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LIGHT-CONE THERMODYNAMICS

The conformal group is isomorphic to SO(5,1).

Any generator  defines a Conformal Killing Field 
such that

ξ

Light-cones in 4D Minkowski spacetime are 
conformal Killing horizons

T De Lorenzo and A Perez. Light Cone Thermodynamics. 
Phys. Rev. D, 97(4):044052, 2018 

ℒξημν =
ψ
2

ημν,

ψ = ∇μξμ

2

ξ CKF



LIGHT-CONE THERMODYNAMICS
The only generators that don’t contain angular 
components are

T De Lorenzo and A Perez. Light Cone Thermodynamics. 
Phys. Rev. D, 97(4):044052, 2018 

D = r∂r + t∂t

P0 = ∂t

K0 = − 2tD − (r2 − t2)P0

The most general radial MCKF is

ξ = − aK0 + bD + cP0

= (av2 + bv + c)∂v + (au2 + bu + c)∂u u = t − r, v = t + r
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LIGHT-CONE THERMODYNAMICS

T De Lorenzo and A Perez. Light Cone Thermodynamics. 
Phys. Rev. D, 97(4):044052, 2018 

The norm of ξ = (av2 + bv + c)∂v + (au2 + bu + c)∂u

is given by ξ ⋅ ξ = − (av2 + bv + c)(au2 + bu + c)

It’s null along the light cones defined by
u = u± =

−b ± b2 − 4ac
2a

,

v = v± = u±

 vanishes at the intersection of ξ u = u−, v = v+

rH :=
v+ − u−

2
=

b2 − 4ac
2a

tH := −
b

2a
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THE CAUSAL STRUCTURE OF ξ



LIGHT-CONE THERMODYNAMICS

T De Lorenzo and A Perez. Light Cone Thermodynamics. 
Phys. Rev. D, 97(4):044052, 2018 

•  defines two Conformal Killing Horizons at the past 
and future light cones of 

• Each horizon has constant (conformally invariant) 
surface gravity defined via 

• Events in spacetime are separated as in a spherical 
charged black hole, also in the extremal case.

• The topology of the horizons is 

ξ
O± = (t = v±, r = 0)

∇μ(ξ ⋅ ξ)=̂ − 2κημνξν

S2 ⊗ ℝ

O+

O−

I II
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Martinetti, Rovelli (2003)
Kay, Wald (1991)

Hislop, Longo (1982)
Jacobson, Visser (2022)



LAWS OF LIGHT-CONE THERMODYNAMICS
 from T De Lorenzo, A Perez (2018) 

1. under conformally-invariant matter 
perturbations 

2.

3. extremal radial MCKFs have vanishing 
“temperature” and vanishing “entropy”

δM =
κ

2π
δA
4

+ δM∞

δA ≥ 0

0.   constant surface gravity                    
.     on the conformal Killing horizon

κ

M := ∫Σ
TμνξμdΣν
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𝒥+ 𝒥+
δA δA

δM

δM∞δM∞



LIGHT-CONE THERMODYNAMICS

T De Lorenzo and A Perez. Light Cone Thermodynamics. 
Phys. Rev. D, 97(4):044052, 2018 

• The integral lines of  correspond to observers 
accelerating radially with constant 

• The temperature measured by an Unruh-DeWitt detector 
(which breaks conformal invariance) will be .

• To detect the temperature , a scale invariant detector 
should be built. Its interest rely rather on global features 
than local measurements.

ξ
a = κ

r

rH ξμξμ

a/2π

κ

O+

O−

I II
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LIGHT-CONE THERMODYNAMICS

how to characterize positive frequency solutions of the 
KG equation with respect to inertial time on a light cone?

decomposition of the Minkowski vacuum
A Perez, SR 2023

Goal: writing the Minkowski vacuum  as a superposition of 

particle states associated to  

0⟩
M

ξ

□ Φ =
1
−g

∂μ ( −ggμν∂ν) Φ = 0

= (−
∂2

∂t2
+

1
r2

∂
∂r (r2 ∂

∂r ) +
1

r2 sin θ
∂
∂θ (sin θ

∂
∂θ ) +

1
r2 sin2 θ

∂2

∂φ2 ) Φ(x)
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Unruh 1976



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Φ(x) = e−iωtYℓm(θ, φ)Rℓ(r)

