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Finite & Quantum

Holography from non-perturbative Quantum Gravity ?
Finite (v. asymptotic) boundaries

Quantum (v. classical) boundary conditions

Questions
- What are the dual degrees of freedom?
- What is their dynamics?
- How does it compare with “standard” holography?
- And to (semi)classical computations
e.g. Hamilton-Jacobi for linearized GR, Regge calculus [pittrich et al]




... 1IN 3d

We need a nonperturbative theory of Quantum Gravity

And in 3d (Euclidean, A=0) we have one: the Ponzano-Regge model
It is under mathematical control
it provides a clear picture of quantum geometry

it has an exact realization of quantum diffeomorphism symmetry
(in the bulk: not at the boundary!)

it is topological (no bulk-local dof)

Talk (mostly) based on:

Dittrich, Goeller, Livine, AR “Quasi-local holographic dualities in non-perturbative 3d quantum gravity” series (NPB, CQG 2018)
AR "Quantum edge modes in 3d gravity and 2+1d topological phases of matter" PRD 2018

Goeller, Livine, AR "Non-Perturbative 3D Quantum Gravity: Quantum Boundary States & Exact Partition Function” to appear
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Take home messages

3d QG is the ideal framework to investigate boundaries and holography in QG
We have full control of the theory at the quantum/classical/geometric/finite/asymptotic levels

|deal testbed to try and test ideas about holography, edge modes, continuum v. classical limit
(renormalization, criticality, etc...)

Possibility to use tools and insights from other fields
E.g. AdS/CFT, spin chains, 2d stat models, integrability, condensed matter...

First...

- derivation of holographic duality from non-perturbative g-Gravity/q-Geometry model
- computation of extended spinfoam amplitude (check e.g. orientation “problem?)
- matching of a QG computation with a QFT one
+ proposal for nonperturbative QG effects/corrections
(winding numbers ~ curvature resonances)

A lot to do, to clarify, and to play with!



Soundaries

Part of a larger project: understand quasilocal dof of gauge theories & gravities

Setup: consider finite & bounded regions, and how gauge & diffeos interact with boundaries

Advertisement: in the symplectic context, | have been developing new tools for YM theory:
many new results on factorization/gluing of YM dof, symmetries, and SSS [1]
and on the fate of symmetries in the asymptotic limit [2]

This is not only my interest!

Boundaries are alive and well in the LQG community (already 2 other ILQGS this year)...
[Bodendorfer, Corichi, Dittrich, Freidel, Geiller, Livine, Perez, Pranzetti, Wieland ... ]

...as well as in the larger theoretical/mathematical physics community!
[holography, asymptotic symmetries, condensed matter, entanglement entropy, extended tqft, BV-BFV, ... ]

[1] Gomes & AR, “The quasilocal degrees of freedom of Yang-Mills theory” arXiv:1910.04222
[2] AR, “Soft charges from the geometry of field space” arXiv:1904.07410
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A quick review of

3d gravity

— First order  _ SU(2) BF
SEC [67 w] /M tr (6 A F[w]) 3d gravity topological field theory
EoM: flatness Flwl=dw+wAw=0 w =g~ ldg orshel
) e — g_l(d )\) g (trivial topology)

torsion-freeness T|w,e] =de4+wAe =0

Pullback of EOM on a Cauchy hypersurface gives the constraints

5)\6 = dw)\

flatness —P BF shift symmetry { 5 0
AW =

. (1 7 5
torsion-freeness =P “Lorentz” symmetry {
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Drinfel’d-double sym
[1] E.g.

Meusburger, Noui, “The Hilbert space of 3d gravity: quantum group symmetries and observables”, ATMP 14 (2010)
Delcamp, Dittrich, AR “Fusion basis for lattice gauge theory and loop quantum gravity", JHEP 02 (2016)
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Holographic setup

Spin-network state
(on-shell depends

only on edge states)
4=  Final state |¢¢) [to be idenified #1]

C = 0%

RN

\\\ I

Quantum A ><)\ Spin-network that
boundary conditions < - >2 fixes quantum
Vi \\\<// boundary metric

\\ [to be chosen #2]

B N

AN

= |nitial state |¢;)

Ponzano-Regge dynamics defines
<¢f‘ £ [’ PR [wB] | ¢1> —  3d QG transition amplitudes at

fixed (quantum) boundary conditions




I_\_S

Holographic setup

|dentify initial and final states up to a twist y
[curvature around non contractible cycle]

Thermal/torus partition function
[to be computed #3]
9 compare to semiclassical/continuous results

ZerlYp,7] = > _(¢|RNWer[¢5]|¢)
¢

Holographic dual theory? [to be determined #4]
l.e. can we interpret this amplitude as the partition
function for the edge dof on a certain background?

