SIMPLICITY CONSTRAINTS

 AND THE IMMIRZI PARAMETER IN
DISCRETE QUANTUM GRAVITY

Summary

introduction and brief review
set up of discrete canonical Plebanski
reduction, part I: simplicity constraints
reduction, part 2: gluing constraints
conclusions and outlook

Introduction and brief review

Plebanski action with Holst term:

$$
\begin{aligned}
\mathcal{S}_{P l e b, \mathcal{M}}[X, w, \phi]=\frac{1}{2} \int_{\mathcal{M}}[\operatorname{tr}(X \wedge F[w])+ & \left.\frac{1}{\gamma} \operatorname{tr}(\star X \wedge F[w])+\frac{1}{2} \phi_{A B} \star X^{A} \wedge X^{B}\right] \\
\mathrm{SO}(4) \mathrm{BF} \text { term } & \overbrace{\text { Holst term }} \quad \begin{array}{l}
\text { Simplicity constraints }
\end{array}
\end{aligned}
$$

Barbero-Immirzi parameter

$$
\begin{array}{ll}
\text { some definitions: } & \operatorname{tr}\left(X_{1} X_{2}\right)=X_{1}^{A} \delta_{A B} X_{2}{ }^{B} \\
& \star X^{A}=\epsilon^{A B} X^{B}
\end{array}
$$

Introduction and brief review

Lagrange multiplier:

$$
\begin{array}{lc}
\phi^{A B}=\phi^{B A} & \epsilon_{A B} \phi^{A B}=0 \\
\text { symmetric } & \text { traceless }
\end{array}
$$

Simplicity constraints:

$$
\star X^{A} \wedge X^{B}=\frac{V}{4!} \epsilon^{A B} \quad \text { where } \quad V=\star X^{A} \wedge X^{B} \epsilon_{A B}=\operatorname{tr}(X \wedge X)
$$

Introduction and brief review

Non-degenerate solutions:
assuming non-degeneracy, that is: $V \neq 0$

$$
X=\left\{\begin{array}{l}
\pm(e \wedge e) \\
\pm \star(e \wedge e)
\end{array}\right.
$$

topological sector gravitational sector

without Holst term
sectors become mixed
\uparrow
with Holst term
choosing the second sector of solutions

$$
\mathcal{S}[e, w]=\frac{1}{2} \int_{\mathcal{M}}\left(\operatorname{tr}((e \wedge e) \wedge F[w])+\frac{1}{\gamma} \operatorname{tr}(\star(e \wedge e) \wedge F[w])\right)
$$

solving half the equations of motion
trivializes the Holst term \longrightarrow no effect on classical dynamics

Introduction and brief review

Spinfoam method:

$$
\begin{array}{ll}
\text { consider a triangulated manifold } \mathcal{M} \longrightarrow \Delta_{4} \\
X_{\mu \nu}{ }^{A} \longrightarrow X_{f} \\
w_{\mu}{ }^{A} \longrightarrow M_{t}=\mathcal{P} \exp \left(\int w\right)
\end{array}
$$

start with a quantum theory of $B F+$ Holst terms only

$$
\left.\mathcal{Z}_{\Delta}=\int \mu_{\Delta}\left[X_{f}, M_{t}\right] e^{i \mathcal{S}_{\Delta}\left[X_{f}, M_{t}\right]}\right) \quad \mathcal{S}_{\Delta}\left[X_{f}, M_{t}\right]=\sum_{f \in \Delta} X_{f} M_{f}
$$

advantage: well-defined measure

Introduction and brief review

Spinfoam method continued:

integrate bivectors explicitly

$$
\mathcal{Z}_{\Delta}=\int \prod_{t \in \Delta} d M_{t} \delta\left(M_{f}\right)
$$

re-expand in terms of representations of $\mathrm{SO}(4) \sim \mathrm{SU}(2) \otimes \mathrm{SU}(2)$
magnetic basis
coherent state basis

$$
\begin{aligned}
& \left|j_{+}, m_{+}>\otimes\right| j_{-}, m_{-}> \\
& \left|j_{+}, \vec{n}_{+}>\otimes\right| j_{-}, \vec{n}_{-}>
\end{aligned}
$$

quantum bi-vector
reason: amplitude in localized chunks associated to tetrahedra and 4-simplices
making contact with boundary formalism
allows the imposition of simplicity constraints as operator constraints

Introduction and brief review

Spinfoam method continued:

```
impose simplicity constraints
```

$$
\text { remember: } \quad \star X^{A} \wedge X^{B}=\frac{V}{4!} \epsilon^{A B}
$$

on the 4 -simplices these split up as

diagonal simplicity	simplicity of bi-vector on each triangle
cross simplicity	pairwise simplicity for triangles sharing an edge
volume simplicity	pairwise simplicity for triangles sharing an vertex

turns out that we do not need volume simplicity

```
diagonal + cross on BF amplitude implies volume
```


