
Abstract

It is well known that entanglement is ubiquitous in
quantum field theory: even the simplest states within the
simplest field theories are highly entangled. The foundation
of this statement rests on two results: (1) the Reeh-Schlieder
theorem, which shows that all field variables in any one
region of spacetime are entangled with variables in other
regions, and (2) the calculations of entanglement entropy
between a region and its complement, which show that
entanglement between adjoining spacetime regions is not
just large but UV divergent. In this talk, I will argue that
these results do not provide much information about the
entanglement between individual local degrees of freedom. I
will then present a way of quantifying such entanglement,
involving only a finite number of degrees of freedom, finite
regions of space, and quantities that are directly measurable.
I will summarize our understanding both in
(1+D)-dimensional Minkowski spacetime and de Sitter
spacetime, paying special attention to the consequences of
the latter in our ability to detect quantum effects from the
inflationary era.
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Motivation:

A surprising property of QFT
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The Reeh-Schlieder theorem I
Let ϕ̂ be a free scalar field in (1 + D)-Minkowski spacetime, and
H its Hilbert space

Consider field observables localized in spacetime:

ϕ̂F ≡
∫

d4x F (x)ϕ̂(x) Smeared field

with F (x) smooth and of compact support.
■ Fact (intuitively reasonable):

States of the form ϕ̂F1 ϕ̂F2 . . . ϕ̂Fn |0⟩ are sufficient to generate
the Hilbert space, H

■ Reeh-Schlieder thm. (intuitively not reasonable):

The previous statement remains true if the func-
tions Fi (x) are all restricted to be supported in an
arbitrarily small region of spacetime V
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Not surprised?

Graphic (and dramatic) example

Houston, we’ve got a problem
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Intuitive explanation: Entanglement

This behavior is reminiscent of something
well-known in Quantum Mechanics

Let HA and HB be Hilbert spaces of two systems, both of
dimension n. Any state in HA ⊗HB can be written as

|Ψ⟩ =
n∑

i=1

ci |i⟩A ⊗ |i⟩B , (Schmidt form)

with {|i⟩A}ni=1 and {|i⟩B}ni=1 bases in HA and HB

If ci ̸= 0 ∀i → |Ψ⟩ is fully entangled

If |Ψ⟩ is fully entangled, then

Any state in HA ⊗HB can be written as ÔA ⊗ ÎB |Ψ⟩
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Entanglement in QFT

Lesson from the Reeh-Schlieder Theorem:

Entanglement is ubiquitous in QFT

Viewpoint reinforced by calculations of entanglement entropy
between a region and its complement

Σt

Entanglement

B

A

■ The d.o.f. within A are entangled with those in B
■ Quantifier: Geometric entanglement entropy
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Entanglement in QFT

Lesson from the Reeh-Schlieder Theorem:

Entanglement is ubiquitous in QFT

Viewpoint reinforced by calculations of entanglement entropy
between a region and its complement

Σt

Entanglement

B

A
Sent →∞

Infinitely many d.o.f.

■ The d.o.f. within A are entangled with those in B
■ Quantifier: Geometric entanglement entropy
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Questions

Lesson from the Reeh-Schlieder Theorem:

Entanglement is ubiquitous in QFT

■ What does this statement mean in practice?
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Questions

Lesson from the Reeh-Schlieder Theorem:

Entanglement is ubiquitous in QFT

■ Entanglement is a property of a state AND a choice of
subsystems

(see, e.g., Agullo, Bonga, and Ribes Metidieri( 2022), JCAP)

Is there entanglement between ‘natural’ subsystems?
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A possible choice of subsystems in QFT I
f (x⃗)

A

Σt

f (x⃗): function of compact support within region A
(∼ sensitivity of a one-pixel detector)

Φ̂[f ] ≡
∫

d3x f (x⃗) ϕ̂(x⃗) Π̂[f ] ≡
∫

d3x f (x⃗) π̂(x⃗)[
Φ̂[f ], Π̂[f ]

]
= i

∫
d3x(f (x⃗))2 = i

(Φ̂[f ], Π̂[f ]) pair of canonically conju-
gate operators: System with 1 d.o.f.
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A possible choice of subsystems in QFT II

fB(x⃗)fA(x⃗)

A

B

Σt

Question:

Entanglement between (Φ̂[fA], Π̂[fA]) and (Φ̂[fB ], Π̂[fB ]) ?
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A possible choice of subsystems in QFT III

Σt

fi (x⃗)

Question:
Entanglement between A and B?
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How do we compute
entanglement?
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fA(x⃗)

A

Σt

(Φ̂[fA], Π̂[fA])