Dge—iSGR—3d[9] £ /nge—iSzd[Cﬂh]

gonm=h



Some results [a very incomplete list]

Brown, Henneaux 86 : weaken AdS3 b.c. to obtain Virasoro sym at scti
Banados et al 90s : BTZ + applications of Chern-Simons / WZW
AdS3 Carlip 05 : identifies normal diffeos at scri as boundary dof
N<O Maloney, Witten 07 : compute partition function via rep. theory
Giombi, Maloney, Yin 08 : compute partition function @ 1-loop from GR
Cotler, Jensen 19: new interpretation of boundary dof + Schwarzian action;
and resolution of some puzzle in Maloney-Witten
(on modular invariance)

[+ many many others] Interesting parallels
’ ! and differences

Oblak 15 : Characters of BMS3 = flat limit of Virasoro
Barnich et al 15 : compute partition function @ 1-loop from GR
Bonzom, Dittrich 15 : compute partition function @ 1-loop in quantum
Regge calculus: agreement modulo discrete truncation
Dittrich, Goeller, Livine, AR 17-19 : quantum PR computations & dualities
- - AR 17 : quantum edge states for PR, dualities & 3d QG symmetries
Minkowskis Castro, Dittrich 19 : point particles leads to massive BMS3 character
N=0 Asante, Dittrich, Hopfmuller 19 : linearized HJ theory for general boundaries
Asante, Haggard, Dittrich 18 : “flat-Regge” (KBF) generalization to 4d
AR, Artigas-Guimarey 19 : PR with Wilson-line observables [wip]
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Balachandran, Chandar, Momen, NPB 461 (1996);

Donnelly, PRD 77 (2008); Donnelly, Freidel JHEP 09 (2016);
Casini, Huerta, Rosabal PRD 89 (2014);

Delcamp, Dittrich, AR JHEP 11 (2016); AR, PRD 98 (2018)

Kinematic states

Dark blue = cellular decomposition A of hypersurface 2

Light blue = Poincaré dual graph [ (spin-network)

X

0

)3 ¢(gr) = ¢(uflggu5) bulk

®
|
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Dark blue = cellular decomposition A of hypersurface 2
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—9

)3 ¢(gr) = ¢(ut_19gu5) bulk

Boundary breaks gauge

‘ need for “compensating” fields:
Carlip’s “would-be-gauge” dofs, or “edge modes”

@- —0— —1 —1
C =0X ¢(g€;gna) — Qb(ut Jrs, una g’na)

>

RMK this choice of compensating fields, focuses on Lorentz symmetry
it corresponds to the “electric center” prescription of CHR14

1

4




Kinematic states

Plancharel develop over Spin-network basis = “Group Fourier transform”
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Kinematic states

Plancharel develop over Spin-network basis = “Group Fourier transform”
670 (g0, g E G0 (Goy Iny 10, o ( ® I ® D7 ()P QD' (0,,,) mna)
4 .]E 7mn8 A no A
| |
Y bulk " bulk
bulk spin %4 intertwiner o holonomy boundary field
= g. bulk metric® « e = boundary Lorentz
: MY e - reference frame
lboundary spin . '¢ =" -
— | i ‘ '
= induced g. metric ! o’ Analogous to WZW.
at the boundary 1 ! e field in CS
[superselected] o ——9 ¢
~ ~ 4 |}
o L} Z
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Kinematic states

Soundary dof

group elements develop over Spin-network basis = “Group Fourier transform”
as boundary dof
. . .
O (005 0..) = D67 (ies Ly 71, Yo ® I ® DI (0P @D ()™ )
no

.]Eamna

Partial Fouri 77 117
T == @0 (e m) = 70 (0,60,

4 4 .
.. spinors
: B oS boundary dof
magnetic indices P ° 1
as boundary dof Qg ¢
' >

) 3

2%




Kinematic states

Soundary dof - summary

group elements magnetic indices spinors
as boundary dof as boundary dof as boundary dof

