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Questions

LQC provides the most successful physical application of loop gravity, and one

of the most promising avenues towards a possible empirical test.

1. Can we include inhomogeneities? Inhomogeneities can be re-inserted at a

later cosmological epoch, restricting the analysis of the Planck epoch to

the sole homogeneous d.o.f.. Is this approximation sufficient? Do quantum

fluctuations of the inhomogeneous d.o.f. play any role at the bounce?

(See also [Martin-Benito, Garay, Mena Marugan]).

2. Can we describe the full quantum geometry at the bounce, beyond the

homogeneous approximation?

3. Quantum fluctuations of the inhomogeneous d.o.f. are believed to play a

major role in structure formation. Can we see them in our background

independent language?

4. Relation LQC and LQG. Can we derive the LQC assumptions from a

more complete LQG model?
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A strategy to address these questions

1. Analyze the nature of the approximation on which cosmology –classical or

quantum– is based.

2. This leads to the idea that the full theory may be expanded by adding

degrees of freedom one by one, starting from the cosmological ones. Define

an approximated dynamics of the universe, inhomogeneous but truncated

at a finite number of d.o.f..

3. Roughly a mode expansion, or an approximation of the universe by a

triangulation with n tertrahedra.

4. At fixed n, approximate the dynamics by the non-graph changing

Hamiltonian constraint. This gives a consistent classical and quantum

model for each n.

5. Study the simple n = 2 case (“dipole cosmology”). This provides a “first

step out of inhomogeneity”.

6. Within this model, single out the homogeneous d.o.f., and perform a

Born-Oppenheimer approximation. Recover the structure of LQC.
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Approximations in cosmology

1. Einstein’s 1917: cosmological principle. The dynamics of a homogeneous

and isotropic space describes our real universe. What does this mean?

2. The universe happens to be in a state where the effect of the

inhomogeneities on the dynamics of its largest scale, described by the scale

factor, can be neglected in a first approximation.

3. This is not a large scale approximation, because it is supposed to remain

valid when the universe was small! It is an expansion in n ∼ a
λ
.

4. Restrict the dynamics to a finite n.

5. The large scale d.o.f. can be captured by averaging the metric over the

simplices of a triangulation formed by n simplices.
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The model: definition of the classical theory

- Oriented triangulation ∆n of a 3-sphere, with by n tetrahedra t and 2n

triangles f .

- Variables

8

<

:

Uf ∈ SU(2), (1)

Ef = Ei
f τi ∈ su(2). (2)

(U
f−1 = U

−1
f

and E
f−1 = −Uf Ef U

−1
f

.)

- Poisson brackets

8

>

>

<

>

>

:

{Uf , Uf ′} = 0, (3)

{Ei
f , Uf ′} = δff ′ τ iUf , (4)

{Ei
f , E

j
f ′
} = δff ′ ǫijkEk

f . (5)

The phase space is the cotangent bundle of SU(2)2n with its natural symplectic structure.

- Dynamics

8

<

:

Gauge Gt ≡
P

f∈t Ef ∼ 0, (6)

Ham Ct ≡
P

ff ′∈t Tr[(Uff ′ − Uf ′f )EfEf ′ ] ∼ 0. (7)

where U
ff′ = Uf Un...U1U

f′ is the holonomy of the link of the edge where f and f′ meet.
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The model: interpretation

• Cosmological approximation to the dynamics of the geometry of a closed

universe.

• (Uf , Ef ) average gravitational d.o.f. over a triangulation ∆n of space:

- Uf : parallel transport of the Ashtekar connection

Aa along the link ef of ∆∗
n dual to the f ;

- Ef : flux Φf of the Ashtekar’s electric field Ea

across the triangle f , parallel transported to the

center of the tetrahedron: Ef = U−1
e1 ΦfUe1 .

f

ef

• The constraints approximate the Ashtekar’s gauge and

Hamiltonian constraint Tr[FabE
aEb] ∼ 0.

• Ct: “Non-graph-changing” hamiltonian constraint.

• Uff ′ ∼ 11+ |α|2Fab +o(|α|2F ) is also good for large loops

if Fab is small. → Approximation does not get worse as

the universe increases its size. (Near flat spacetime the

approximation is good even for coarse triangulations!) f

f’
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The model: adding a scalar field

- Add a variable (φt, pφt
). Represents matter, defines an n-fingered time.

- Hamiltonian constraint

St =
1

Vt
Ct +

κ

2Vt
p2φt

∼ 0.

where

Vt =
X

ff ′f ′′∈t

q

Tr[EfEf ′Ef ′′ ].

- Ultralocal.

- Easy to add spatial derivative terms, or extend to fermions and gauge

fields.
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The model: quantum theory

1. Hilbert space: Haux = L2[SU(2)2n, dUf ]. States ψ(Uf ).

2. Operators: Uf are diagonal and Ef are the left invariant vector fields on

each SU(2). The operators Ef−1 turn then out to be the right invariant

vector fields !