(ω2 +
∂2

∂r2
+

2
r

∂
r

−
ℓ(ℓ + 1)

r2 ) Rℓ = 0KG equation:

Rℓ(r) = jℓ(ωr)
solved by the spherical Bessel functions 

Solutions are completely characterized in the union of 
the past and future light cone.
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Φ = e−iω( v + rH
2 )Yℓm jℓ (ω

v − rH

2 ),

By means of a coordinate transformation we can set ,   b = 0 v± := ± rH

Φ(x) = e−iωtYℓm(θ, φ)jℓ(ωr) t =
v + u

2
, r =

v − u
2

u = rH

v = rH

at u = rH, v > rH

Φ = e−iω( u + rH
2 )Yℓm jℓ (ω

rH − u
2 ),at v = rH, u < rH

which can be written in terms of a single variable which 
covers the whole real line.
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Φ = e−iω( z + v+
2 )Yℓm jℓ (ω

z − v+

2 ),

u = rH

v = rH

In terms of a single null variable  spanning from  to , 
solutions of the KG equation take the form

z −∞ +∞
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 is analytic. We want to characterize  solutions. 
Let us look where they are bounded. For large  :
Φ ω > 0

z



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Φ ≈ e−iω( z + rH
2 )Yℓm sin (ω

z − rH

2
−

ℓπ
2 )/(ω (z − rH)),

u = rH

v = rH

 is analytic. We want to characterise  solutions. 
Let us look where they are bounded. For large  :
Φ ω > 0

z

= Yℓm
A

z − rH
e−iωz

bounded for  Im(z) < 0

 solutions are analytic functions of  bounded  in the 
lower-half complex plane 

ω > 0 z
Im(z)
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

t =
rH sinh(κτ)

cosh(κρ) − cosh(κτ)

u = rH

v = rH

Consider this coordinate transformation 

What are the positive-frequency solutions associated to  ?ξ

r = −
rH sinh(κρ)

cosh(κρ) − cosh(κτ)

u = − rH coth ( κũ
2 )

v = − rH coth ( κṽ
2 )

ds2
M = ΩII(τ, ρ)(−dτ2 + dρ2 + κ−2 sinh2(κρ)dS2)

I II
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

u = rH

v = rH

ds2
M = ΩII(τ, ρ)(−dτ2 + dρ2 + κ−2 sinh2(κρ)dS2)

I II

Under a conformal transformation  ,

solutions of  are mapped via .

gμν → g′ μν = C2gμν

( □ −
1
6

R) Φ = 0 Φ → C−1Φ

Qωℓm = e−iωτYℓm
Rωℓ±(ρ)
sinh(κρ)

We look for solutions in the 
conformal metric. 

The solution takes the form: 
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

u = rH

v = rH

I II

Qωℓm = e−iωτYℓm
Rωℓ±(ρ)
sinh(κρ)

KG equation: ( ∂2

∂ρ2
+ ω2 −

ℓ(ℓ + 1)κ2

sinh2(κρ) ) Rωℓ±(ρ) = 0

Near the past boundary of region II ( )  and the 
effective potential vanishes. Thus

v = rH ρ → + ∞

Qωℓm = e−iω(τ ± ρ) Yℓm

sinh(κρ)
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LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

u = rH

v = rH

I II
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Φωℓm
II = Ω−1

II Qωℓm =
1
r

Yℓme−iω(τ − ρ)

=
1

rH − u
Yℓme−i ω

κ log( u − rH
u + rH )

studying solutions near the light cone in 
region  (and ) givesII III

Similarly 

Φωℓm
I =

1
rH − u

Yℓme−i ω
κ log( rH + u

rH − u ) at v = rH

u = − rH coth ( κũ
2 )



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

u = rH

v = rH

I II
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Φωℓm
II =

1
rH − z

Yℓme−i ω
κ log( z − rH

z + rH )