DN gy 00,) — @0 N g, ) > 000,60 )

in analogy with: ~ WZW ~ Wieland
Nwie ~ J&
O

The induced (quantum) boundary D The boundary dof geometrically
metric is externally given represent the orientation of the
(superselected) x reference frame at/orientation of

the boundary (~extrinsic curvature)
Mathematically, it is encoded
in the boundary spins 4 Mathematically, this is encoded

either in a group element,
a spinor, or a magnetic index




Kinematic states

Boundary dof - summary
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as boundary dof as boundary dof as boundary dof

G (g0y00) — @ (g m,) > 0 (90, 60)

in analogy with: ~ WZW ~ Wieland
Nwie ~ J&

The induced (quantum) boundary D The boundary dof geometrically

metric is externally given represent the orientation of the
(superselected) reference frame at/orientation of
the boundary (~extrinsic curvature)
Mathematically, it is encoded
in the boundary spins Mathematically, this is encoded

either in a group element,

a spinor, or a magnetic index




Part [l - Boundary dynamics

Guido Scarabottolo



From bulk to boundary dynamics

(ol Werlei) = > [ [(=1)%= (24 + 1) | [{64} 01 (75) i ()

{J} e tets

-/ dgHé(ng)cbf )éi(g))

(Almost) trivial bulk dynamics:
PR dynamics projects onto flat states




From bulk to boundary dynamics

=TI (250 + 1) T[{65} 7 (35) di(45)

{J} e tets

/ dgH(S(ng)cbf )éi(g))

(Almost) trivial bulk dynamics:
PR dynamics projects onto flat states

5 How to treat the

“time-like” boundary?




From bulk to boundary dynamics

Simply: impose quantum boundary conditions
by means of a boundary “state”

(0F2 \¢\
\\><)\>
> \<‘\< % >
RN
1) B\\‘
N




From bulk to boundary dynamics

(Gl Wer[vn]l) = > /dQH5 H9£)¢f (90, 17) 0595 5 171051715 (gpy, 1101)
{mo} f

Simply: impose quantum boundary conditions
; § by means of a boundary “state”

s =
- §.




From bulk to boundary dynamics

@iWenlo o) = 3 [ dg]]s (TToe) 6755, 15058, 5 1) g )
{ma} f

- = 2 G (L)
Trivial {ma} -

Simply: impose quantum boundary conditions
by means of a boundary “state”

Topology




Soundary spin-chain

Y B is a spin-network state, i.e. fixed boundary spins = fixed intrinsic metric

_— ~—_
// ~
magnetic — — B
index \ >< ,
Evolution
\<<
N T
- //
boundary
intertwiner

(Pt Wer[vn]l i) = Z ¢f (1 maWB(l maama)¢1(1 ma)
{mo} - a2

Recall : initial state is an edge state for the magnetic indices m
Thus, edge states are states of a spin-chain

One layer of boundary evolution (as prescribed by boundary state) = spin-chain transfer matrix




1/2 Boundary Spins

If all boundary spins are 1/2, the dual theory is given by the following integrable system:
Heisenberg spin chain [1d QM] isotropic H. spin chain

HXXZ = —— Z ( n n—|—1 —|—O'n0'n_|_1 -+ AO‘nO',,H_l)

I

6-vertex model [2d Stat Mech]

1

N \ A

< < <
« « «

- N - + .

A
Y
Y
Y
A

Y

Vertex type # with Boltzmann weight a, b, ¢ ; model is said stochastic if "\

intertwiner space

®4
REMARK: there are many techniques to study continuum limits of these models (1/2)" s 20

[see e.g. Reshetikhin & Sridhar 2016] == NeW tools to study large-spin v. many spins?




Boundary Face-Vertex duality from 3d QG

<




Boundary Face-Vertex duality from 3d QG

1. Boundary dynamics from
spin-network evaluation
~ fiel
[ m ~ Lorentz symmetry compensator fields | Z
mo

>‘ L?’na...

Spin-chain model // Vertex model

[ boundary spins j = background |




Boundary Face-Vertex duality from 3d QG

1. Boundary dynamics from
spin-network evaluation
~ fiel
[ m ~ Lorentz symmetry compensator fields | Z
mo

>‘ L?’na...