Introduction and brief review

Spinfoam method continued:

first order path integral similar to a phase space path integral
one should check the properties of the constraints w.r.t. the BF symplectic structure
diagonal simplicity are Ist class

cross simplicity constraints are 2nd class

weaken the constraint imposition

Introduction and brief review

Spinfoam method continued:

Result
[Engle, Pereira, Rovelli '08]
[Engle, Livine, Pereira, Rovelli ‘08]
[Freidel, Krasnov '08]
[Livine, Speziale ‘08]
wonderful property
boundary state space coincides with that of LQG restricted to a single graph

Introduction and brief review

Take-away point:

Immirzi parameter plays a non-trivial role
in both
spin foam models
and
loop models

Introduction and brief review

Some remaining questions:

spin foam quantization is not a conventional method of quantization
\longrightarrow check that it gives gravity in the semi-classical limit looking for gravitons, cosmological sectors etc.
[Rovelli '06 and subsequently]
[Bianchi, Rovelli,Vidotto 'I0]
[Ashtekar, Campiglia, Henderson '09]
\longrightarrow check correspondence to Dirac quantization

Introduction and brief review

Re-examining the canonical theory:

```
continuum canonical analysis
[Alexandrov, Buffenoir, Roche `07]
[Krasnov,Alexandrov '08]
    \longrightarrow ~ n o t ~ j u s t ~ p r i m a r y ~ b u t ~ s e c o n d a r y ~ s i m p l i c i t y ~ c o n s t r a i n t s ~
canonical variables: }\quad\mp@subsup{X}{i}{}=\mp@subsup{\epsilon}{0ijk}{}\mp@subsup{X}{jk}{}\quad\mp@subsup{w}{j}{
constraint system:
\[
\begin{aligned}
& \text { Primary }=\operatorname{tr}\left(\star X_{i} X_{j}\right) \\
& \text { Secondary }=f\left(X_{i}, w_{j}\right) \quad \text { second class system }
\end{aligned}
\]
```

 [Buffenoir, Henneaux, Noui, Roche '04]

Introduction and brief review

explicit reduction results in an Immirzi parameter-free phase space
formal phase space path integral quantization

$$
\mathcal{Z}=\int \mu_{\text {constraint hypersurface }} e^{i S_{\text {constraint }} \text { hypersurface }}
$$

Introduction and brief review

The crux of the matter:

dichotomy between continuum canonical reasoning and
spin foam reasoning

Introduction and brief review

Aim:
to shed light on this dichotomy by examining canonical theory on a discrete manifold
formulate discrete primary and secondary simplicity constraints
\longrightarrow reduce and find resulting symplectic structure

Phase space of discrete manifold

3d hypersurface discretization: $\quad \Sigma \longrightarrow \Delta_{3}$

t	f	e
labels tetrahedra	labels triangles	labels edges

BF phase space parameters

$$
\begin{array}{cc}
X^{i} \rightarrow X_{f} & w_{j} \rightarrow M_{f} \\
\text { bi-vectors } & \text { holonomies } \\
\mathfrak{s o}(4) \text { valued } & \mathrm{SO}(4) \text { valued }
\end{array}
$$

self-dual/anti-self-dual splitting

$$
\begin{aligned}
& X_{f \pm}=\mathcal{P}_{ \pm} X_{f} \\
& M_{f \pm}=\mathcal{P}_{ \pm} M_{f}
\end{aligned}
$$

$$
\mathcal{P}_{ \pm}^{A B}=\frac{1}{2}\left(\delta^{A B} \pm \epsilon^{A B}\right)
$$

Phase space of discrete manifold

Phase space structure:
on BF + Holst phase space

$$
\begin{aligned}
& \left\{X_{f \pm}^{A}, M_{f \pm}^{B D}\right\}=\frac{\gamma}{\gamma \pm 1} C_{ \pm}^{A B C} M_{f \pm}^{C D} \\
& \left\{M_{f \pm}^{A B}, M_{f \pm}^{C D}\right\}=0 \\
& \left\{X_{f \pm}^{A}, X_{f \pm}^{B}\right\}=\frac{\gamma}{\gamma \pm 1} C_{ \pm}^{A B C} X_{f \pm}^{C}
\end{aligned}
$$

$C^{A B C}$ structure constants for $\mathfrak{s o}(4)$

Phase space of discrete manifold

Collection of gauge-invariant quantities:

Phase space of discrete manifold

Summary of constraints:

Gauss constraint	$\mathcal{G}_{t}=\sum_{f \subset t} X_{f}$		
Primary simplicity	$D_{f}=A_{f+}-A_{f-}$		
	$C_{e}=\phi_{e+}-\phi_{e-}$		
Secondary simplicity	$E_{f, e}=\theta_{f, e+}-\theta_{f, e-}$	\quad	closure of tetrahedron
:---			
cross simplicity simplicity			
edge simplicity			

> self-dual geometry = anti-self-dual geometry

Phase space of discrete manifold

Reconstructing the geometry

discrete primary and secondary simplicity

Theorem:
[Dittrich, JR '08]
one can reconstruct consistent tetrad assignments for edges of the hypersurface
[Dittrich, JR ' 10]

+ a consistent extrinsic curvature for the triangulation
for non-vanishing 3d-volume and non-parallel 4d normals for neighboring tetrahedra

Phase space of discrete manifold

Equivalence to discrete reality conditions
in time gauge $X_{f \pm}$ becomes triad vectors $x_{f \pm}$
the diagonal, cross and edge simplicity take the form

$$
\begin{gathered}
x_{f+}=x_{f-} \\
e^{\left(-\Gamma_{f}[x]\right)} m_{f+} e^{\left(-\Gamma_{f}[x]\right)} m_{f-}=1
\end{gathered}
$$

$\Gamma_{f}[x]$ is the 3d spin connection constructed from the triads
discretization of continuum reality conditions

$$
\begin{gathered}
E_{+}^{\prime}=E_{-}^{\prime} \\
A_{+}+A_{-}=2 \Gamma[E]
\end{gathered}
$$

Phase space of discrete manifold

Procedure:

solve Gauss constraints

Gauss constraints are first class
prevents any (time) gauge-fixing
\longrightarrow solve by going to gauge-invariant phase space

Phase space of discrete manifold

Procedure:

all areas
$A_{f \pm}$
$\phi_{e \pm}$
one per triangle

$$
\theta_{f, e \pm}
$$

Phase space of discrete manifold

Procedure:

```
find a basis for the constraint set
```

all diagonal	one edge per triangle	
D_{f}	C_{e}	$E_{f, e}$

BUT that does not exhaust this constraint set
in the sense that the 4 d dihedral angles are still not well-defined
there exist relations among the θ and α

$$
\theta_{f, e+}-\theta_{f, e^{\prime}+}=\alpha_{e e^{\prime}+}-\tilde{\alpha}_{e e^{\prime}+}
$$

Phase space of discrete manifold

Final description of constraints

Set 2: gluing constraints

$$
G_{f, e e^{\prime}}=\theta_{f, e+}-\theta_{f, e^{\prime}+}
$$

or
$G_{e e^{\prime}}=\alpha_{e e^{\prime}+}-\tilde{\alpha}_{e e^{\prime}+}$
or
$\begin{array}{ll}G_{e}=\phi_{e+}-f(A), & K(\{A\}) \\ & L(\{\theta\})\end{array}$

$$
L(\{\theta\})
$$

$$
\begin{aligned}
& D_{f}=A_{f+}-A_{f-} \\
& C_{e}=\phi_{e+}-\phi_{e-} \\
& E_{f, e}=\theta_{f, e+}-\theta_{f, e-}
\end{aligned}
$$

relations between sectors
relations within sector

Reduction, part 1: simplicity constraints

Procedure

```
compute Dirac matrix of constraints
```

$$
\begin{gathered}
D_{f} C_{e} \\
\Delta_{1}=\left(\begin{array}{ccc}
0 & 0 & * \\
0 & \frac{1}{\gamma} * & * \\
* & * & *
\end{array}\right) \quad \text { on the gravitational subsector }
\end{gathered}
$$

$$
\text { for } \gamma \rightarrow \infty \quad\left\{C_{e}, C_{e^{\prime}}\right\} \quad \text { vanishes }
$$

cross simplicity forms first class subalgebra (without Holst term)

Reduction, part 1: simplicity constraints

Procedure:

$$
\text { compute Dirac brackets }\{f, g\}_{1}=\{f, g\}-\left\{f, \Phi_{\alpha}\right\}\left(\Delta^{-1}\right)_{1}^{\alpha \beta}\left\{\Phi_{\beta}, g\right\}
$$

Result: we have computed reduction for arbitrary triangulations

Reduction, part 1: simplicity constraints

Analysis

$$
\gamma \text { is still present }
$$ phase space variables $A_{f+}, \phi_{e+}, \theta_{f, e+}$

reduced phase space
Loop Gravity

$$
\begin{array}{ll}
\left\{\phi_{e}, \phi_{e^{\prime}}\right\}_{1}=\gamma V_{t} \longrightarrow\left\{X_{f}^{a}, X_{f}^{b}\right\}=\gamma \epsilon^{a b c} X_{f}^{c} \\
\left\{A_{f}, \theta_{f, e}\right\}_{1}=1 & \left\{X_{f}^{a}, \widetilde{M}_{f}^{b d}\right\}=\gamma \epsilon^{a b c} \widetilde{M}_{f}^{c d}
\end{array}
$$

constructed from Ashtekar-Barbero connection

$$
\begin{gathered}
A_{i}^{a}=\Gamma_{i}^{a}+\gamma K_{i}^{a} \\
\widetilde{M} \sim \exp A \sim \exp \gamma \theta
\end{gathered}
$$