■ |0⟩ is a Gaussian state (with zero average)
■ (Φ̂[fA], Π̂[fA]) is a Gaussian subsystem −→ ρ̂red

A is a Gaussian
state

Therefore, ρ̂red
A is fully determined by its covariance matrix:

σred
A =

(
2 ⟨Φ̂2

A⟩ ⟨Φ̂AΠ̂A + Π̂AΦ̂A⟩
⟨Φ̂AΠ̂A + Π̂AΦ̂A⟩ 2 ⟨Π̂2

A⟩

)
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fB(x⃗)fA(x⃗)

A

B

Σt

Similarly, for 2 d.o.f.:

ρ̂red
AB ←→ σred

AB =

(
σred
A C
CT σred

B

)
detC < 0

■ ρ̂red
AB is always mixed→ The von Neumann entropy of ρ̂red

AB is
not a quantifier for the entanglement between A and B

■ We use Logarithmic Negativity (Log Neg)
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Log Neg

■ Faithful for systems of 1 vs N modes (pure and mixed)

■ EN > 0 is sufficient condition for entanglement

■ Easy to compute for Gaussian states

NA + NB

EN =

NA+NB∑
j

max{0,− log2 ν̃j} ,

with ν̃j are the symplectic
eigenvalues of σ̃

σ̃ = TσT , T = (⊕NA
i=1I2)⊕ (⊕NB

j=1σz)

■ Physical meaning:

Lower bound for Distillable entanglement
For Gaussian states ≡ Entanglement Cost.
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Family of functions of compact support

fδ(r , r0) = Aδ Θ

(
1− |r − r0|

R

)(
1−

(
r − r0
R

)2
)δ

, δ > 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0
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Results
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Entanglement between two
degrees of freedom
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Entanglement between 2 d.o.f.

A B
ρ = ∆x

R

R R

R |∆x⃗ |

A B

D = 1

D = 2

D = 3
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Entanglement between 2 d.o.f.

D = 1

D = 2

D = 3

...

Mass needed to regularize IR divergences
→ numerical results



Massless scalar field→ analytic results
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Entanglement between 2 d.o.f.: D = 1

(Φ̂A, Π̂A) (Φ̂B , Π̂B)

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0
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Entanglement between 2 d.o.f.: D = 1

(Φ̂A, Π̂A) (Φ̂B , Π̂B)

Mutual Information = Classical +
Quantum correlations

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Entanglement between 2 d.o.f.: D = 1

(Φ̂A, Π̂A) (Φ̂B , Π̂B)
µ ≡ mR

0.001 0.010 0.100 1 10 100
0.00

0.02

0.04

0.06

0.08

0.10
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Entanglement between 2 d.o.f.: D = 1

(Φ̂A, Π̂A) (Φ̂B , Π̂B)
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Entanglement between 2 d.o.f.: D = 2

(Φ̂A, Π̂A) (Φ̂B , Π̂B)
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Entanglement between 2 d.o.f.: D = 2

(Φ̂A, Π̂A) (Φ̂B , Π̂B)

But no entanglement for any value of δ!

Entanglement is more ‘sparse’ than in (1 + 1)-dimensions
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Entanglement between 2 d.o.f.: D = 3

(Φ̂A, Π̂A) (Φ̂B , Π̂B)
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Entanglement between 2 d.o.f.: D = 3

(Φ̂A, Π̂A) (Φ̂B , Π̂B)

2 4 6 8 10
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

23 / 41



Entanglement between 2 d.o.f.: D = 3

(Φ̂A, Π̂A) (Φ̂B , Π̂B)

But no entanglement for any value of δ!
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Other configurations
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Other configurations: D = 2

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8
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Other configurations: D = 2
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Other configurations: D = 3

When D = 3, entanglement is quite difficult to
find!
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Other configurations: D = 3

NA = 16

NB = 1
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Other configurations: D = 3

NA = 1088

NB = 1
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Other configurations: D = 3

NA = 1922

NB = 961
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Other calculations we have done

■ Different smearing functions for field and momentum

■ Non-positive smearing functions

■ Linear combinations of field and momentum

■ Other families of smearing functions

■ . . .

Entanglement is difficult to find!

31 / 41



Are we saying that there is no entanglement?