2. Boundary dynamics from
boundary delta functions +
integration over h's

Spin-chain model // Vertex model

[ boundary spins j = background |




Boundary Face-Vertex duality from 3d QG

[ boundary spins j = background |

Spin-chain model // Vertex model

[ m ~ Lorentz symmetry compensator fields |

. Boundary dynamics from

spin-network evaluation

- Z
ma
VAR

. Boundary dynamics from

boundary delta functions +
integration over h's

RS

A 2 / dhe,
5(ﬁhea>

\
1

. Peter-Weyl over deltas




Boundary Face-Vertex duality from 3d QG

[ boundary spins j = background |

Spin-chain model // Vertex model

[ m ~ Lorentz symmetry compensator fields ]

. Boundary dynamics from

spin-network evaluation

- Z
ma
VAR

. Boundary dynamics from
boundary delta functions +
integration over h's

. Integrate over h’s (recoupling)

N> J1 JQ J:s
N Ji1 J2 J3




Boundary Face-Vertex duality from 3d QG

[ boundary spins j = background |

Spin-chain model // Vertex model

[ m ~ Lorentz symmetry compensator fields ]

Interaction Round Face model

[ J ~ shift symmetry compensator fields |

1.

5

Boundary dynamics from
spin-network evaluation

- Z
ma
VAR

Boundary dynamics from
boundary delta functions +
integration over h's

Integrate over h’s (recoupling)

N> J1 JQ J:s
N Ji1 J2 J3

. Sum over face spins J




Boundary Face-Vertex duality from 3d QG

1. Boundary dynamics from
spin-network evaluation
~ fiel
[ m ~ Lorentz symmetry compensator fields | Z
mo

>‘ L?’na...

WerYB] = ¥5(1) = ZHL’"@”'

my v

Spin-chain model // Vertex model

Werl|¥B] = > g5,y Ly WylJ17,1]

4. Integrate over h’s (recoupling)

[ boundary spins j = background |

. - Ji Ja J3
J— \
Wf[‘]‘]ﬂ’] T \ ,/ { jl j2 j3 }
Interaction Round Face model 5. Sum over face spins J

[J ~ shift symmetry compensator fields ] >
Ja
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Geometric Interpretation of the Face model

We know that m’s = (quantized) Lorentz frames. What is the interpretation of the J’s ?

We obtained the J’s by “Fourier-transforming” the boundary spin-network evaluation

‘conjugate” symmetries

=P Dual theory in terms of shift symmetry compensating field (Poisson-Lie)
[Lorentz and shift sums are “conjugate ~ Drinfel’d double sym of 3d QG] G = T*SU(2)

Geometrically, J ~ distance of boundary vertex from fiducial “bulk central point”

=P quantum version of Carlip’s would-be-diffeos as boundary dof
Semiclassical analysis in terms of the J’s was performed by Dittrich & Bonzom (2016) through g-Regge calculus
Mutatis mutandis, results are compatible with Carlip’s analysis (Liouville-like boundary theory)

Also: generalizations to flat sector of 4d gravity (Regge-KBF model) gives similar results [Asante, Dittrich, Haggard 2018]
Also: in continuum, Hamilton-dacobi analysis for 3d gravity with arbitrary finite boundaries [Asante, Dittrich, Hopfmuiller 2019]
here, they consider also geodetic distance (rather than mere coordinate distance) —> same language as for AdS3/CFT2
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Other boundary states

Which other boundary states could be interesting to look at?
[For simplicity, we will restrict attention to quadrangulation of boundary]

For fixed spins | > 1/2, large choice of boundary intertwiners !

E.g. for semiclassical analysis we can use LS (semi-)coherent states

But we can also introduce superpositions of spins :

E.g. nice states closely related to spin-network generating functions (Poisson spin distribution)
[Freidel, Hnybida JMP 13; Bonzom, Livine CQG 13; Bonzom, Costantino, Livine CQG 15; also Dittrich, Hnybida 13]
Known to be closely related to Ising model on planar trivalent graphs [more generally?]
Nice geometric interpretation [global scale invariance]
Exactly computable! [Gaussian when expressed in terms of spinors]
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Ponzano-Regge

Thermal partition function

ZPR[v,DB,’y] = Z<¢|R[’Y]WPR[¢B]|¢> <€— Glueinitial and final state

— d Y (hoaoive = 1. Rpeoin . — . Because of gauge invariance,
/ ng( t¢ring ) [PEering g) gluing defined up to gauge transf. g

Coupling of boundary theory
New boundary state defined to bulk dof

by “closing” ¥B into a torus
with a twist y




Gluing the cylinder: the spin chain perspective

ZPR[wBafy] — /dg wg(hﬁgring — 17 hﬁEring — g) = tr (UNWTNt PSzO)

Insertion of Haar’s intertwiner
= Haar projector Angle twist =  Transfer-matrix projects the spin chain’s

translation by evolution edge state onto
Boundary state Ny steps its O-Spin sector