3. States that solve gauge constraint: SU(2) spin networks on graph ∆∗
n

ψjf ιt(Uf ) ≡ 〈Uf |jf , ιt〉 ≡ ⊗f Π(jf )(Uf ) · ⊗t ιt. (1)

4. With a scalar field: Haux = L2[SU(2)2n, dUf ] ⊗ L2[Rn], with

ψ(jf , ιt, φt) ≡ 〈jf , ιt, φt|ψ〉. (2)

5. Quantum Hamiltonian constraint: either or as it is, or à la Thiemann,

rewriting it in the Thiemann’s form

1

Vt
Ct =

1

6

X

ff ′f ′′∈t

Tr
h

(Uff ′ − Uf ′f )U−1
f ′′

[Uf ′′ , Vt]
i

∼ 0. (3)
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Dipole cosmology

Take n = 2 and ∆2 formed by two tetrahedra glued along all their faces.

∆2 = (1)

∆∗
2 = ��

��s s
(2)

Haux = L2[SU(2)4] ⊗ L2[R2]. Gauge invariant states ψ(jf , ιt, φt).

Spin networks basis |jf , ιt, φt〉 = |j1, j2, j3, j4, ι1, ι2, φ1, φ2〉.

Dynamics:
8

>

>

>

>

<

>

>

>

>

:

∂2

∂φ2
1

ψ(jf , ιt, φt) =
2

κ

X

ǫf =0,±1

C1
ǫf ι′t
jf ιt

ψ
“

jf +
ǫj

2
, ι′t, φt

”

,

∂2

∂φ2
2

ψ(jf , ιt, φt) =
2

κ

X

ǫf =0,±1

C2
ǫf ι′t
jf ιt

ψ
“

jf +
ǫj

2
, ι′t, φt

”

.

(3)
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Born-Oppenheimer approximation

B & O have opened the way to the quantum theory of molecules.

1. D.o.f.: “heavy” (R, pR) (nuclei) and “light” (r, pr) (electrons).

2. Hamiltonian splits as H(R, r, pR, pr) = HR(R, pR) +Hr(R; r, pr)

HR= nuclei energy; Hr= electrons energy plus interaction energy.

3. B-O Ansatz: ψ(R, r) = Ψ(R)φ(R; r), where ∂RΦ(R; r) is small.

4. Time independent Schrödinger equation Hψ = Eψ becomes

Hψ = (HR +Hr)ΨΦ = ΦHRΨ + ΨHrΦ = EΨΦ that is
HRΨ

Ψ
− E = −HrΦ

Φ
. Since the lhs does not depend on r, each side is equal

to a function ρ(R). Therefore we can write two equations
8

<

:

HRΨ(R) + ρ(R)Ψ(R) = EΨ(R). (1) Schr. eq. for nuclei, with additional term.

HrΦ(R, r) = ρ(R)Φ(R, r). (2) Schr. eq. for electrons, in the background R.

Let us apply this idea to the dipole cosmology: R → hom d.o.f., r → inhom

d.o.f..
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Homogeneous and inhomogeneous d. o. f.

1. Uf = expAf . ωf : fixed fiducial background. (|ωf | = 1).

2. Degrees of freedom
8

<

:

Af = c ωf + af , (1)

Ef = p ωf + hf . (2)
where

8

<

:

V = p
3
2 , (3)

{c, p} = 8πG
3

≡ k. (4)

Also φ1,2 = 1
2
(φ± ∆φ), and V1,2 = 1

2
(V ± ∆V ).

3. Hamiltonian constraint: Ct = Chom
t + Cin

t . Where: Chom
t : homogeneous

d.o.f. energy. Cin
t sum of inhomogeneous d.o.f. and interaction energy.

Ct(c, a, p, h) = 1
12

X

ff ′f ′′∈t

Tr
h“

e
−cωf′−af′ ecωf−af − e−cωf−af e

cωf′−af′

”

e
−cωf′f′′−af′f′′ [e

cωf′f′′+af′f′′ , V ± ∆V ]
i

. (5)

Chom
t (c, p) = 1

12

X

ff ′f ′′∈t

Tr
h“

e
−cωf′ ecωf −e−cωf e

cωf′

”

e
−cωf′′ [e

cωf′′ , p
3
2 ]

i

(6)

4. B-O Ansatz: ψ(c, a, φ,∆φ) = Ψ(c, φ)φ(c, φ; a∆φ).
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5. With some technicalities:
8

>

>

>

<

>

>

>

:

∂2

∂φ2
Ψ(c, φ) − ChomΨ(c, φ) − ρ(c, φ)Ψ(c, φ) = 0, (1)

∂2

∂φ2
φ(c, φ; a,∆φ) + Cinhφ(c, φ; a,∆φ) = ρ(c, φ)φ(c, φ; a,∆φ). (2)

(1): Quantum Friedmann equation for the homogeneous d.o.f. (c, φ),

corrected by the energy density ρ(c, φ) of the inhomogeneous modes.