Φωℓm
I =

1
rH − z

Yℓme−i ω
κ log( rH + z

rH − z )

z < − rH, z > rH

−rH < z < rH

Fω =
1

rH − z
e−i ω

κ log( z − rH
z + rH )evaluate the complex function 

at  z = x − iϵ, ϵ > 0



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Fω =
1

rH − x + iϵ
e−i ω

κ log( x − rH − iϵ
x + rH + iϵ )
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for  we get −rH < x < rH

log ( x − rH − iϵ
x + rH − iϵ ) = log ( rH − x − iϵ

x + rH − iϵ
e−i(π − 𝒪(ϵ))) = log ( rH − x − iϵ

x + rH − iϵ ) − iπ

Fω ≈
e− πω

κ

rH − x
e−i ω

κ log( x − rH
x + rH ) = e− πω

κ Φω
I

−rH rH

x − iϵ



LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

A Perez, SR 2023

Fω = Φω
II + e− πω

κ Φω
I

similarly

u = rH

v = rH

I II

III

F′ ω = Φω
I + e− πω

κ Φω
II

are analytic and bounded in the 
lower-half plane in terms of the 
Minkowski coordinate, thus positive 
frequency solutions.

(aIIω + e− πω
κ a†

Iω) 0⟩
M

= 0, (aIω + e− πω
κ a†

IIω) 0⟩
M

= 0

0⟩
M

= ∏
ωℓm (∑

n

e− nπωi
κ n, ω, ℓ, m⟩

I
⊗ n, ω, ℓ, m⟩

II)
19

Fulling 1973, Davies 1975, Unruh 1976
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u = rH

v = rH

I II

III
0⟩

M
= ∏

ωℓm (∑
n

e− nπωi
κ n, ω, ℓ, m⟩

I
⊗ n, ω, ℓ, m⟩

II)

LIGHT-CONE THERMODYNAMICS
decomposition of the Minkowski vacuum

In writing the previous result it was crucial to identify the Hilbert 
space in region III with the one corresponding to the modes in 
region II crossing the future horizon. The identification comes 
from the analysis of the solutions in the two null boundaries. 
The result as written without considering the identification is

0⟩
M

= ∏
ωℓm (∑

n

e− nπωi
κ n, ω, ℓ, m⟩

I
⊗ ( n, ω, ℓ, m⟩

IIout
⊕ n, ω, ℓ, m⟩

III))



PERSPECTIVES 
• the laws of Light-cone thermodynamics can be 

extended to any conformally flat spacetime. In some 
of these (Fröb 2023) we can expect a similar 
decomposition to take place.

• the temperature and entropy of conformal horizons 
are used (Alonso-Serrano, Liška 2023) to get Weyl-
Transverse gravity using a local thermodynamic 
approach (Jacobson 1995). They evoke that non-
conformal matter can be used to source the 
cosmological constant (Perez, Sudarsky, Bjorken 
2018). Quantifying the “violation” of light-cone 
thermodynamics by non-conformal matter may give 
insights on the subject. 
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H

causal diamond in the static patch of 
deSitter spacetime. The boundary  is 
the cosmological horizon. In blue the 
trajectories of the CKF. (Jacobson, Visser 2019)

H



PERSPECTIVES 
• In Wald(2019), Tomitsuka Yamaguchi Hotta(2019) 

moving mirrors in 1+1 Dimensions have been 
studied as a model for Hawking radiation purified 
without energy cost. In solving the problem, it is 
crucial to know the analytic form of the trajectories 
of Rindler observers. Despite the loss of simplicity 
going from 1+1D to 3+1D QFT, it is worth trying a 
generalisation of the previous models to spherically 
symmetric trajectories in light.

• Works by Arzano (2020,2023) show that this 
conformal temperature can be found in the context 
of conformal quantum mechanics, suggesting some 
sort of relation.
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Trajectory of a moving mirror emitting 
radiation in Minkowski spacetime.



PERSPECTIVES 

• In the context of measurements in quantum field 
theory, the algebra of observables related to 
apparatuses has compact support in regions of 
spacetime with the same features as causal diamonds. 
Studying the problem in light of these results may 
help making a significant step.
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• Angular momentum?
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