Absolutely not!

fB(x⃗)fA(x⃗)

A

B

Σt

Subsystem A: (Φ̂A, Π̂A)

Subsystem B: (Φ̂B , Π̂B)

Change of basis:

Φ̂′
1 = cosh(r) Φ̂A + sinh(r) Φ̂B Φ̂′

2 = cosh(r) Φ̂B + sinh(r) Φ̂A

Π̂′
1 = cosh(r) Π̂A − sinh(r) Π̂B Π̂′

2 = cosh(r) Π̂B − sinh(r) Π̂A

Subsystems (Φ̂′
1, Π̂

′
1) and (Φ̂′

2, Π̂
′
2) are entangled ∀r > rmin
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A

B

Σt

Subsystem A: (Φ̂A, Π̂A)

Subsystem B: (Φ̂B , Π̂B)

Non-Local!

Change of basis:
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Other configurations: D = 3

Here we find entanglement! But requires fine-tuning!
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Application:
Entanglement in the early

universe
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The early universe and Inflation

14 billion
years (Now)

Density perturba-
tions generate all
cosmic structures

CMB
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The early universe and Inflation

■ Can we test the QUANTUM ORIGIN of the cosmological
density perturbations at the end of inflation?

■ Same strategy as in Minkowski spacetime

■ Toy model: scalar field in de Sitter spacetime
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Entanglement in de Sitter spacetime I

■ 2 degrees of freedom in (1+3)-dimensional de Sitter
spacetime (Poincaré patch)

■ More correlations

■ Calculation more subtle due to the IR divergences!

■ One can show that the Log Neg is finite and independent of
the regulator

We find no entanglement for any of the functions fδ!
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Entanglement in de Sitter spacetime II

ν̃dS
− =

√
(ν̃Mink

− )2 + Fscale inv ,

20 40 60 80 100
0.0

0.5

1.0

1.5
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Conclusions
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Conclusions

■ Entanglement is there, but it is distributed in a subtle
manner

■ It can be found by either:

(i) Involving infinitely many d.o.f. (experimentally impossible)

(ii) Carefully selecting the d.o.f. (experimentally difficult)

■ Harder to find with increasing spacetime dimension

■ In de Sitter spacetime we find more correlations, but they
do not contain entanglement
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Thank you very much
for your attention!

Questions?

Want more details?
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Back-up slides
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The Reeh-Schlieder Theorem
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The Reeh-Schlieder Theorem

The Reeh-Schlieder theorem states that one can generate the
full Hilbert space of a free QFT, H0, by restricting attention to
the set of smearing functions compactly supported in an
arbitrary small open set V ⊂ Σ, and a corresponding small
neighborhood UV of V in spacetime.

Violation of causality?

Back to QM and fully entangled states: If |Ψ⟩ is fully entangled,
any state in HA ⊗HB can be written as ÔA ⊗ ÎB |Ψ⟩.

There is no violation of causality because, if we restrict ÔA to be
unitary, then

⟨Ψ|(Û†
A ⊗ ÎB)ÔB(ÛA ⊗ ÎB)|Ψ⟩ = ⟨Ψ|ÔB Û

†
AUA)|Ψ⟩ = ⟨Ψ|ÔB |Ψ⟩

True for all operators ÔB
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How do we compute stuff?
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The von Neumann entropy of Gaussian states

S(ρ̂|A) = −Tr(ρ̂|A log2 ρ̂|A) =
N∑
i=1

f (νi ) ,

where

f (ν) =
ν + 1

2
log2

(
ν + 1

2

)
− ν − 1

2
log2

(
ν − 1

2

)
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Mutual Information

■ 2 smeared degrees of freedom

I(A,B) = S(ρ̂
(A)
N=1) + S(ρ̂

(B)
N=1)− S(ρ̂N=2) ,

where

■ S(ρ̂) is the von Neumann entropy

■ ρ̂
(A)
N=1 is the reduced density matrix of the first degree of

freedom
■ ρ̂

(B)
N=1 is the reduced density matrix of the second degree of

freedom
■ ρ̂N=2 is the total density matrix.
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The covariance matrix

■ The covariance matrix: σ = Tr[{(r̂ − ⟨r̂⟩), (r̂ − ⟨r̂⟩)T}ρ̂]
■ For 2 ‘smeared’ d.o.f.’s in Minkowski spacetime:

σ = 2


⟨Φ̂2

1⟩ 0 ⟨{Φ̂1, Φ̂2}⟩ 0
0 ⟨Π̂2

1⟩ 0 ⟨{Π̂1, Π̂2}⟩
⟨{Φ̂1, Φ̂2}⟩ 0 ⟨Φ̂2

2⟩ 0
0 ⟨{Π̂1, Π̂2}⟩ 0 ⟨Π̂2

2⟩

 ,

■ The symplectic eigenvalues are the (absolute value of the)
eigenvalues of the matrix i Ωσ, where Ω is the symplectic
form