(2): The Schrödinger equation for the inhomogeneous modes in the

background homogeneous cosmology (c, φ). ρ(c, φ) energy eigenvalue.

6. At the order zero of the approximation, where we disregard entirely the

effect of the inhomogeneous modes on the homogeneous modes, we obtain

∂2

∂φ2
Ψ(c, φ) = ChomΨ(c, φ). (3)

Let now now write this equation explicitly.
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Quantum Friedmann equation

• c multiplies the generator of a U(1) subgroup of SU(2)4. Therefore it is a

periodic variable c ∈ [0, 4π]. We can therefore expand Ψ(c, φ)

Ψ(c, φ) =
X

integer µ

ψ(µ, φ) eiµc/2. (1)

The basis of states 〈c |µ〉 = eiµc/2 satisfies

p|µ〉 =
k

2
|µ〉 (2)

eic|µ〉 = |µ+ 2〉 (3)

• The homogeneous hamiltonian constraint operator reads

Chom
t =

1

12

X

ff ′f ′′

Tr
h

((cos
c

2
11 − 2 sin

c

2
ωf ′)(cos

c

2
11 + 2 sin

c

2
ωf )

− (cos
c

2
11 − 2 sin

c

2
ωf )(cos

c

2
11 + 2 sin

c

2
ωf ′))e

−cωf′′ [e
cωf′′ , p

3
2 ]

i

=
1

12

X

ff ′f ′′

Tr
h“

2 sin
c

2
cos

c

2
(ωf − ωf ′) − 4 sin2 c

2
[ωf , ωf ′ ]

”

e
−cωf′′ [e

cωf′′ , p
3
2 ]

i

.
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• Consider the action of the last factor on the state |µ〉

e
−cωf′′ [e

cωf′′ , p
3
2 ]eiµc/2 =

„

−ik
∂

∂c

« 3
2

eiµc/2 − e
−cωf′′

„

−ik
∂

∂c

« 3
2

e
ic(µ/2−iωf′′ )

= k
“

µ
3
2 11 −

`

µ11 − i2ωf ′′

´ 3
2

”

eiµc/2. (1)

• We can write
`

µ11 − i2ωf ′′

´ 3
2 = α(µ)11 + β(µ)ωf ′′ where the coefficients

α(µ) and β(µ) can be easily computed squaring this equation, using

ω2
f ′′ = − 1

4
11 and solving the resulting system, which gives

β(µ) = −

q

−2µ(µ2 + 3) + 2(µ2 − 1)
3
2 . (2)

• The only term that survives is

Chom
t eiµc/2 = −

1

3
sin2 c

2
β(µ)

X

ff ′

Tr
ˆ

[ωf , ωf ′ ]ωf ′′

˜

eiµc/2

= C β(µ) sin2 c

2
eiµc/2. (3)
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• Bringing everything together, the quantum Friedmann equation reads

∂2

∂φ2
Ψ(µ, φ) = C+(µ) Ψ(µ+ 2, φ) + C0(µ) Ψ(µ, φ) + C−(µ) Ψ(µ− 2, φ)

where

C+(µ) = C−(µ) = −
1

2
C0(µ) = −

kC

κ
µ

3
2

q

−2µ(µ2 + 3) + 2(µ2 − 1)
3
2 .

• This eq. has precisely the structure of the LQC dynamical equation.

• µ is discrete without ad hoc hypotheses, or area-gap argument.
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To be done

1. Immirzi parameter γ.

2. Realistic matter fields.

3. Relation between the ψ(µ, φ) homogeneous states

and the full ψ(jf , ιt, φt) states in the spinnetwork

basis.

4. Relation to µ̄ quantization scheme.

5. Spinfoam version. Cosmological Regge calculus

(Barrett et al). 1 → 4, 4 → 1 Pachner moves.
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Summary

1. Family of models opening a systematic way for describing the

inhomogeneous d.o.f. in quantum cosmology. Does bounce scenario

survives? ψ(jf , it, φbounce): fluctuating geometry at the bounce.

2. Derivation of the structure of LQC as a Born-Oppenheimer apprimation.

Light on LQC/LQG relation.

Comments

1. Quantum inhomog. fluctuations. Role in structure formation? Inflation?

2. ρ(c, φ) term in quantum Friedmann eq. Physics? Cosmological constant?

3. Coarse triangulations. Intuition that near-flat-space dynamics can only be

described by many nodes is misleading. If this was the case, cosmology

would be ill-conceived. Relevant for the n-point functions calculations.

(ps.: Francesca is applying for Ph.D. !)
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