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study theories with (ym & gr)
from a perspective

why field space?
it is the natural arena for (neperturbative) gft (covariant path integral picture)
[dewitt]

which tools?

a very flexible and powerful tool to study (pre)symplectic geometry covariantly
[46S Soad stfRQa OLtPdf FiAzya 2F y28GKSNI OKI NBSA

what does -symplectic mean?
that we work at the level



why gaugevariant? because...
...itis simpler (i.e. it is the only thing we know how to do), and

...because we want to focus on with
the point is:
gauge theories are ( ~~systems do not factorize),

and working with gauge variant quantities allows local treatment;
non-local aspects still manifest at boundaries and corners

long term goal: understand
[ i also believe this is relevant for ongoing discussions on new (asymptotic) symmetries in gauge theories

and gravity, see e.g. strominger et 201416, but this would be the subject for another ta}k



why finite regions?
because, they are the and experimental apparata
[0FT® 2501t Qa 73ISy$NIt o02dzy RFNEnR LINRINI Y

furthermore,
their boundaries are wher= between subsystems takes place
[02yy80iGAz2ya G2 NBOSEt Awifithedvbole extedibddgf akewark, k.ol &ane s O2 dzNE



study of theories with local symmetries (ym & gr)
using a gaugeariant spacetimecovariant symplectic framework

in order to emphasize the role of

that is where will manifest itself

and where the coupling to other subsysteqs ] takes place

in this talk, for simplicity, we will focus mostly on ym theories



preliminaries
mathematical framework
field-space connection onforms
a covariant differential in field space

explicit examples of connection o+ierms
example one: via new fields
example two: no new fields, via fermions
example three: no new fields, via gauge potentials

covariant symplectic geometry
ym
gr

ghosts
relation to geometric brst and the gribov problem



preliminaries



ym theory with charge grous  with Lie algetitee(G) = g

(=group of gauge transformations)
G ={g(-): M — G} and, infinitesimally

® = Lie(G) ={Y(-) : M — g}

- I ={(AV)}
where {A = AﬁFX)T“dx“ e A'M) &g
P =P (x)A) € C®M) @ CP eV

elementsg(-) € §  actgn as
{AI—)AQ = Ad, 1A + g 'dg A — A —adyA +dY

~

P9 =g " P =P =Y



more geometrically,
this means there is a of § on¥F

Rg(.)I F — F
(A) = Ry (A1) = (A9,9)

the infinitesimal version of this action defines ‘a from % toxl(g-‘)

e — %(97)

# %
Y =Y dtlt ORexp (tY)

d d i
Y#f R* fIA] = — tDAY] = —DaY
e.g [A] = at i e () [A] a1 [A+tDAY] sa DA
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thelit #:® — X'(F)  generalizes immediately (pointwise)

to transformations which (A, ) edF
B: F — G
(A, ) = g(-) =BIAPI()
& : F — ®
(Ap) = Y() =EA D)
this transformations are useful, e.g. to implement« %

from now on, we will always work with this more general gauge transformations

this is a promotion of a global to a local symmetry in field space



now, that we have vector fields,
it is only natural to investigate onF § symplectic geometry)

the formula forY*f suggests the introduction of
a 7O

e.g.onf:F—C itgies= 2L8A + Lo

it can be extended in the usual way to act on arbitrary forms,
taking care of proper (wedge products are left understogd

in particular, §2 = 0
(form/vector contraction), 3, (-) : AP(F) — AP~1(F) v ¢ 1 (F)

e.g.
Sn(f] 5f2) = f] Df2



lie derivative onA®(JF)  can be readily defined via
&y = 03y + Jpd

of course, this definition is consistent with the dragging picture, e.g.

now, notice that even if transforms «nicelys;, ive.

this is the analogue of: while
and to similar problems, there are of course similar solutions...