■ In this case Ω =

(
0 1
−1 0

)
. If ⟨Φ̂2

1⟩ = ⟨Φ̂2
2⟩ = ⟨Φ̂2⟩

ν± = 2
√

(⟨Φ̂2⟩ ± ⟨{Φ̂1, Φ̂2}⟩)(⟨Π̂2⟩ ± ⟨{Π̂1, Π̂2}⟩) ≥ 1
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The partially transposed covariance matrix

■ In the previous example, the partially transposed
covariance matrix is

σ̃ = 2


⟨Φ̂2

1⟩ 0 ⟨{Φ̂1, Φ̂2}⟩ 0
0 ⟨Π̂2

1⟩ 0 −⟨{Π̂1, Π̂2}⟩
⟨{Φ̂1, Φ̂2}⟩ 0 ⟨Φ̂2

2⟩ 0
0 −⟨{Π̂1, Π̂2}⟩ 0 ⟨Π̂2

2⟩

 .

■ The symplectic eigenvalues of σ̃ are given by

ν̃± = 2
√

(⟨Φ̂2⟩ ± ⟨{Φ̂1, Φ̂2}⟩)(⟨Π̂2⟩ ∓ ⟨{Π̂1, Π̂2}⟩)
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Analytical expressions

σ = 2N2
δ


J (−1, δ, µ) 0 L(−1, δ, µ, ρ) 0

0 J (1, δ, µ) 0 L(1, δ, µ, ρ)
L(−1, δ, µ, ρ) 0 J (−1, δ, µ) 0

0 L(1, δ, µ, ρ) 0 J (1, δ, µ)

 ,

where N2
δ = RD 22δΓ(1+D/2+2δ)Γ(1+δ)2

Γ(1+2δ)Γ(D/2) . If D > 1,

J (λ, δ, µ = 0) = R−(D+λ) Γ(1 + 2δ − λ)Γ
(
D+λ

2

)
21+2δ−λΓ

(
1 + δ − λ

2

)2
Γ
(
1 + 2δ + D−λ

2

) ,
and

L(λ, δ, µ = 0, ρij) = R−(D+λ)ρ−(D+λ) Γ(D/2)Γ
(
D+λ

2

)
21+2δ−λΓ

(
D
2 + 1 + δ

)2
Γ
(
−λ

2

)
× 3F2

(
1 +

λ

2
,
D + λ

2
,
D + 1

2
+ δ;

D

2
+ 1 + δ,D + 1 + 2δ;

4
ρ2
ij

)
.
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Entanglement decreases with D

Consider a single degree of freedom. The symplectic eigenvalue
is given by

ν =

Γ(δ + 1)2Γ
(
D
2 + 2δ + 1

)√ Γ(D−1
2 )Γ(D+1

2 )Γ(2δ)Γ(2δ+2)
Γ( 1

2 (D+4δ+1))Γ( 1
2 (D+4δ+3))

Γ
(
D
2

)
Γ
(
δ + 1

2

)
Γ
(
δ + 3

2

)
Γ(2δ + 1)

,

We study the behavior of ν in the smooth limit δ →∞ in a
spacetime with D →∞:

lim
D→∞

(
lim
δ→∞

ν2
)

= lim
D→∞

Γ
(
D−1

2

)
Γ
(
D+1

2

)
Γ
(
D
2

)2 = 1

lim
δ→∞

(
lim

D→∞
ν2
)

= lim
δ→∞

Γ(2δ)Γ(δ + 1)4Γ(2δ + 2)

Γ
(
δ + 1

2

)2
Γ
(
δ + 3

2

)2
Γ(2δ + 1)2

= 1 .
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δ-dependence
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Entanglement in the early
universe
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The CMB

■ The CMB: Cosmic Microwave Background
■ Thermal black body spectrum at a temperature T = 2.73 K
■ Small inhomogeneities: ∆T/T ∼ 10−5

13 / 23



Obse
rv

atio
ns

Theor
y

Density
perturbations

Cosmic structures
from QUANTUM
fluctuations

14 / 23



Obse
rv

atio
ns

Theor
y

Density
perturbations

Quantum what?
All we need is classi-
cal physics...
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Questions to answer:

■ What are the genuinely quantum features in the primordial
perturbations at the end of inflation?

■ Why does the CMB look so classical?

■ Is there a way to test the quantum origin of the primordial
perturbations?
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(Φ̂[pixel1], Π̂[pixel1]) (Φ̂[pixel2], Π̂[pixel2])

(Bi-partite) Entanglement in real space in QFT?1

1 Martin and Vennin( 2021), JCAP; Espinosa-Portalés and Vennin( 2022), JCAP
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