arbitrary smooth curved geometry.
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Summary

@ EPRL spinfoam amplitudes allow curved Regge geometries with small deficit
angles.

@ The curved geometries correspond to complex critical points that are slightly
away from the real integration domain.

@ Regge geometries with small deficit angles are sufficient for approximating
arbitrary smooth curved geometry.

@ The dominant contribution to the spinfoam amplitude is proportional to e,
S is the Regge action of the curved geometry plus the curvature correction of
order 67 and higher.

S = iZrlg(r)] + a2d; + a3d; + asdy + O(5}),
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Summary

EPRL spinfoam amplitudes allow curved Regge geometries with small deficit
angles.

The curved geometries correspond to complex critical points that are slightly
away from the real integration domain.

Regge geometries with small deficit angles are sufficient for approximating
arbitrary smooth curved geometry.

The dominant contribution to the spinfoam amplitude is proportional to e,
S is the Regge action of the curved geometry plus the curvature correction of
order 67 and higher.

S = iZrlg(r)] + a2d; + a3d; + asdy + O(5}),

As: relaxing cosine problem.
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Summary

EPRL spinfoam amplitudes allow curved Regge geometries with small deficit
angles.

The curved geometries correspond to complex critical points that are slightly
away from the real integration domain.

Regge geometries with small deficit angles are sufficient for approximating
arbitrary smooth curved geometry.

The dominant contribution to the spinfoam amplitude is proportional to e,
S is the Regge action of the curved geometry plus the curvature correction of
order 67 and higher.

S = iZrlg(r)] + a2d; + a3d; + asdy + O(5}),

@ Aj: relaxing cosine problem.

@ 1-5 Pachner move: reduce the spinfoam amplitude to integral over Regge
geometries:

N 5
2
<§> / [T dlons 507045 11+ O(1/2)].
m=1
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Outlook

Other spinfoam models.

Observables, e.g., correlation functions.
More complicated complex.

Lattice Refinement.

Classical limit.

(FAU) Curved geometries in SF

Larger deficit angles and higher order correction.
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Thank You!
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Poisson summation

The spinfoam amplitude in the integral representation:

Z deh/dgdz (Jh,gw,zvf;jb,geb)7

{in} h

[dgdz] = H dgye H dQ,,,,
(v,e) (v, f)

Without changing A(KC), we insert T[_c jmaxi¢(jrn) With 0 < e < 1/2 satisfying:
T[—e,jmax+e] (n) = dj,, jn€[0,j7]
T[—e,jmax-!—e] (]h) = 07 .7 Q/ [_Eajmax + 6}

We apply the Poisson summation formula Y-, f(n) = >, o, [p dnf(n) e2™ k™ to the
sum over jp:

AK) = > / HdnH?T gmwa) () / [dgdz] 5",

{kn€Z}

SM = S4+4amiy jukn.
h
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Boundary Geometry

@ FEach 4-simplex is Lorentzian

® .
? 4-simplex.
@ All triangles and tetrahedra are
y space-like.
@

The length symmetry

lig = liz = l15 = lag = las = I35 =~ 3.40,
l1a = l2q = l34 = ls5 = 2.07,
l26 ~ 5.44, l46 ~ 3.24

The coordinates for vertices:
P = (0,0,0,0), P = (0,0,0, 72\/5/31/4) ,
Py = (0,0,-8"4V/5,-31/4V/5)
Py = (o, —2/10/3%/4, —/5/3%/4, —\/5/31/4) :

j - (_371/41071/27 _ /75/2/33/47_\/5/33/4,_\/5/31/4) 7
Ps = (0.90,2.74, —0.98, —1.70) .
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; graph

x
10-12 N x * bt
x X O -++

x &l A pee
10" 10" 10° 107 10° %
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Numerical data for Pachner move
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