Coupling to bulk dof

g (1,mb, mb)

Remark: coupling to g breaks symmetry between
two cycles of the torus!
[cf. modular invariance in AdS/CFT
e.g. Maloney & Witten 2007
v. Cotler & Jensen 2019)]




Gluing the cylinder: the spin chain perspective

ZPR[wBafy] — /dg wg(hﬁgring — 17 hﬁEring — g) = tr (UNWTNt PSzO)

Insertion of Haar’s intertwiner
= Haar projector Angle twist =  Transfer-matrix projects the spin chain’s

translation by evolution

Coupling to bulk dof

edge state onto
Boundary state Ny steps its O-Spin sector

g (1,mb, mb)

Remark: coupling to g breaks symmetry between
two cycles of the torus!
[cf. modular invariance in AdS/CFT
e.g. Maloney & Witten 2007
v. Cotler & Jensen 2019)]

Remark: other ways of coupling boundary to
bulk dof is to insert bulk Wilson lines
anchored at the boundary

= insertion of disorder-like operators in the stat model,

that create vortex/antivortex pairs =
[with Danilo Artigas Guimarey] g




Semiclassics: what are we looking for®

Twisted-thermal AdS

Classical action )

(with boundary term) 1-loop determinant
[Giombi, Maloney, Yin O8]
OR
Boundary CFT Boundary CFT
ground state’s descendant states’
contribution to contribution to

Zycrr|B,7] = tr (e” e PH ) [Maloney, Witten 07]

Virasoro character




Semiclassics: what are we looking for®

Twisted-thermal AdS

_ 7B
ZTTAdS [577] =e ‘P

, k>2 ‘1 — e”k_ﬂk‘

Classical action )

(with boundary term) 1-loop determinant
[Giombi, Maloney, Yin O8]
OR
Boundary CFT Boundary CFT
ground state’s descendant states’
contribution to contribution to

Zycrr|B,7] = tr (e” e PH ) [Maloney, Witten 07]

Virasoro character

Twisted-thermal Minkowski
()78 1
ZTTMink[ﬁa’Y] =e ‘P H

2
(-\_} psa |1 — €]
—_

Classical action
(with boundary term) 1-loop determinant

[Barnich, Gonzalez, Maloney, Oblak 15]

OR BMSS3 character [Oblak 15]




Semiclassics: what are we looking for®

Twisted-thermal AdS Quantum Regge calculus on a cylinder
_(Na:_l)
_ B 1 _2qp ° 1
Zrraas|Byyl =e e H , 5 |2 ZroseelByy] =€ "o H

.2
_ b5 _ Livk
’ kZQ‘l—eWk eck‘ } k—2 1 — en*|
Classical action k‘ﬂ-——J Classical action ——y——

(with boundary term) 1-loop determinant (with boundary term) 1-loop determinant

[Giombi, Maloney, Yin O8]

oF =7 .
Boundary CFT Boundary CFT T @ [Bonzom, Dittrich 15]
ground state’s descendant states’ <’ T /
contribution to contribution to — 1

Zycrr|B,7] = tr (e” e PH ) [Maloney, Witten 07]
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()78 1
ZTTMink[ﬁa’Y]:e ‘Pl H

2
(-\_} psa |1 — €]
—_

Classical action
(with boundary term) 1-loop determinant

[Barnich, Gonzalez, Maloney, Oblak 15]

OR BMSS3 character [Oblak 15]




From Regge calculus to the Ponzano-Regge model

The Ponzano-Regge model is a
full-blown quantum version of Regge calculus

Contrary to perturbative quantum Regge calculus,
It requires no background, only boundary conditions

Question:
Can we recover Bonzom & Dittrich’s result in PR?

Answer:
Yes, and one finds more.

What? How?

- We consider a LS (semi-)coherent boundary state to describe a semiclassical cylinder

- We take the boundary large-spin limit (semiclassical boundary state: bulk fully resummed)

- We reconstruct the semiclassical geometries and compute the 1-loop determinant (Hessian)

- We find that there are many viable “semiclassical” backgrounds, indexed by a winding number
coming from the integral over the only bulk dof (holonomy around non contractible cycle)

- The result of Bonzom & Dittrich coincides with the “trivial” background (n=1)

- (No issue found in relation to sum over orientations)
[Dittrich, Goeller, Livine, AR 17]
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- We reconstruct the semiclassical geometries and compute the 1-loop determinant (Hessian)

- We find that there are many viable “semiclassical” backgrounds, indexed by a winding number
coming from the integral over the only bulk dof (holonomy around non contractible cycle)

- The result of Bonzom & Dittrich coincides with the “trivial” background (n=1)

- (No issue found in relation to sum over orientations)
[Dittrich, Goeller, Livine, AR 17]
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From Regge calculus to the Ponzano-Regge model
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—xact computation from PR

Previous result was obtained in the semiclassical limit (for boundary spins)
Can we find boundary states that allow for an exact computation?