Reduction, part 1: simplicity constraints

Analysis

Essentially, we have halved the $\mathrm{SO}(4) \mathrm{BF}$ phase space down to an $\mathrm{SU}(2) \mathrm{BF}$ phase space
in agreement with twisted geometries approach

```
phase space variables }\mp@subsup{A}{f+}{},\mp@subsup{\phi}{e+}{},\mp@subsup{0}{f,e+}{
```

ϕ_{e+} are still independent which is not true for a geometric configuration

Thus:
both LG and discrete Plebanski (at this stage) have genuinely larger phase spaces than Regge calculus

Reduction, part 2: gluing constraints

Procedure

compute Dirac matrix of constraints

$$
\Delta_{2}=\left\{G_{e}, G_{e^{\prime}}\right\}_{1}
$$

can compute for arbitrary triangulations but inversion is tricky

special configuration: boundary of equilateral 4-simplex

$$
\begin{aligned}
& \left\{A_{f}, \theta_{f}\right\}_{2}=1 \\
& \left\{\phi_{e}, \phi_{e^{\prime}}\right\}_{2}=0 \\
& \left\{\theta_{e}, \theta_{e^{\prime}}\right\}_{2}=0
\end{aligned}
$$

Reduction, part 2: gluing constraints

```
Result:
Immirzi parameter has disappeared
    from the symplectic structure
```

Result:
first implementation of reality conditions on connection in a discrete setting

Reduction, part 2: gluing constraints

Analysis

Immirzi parameter is gone
we have reached Regge phase space
ϕ_{e+} are no longer independent
[length Regge calculus: Regge '61]
[phase space: Bahr, Dittrich 09, Dittrich, Hoehn 09]
calculating phase space path integral, one would have no Immirzi parameter

Reduction, part 2: gluing constraints

Generalizing the analysis:

```
generic 4-simplex boundary
```

can re-express gluing as non-local constraints on the area $\quad \tilde{G}_{e}=\cos \phi_{e}-f_{e}(\{A\})$
constraint hypersurface : length Regge calculus
generic triangulations
gluing constraints not captured completely by

$$
\tilde{G}_{e}=\cos \phi_{e}-f_{e}(\{A\})
$$

constraint hypersurface : area Regge calculus

remainder captured by a set conjugate constraints	$K(\{A\})$
	$L(\{\theta\})$
constraint hypersurface : length Regge calculus	

Reduction, part 2: gluing constraints

Degenerate configurations $\quad V_{t \pm}=0$ degenerate 3-volume $\sin \theta_{e}=0$ parallel normals

$\begin{aligned} & D_{f}=A_{f+}-A_{f-} \\ & C_{e}=\phi_{e+}-\phi_{e-} \\ & E_{f, e}=\theta_{f, e+}-\theta_{f, e-} \end{aligned}$	Set I: simplicity constraints $D_{f} \quad C_{e}^{\prime} \quad E_{f, e}$ Set 2: gluing constraints $G_{e e^{\prime}}=\alpha_{e e^{\prime}+}-\tilde{\alpha}_{e e^{\prime}+}$ or $\begin{array}{ll} G_{e}=\phi_{e+}-f(A), & K(\{A\}) \\ & L(\{\theta\}) \end{array}$
30d hypersurface 4 -simplex example	20d hypersurface
'configuration space analysis' of 4 -simplex: obtain exactly 5 additional degrees of freedom if 4 d volume is zero	[Conrady, Freidel '08]
arise in asymptotic analysis (vector geometries or $\mathrm{SU}(2) \mathrm{BF}$ configurations)	[Barrett, Fairbairn, Hellmann '08]

Outlook

Statement and question

Immirzi parameter is no longer present after a complete reduction by simplicity and gluing
should we be looking for γ-free spin foam models?
[Alexandrov '08,' 10]

Outlook

Things to do

```
irregular constraint systems require more careful analysis
                                    should deal with degenerate points separately
```

reduction in gauge variant variables
closer connection to continuum analysis
generalize reduction of gluing constraints to arbitrary triangulations
$\begin{array}{ll}\text { understand geometrical nature of constraints } & K(\{A\}) \\ & L(\{\theta\})\end{array}$
quantize the model