Motivation:

- Asymptotic computations are “exact” and their results reflect the symmetries of the
boundary theory (Virasoro/BMS3 character): is there a class of states for the
quantum geometry of a finite boundary that encodes a similar correspondence”?

- Can we find a correspondence with a class of discrete integrable systems?

These questions are left open for now, but we know of a class of exactly computable states:

ti S ace )‘2Lt mT2Tt * t space
Unr(hig S hi Z Z H ( 2L ) (2T; ). (St +1)! ) ¢Lt 2T (hime, hiee)

Tt , L Lt x t xr
“Time”-like j T T
spins
“Space’-like Poisson(ish) LS semicoherent
spins distribution states

[Goeller, Livine, AR to appear]
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[Goeller, Livine, AR to appear]
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~ T 1
2R = !
V5] T Z sinh(X 1:[ (cosh(X}) — cos(ky 4+ i Xk))
sum over Regularized BMS3 character
backgrounds

Poles in the plane 7 = 0t —f DOlES Of integrand in ¢ )
[Goeller, Livine, AR to appear]
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—xact computation from PR

No—1 . _
PR sin” (yn + iX,,) 1
ANCEED'S H
! e sinh(X,,) L 2(cosh(Xy) — cos(ky + i X))
sum over Regularized BMS3 character
o backgrounds
Poles in the plane z = e { poles of integrand in ¢ )

This should be compared with the AdS regularization of the flat-space result:

1
Zrtads|B, V] = 1:1;[2 2(1 — cos(kvy +1i5/L.))

In both cases, the theory lives in “box”.
Whereas in AdS the box’s size is controlled by the deformed dynamics (A # 0),

IN our case the "size of the box” is not related to the dynamics of the theory. Nonetheless around
a given background (e.g. n=7) regularization takes a similar albeit more complicated form.

Questions:
- Can we interpret this result in terms of a dual boundary theory with interesting properties?

Is the partition function the signature of some special symmetry group?
[Goeller, Livine, AR to appear]



Summary

PART |

- Review of 3d gravity and its symmetries

PART I

- We discussed the nature of the edge dof; their relation to the symmetries of the theory; and
their different representations as magnetic indices, group elements, spinors

PART lil

- We introduced quantum boundary conditions and showed how they induce an
edge dynamics (dual spin-chain/statistical model)

- We discussed how the Poisson-Lie symmetry structure of 3d gravity underpins
the face-vertex duality of the dual 2d statistical models and how the face models encode a
quantum version of Carlip’s edge dof as would-be-gauge normal-diffeos.

PART IV

- We briefly presented computations of the twisted torus partition function in the PR model
and discussed how they generalize previous QFT/holographic results



Outlook

Lab for study of renormalization & continuum limit without having to solve 4d QG:

Although 3d QG (PR) is triangulation invariant in the bulk, it isn’t at the boundary!
Dual theory: classical v. asymptotic v. continuum limit? (few large spins v. many small spins?)

Extension to (A)dS by replacing PR with Tureav-Viro model
Prima facie difficulty: no group representation

- Clarify status of exactly computable boundary states:
» do they encode some special/integrable dual theory? (E.g. Ising model?)
> is the amplitude we computed the character of a symmetry group that deforms BMS3?

Relations to AdS3/CFT2? And to TTbar holography? [cf Cotler, Jensen 19; Shyam 19; also Freidel 08]
Relation to AAS/MERA (tensor network Ansatz for AdS/CFT)?
PR offers a general-covariant, geometric version of this Ansatz [pittrich, Donnelly, AR wip]

- Study observables and establish nonperturbative holographic dictionary [artigas Guimarey, AR wip]

- Generalizations to 4d: e.g. for a geometric (topological) theory of flat space
[Cf. the Korepanov-Baratin-Freidel model — Baratin, Freidel 08; Asante, Dittrich, Haggard 19; Asante, Dittrich, Girelli, AR, Tsimiklis 19]



Thank you

Guido Scarabottolo



