Simplicity constraints and the Immirzi parameter in discrete quantum gravity

James Ryan
AEI, Golm

in collaboration with Bianca Dittrich
Summary

introduction and brief review

set up of discrete canonical Plebanski

reduction, part 1: simplicity constraints

reduction, part 2: gluing constraints

conclusions and outlook
Introduction and brief review

Plebanski action with Holst term:

\[
S_{Pleb,\mathcal{M}}[X, w, \phi] = \frac{1}{2} \int_\mathcal{M} \left[\text{tr}(X \wedge F[w]) + \frac{1}{\gamma} \text{tr}(\star X \wedge F[w]) + \frac{1}{2} \phi_{AB} \star X^A \wedge X^B \right]
\]

- SO(4) BF term
- Holst term
- Simplicity constraints

Barbero-Immirzi parameter

Some definitions:

\[
\text{tr}(X_1 \, X_2) = X_1^A \, \delta_{AB} \, X_2^B
\]

\[
\star X^A = \epsilon^{AB} \, X^B
\]
Introduction and brief review

Lagrange multiplier:

\[\phi^{AB} = \phi^{BA} \]

symmetric

\[\epsilon_{AB} \phi^{AB} = 0 \]

traceless

Simplicity constraints:

\[\star X^A \wedge X^B = \frac{V}{4!} \epsilon^{AB} \]

where

\[V = \star X^A \wedge X^B \epsilon_{AB} = tr(X \wedge X) \]
Introduction and brief review

Non-degenerate solutions: assuming non-degeneracy, that is: $V \neq 0$

$$X = \{ \pm (e \wedge e), \pm \star (e \wedge e) \}$$

- topological sector
- gravitational sector

sectors become mixed

without Holst term

with Holst term

choosing the second sector of solutions

$$S[e, w] = \frac{1}{2} \int_{\mathcal{M}} \left(\text{tr}((e \wedge e) \wedge F[w]) + \frac{1}{\gamma} \text{tr}(\star(e \wedge e) \wedge F[w]) \right)$$

solving half the equations of motion

trivializes the Holst term

no effect on classical dynamics

Dienstag, 12. April 2011
Introduction and brief review

Spinfoam method:

consider a triangulated manifold

\[\mathcal{M} \longrightarrow \Delta_4 \]

\[X_{\mu\nu}^A \longrightarrow X_f \]

\[w_\mu^A \longrightarrow M_t = \mathcal{P} \exp \left(\int w \right) \]

start with a quantum theory of BF + Holst terms only

\[Z_\Delta = \int \mu_\Delta[X_f, M_t] e^{i S_\Delta[X_f, M_t]} \]

\[S_\Delta[X_f, M_t] = \sum_{f \in \Delta} X_f M_f \]

advantage: well-defined measure
Introduction and brief review

Spinfoam method continued:

\[Z_{\Delta} = \int \prod_{t \in \Delta} dM_t \delta(M_f) \]

re-expand in terms of representations of \(SO(4) \sim SU(2) \otimes SU(2) \)

- magnetic basis
 \[|j_+, m_+ > \otimes |j_-, m_- > \]

- coherent state basis
 \[|j_+, \vec{n}_+ > \otimes |j_-, \vec{n}_- > \]

reason: amplitude in localized chunks associated to tetrahedra and 4-simplices making contact with boundary formalism allows the imposition of simplicity constraints as operator constraints
Spin foam method continued:

impose simplicity constraints

remember: \[\star X^A \wedge X^B = \frac{V}{4!} \epsilon^{AB} \]

on the 4-simplices these split up as

- diagonal simplicity: simplicity of bi-vector on each triangle
- cross simplicity: pairwise simplicity for triangles sharing an edge
- volume simplicity: pairwise simplicity for triangles sharing an vertex

turns out that we do not need volume simplicity

diagonal + cross on **BF amplitude** implies **volume**
Introduction and brief review

Spinfoam method continued:

- strength of imposition in the an operatorial sense on the representation basis states
- first order path integral similar to a phase space path integral
 - one should check the properties of the constraints w.r.t. the BF symplectic structure
- diagonal simplicity are 1st class
 - impose strongly
- cross simplicity constraints are 2nd class
 - $\gamma \neq \infty$
 - weaken the constraint imposition
Spinfoam method continued:

- **Result**

EPRL/FK spin foam models

- **wonderful property**

boundary state space coincides with that of LQG restricted to a single graph

[Engle, Pereira, Rovelli '08]
[Engle, Livine, Pereira, Rovelli '08]
[Freidel, Krasnov '08]
[Livine, Speziale '08]
Introduction and brief review

Take-away point:

Immirzi parameter plays a non-trivial role

in both

spin foam models

and

loop models
Some remaining questions:

- Spin foam quantization is not a conventional method of quantization.
 - Check that it gives gravity in the semi-classical limit.
 - Looking for gravitons, cosmological sectors etc. [Rovelli ’06 and subsequently]
 - [Bianchi, Rovelli, Vidotto ’10]
 - [Ashtekar, Campiglia, Henderson ’09]

- Check correspondence to Dirac quantization.
Re-examining the canonical theory:

continuum canonical analysis

not just primary but secondary simplicity constraints

canonical variables:

\[X_i = \epsilon_{0ijk} \ X_{jk} \quad w_j \]

constraint system:

Primary = \text{tr}(\star X_i \ X_j)

Secondary = f(X_i, w_j)

second class system

along with first class Gauss, 3-diffeo and Hamiltonian contraints
Introduction and brief review

explicit reduction results in an Immirzi parameter-free phase space

formal phase space path integral quantization

\[Z = \int \mu_{\text{constraint hypersurface}} e^{i S_{\text{constraint hypersurface}}} \]

kills the Immirzi parameter dependence in the path integral

[Alexandrov, Buffenoir, Roche '07]

[Alexandrov '08]
Introduction and brief review

The crux of the matter:

- Dichotomy between continuum canonical reasoning and spin foam reasoning
Introduction and brief review

Aim:

- to shed light on this dichotomy by examining canonical theory on a discrete manifold

- formulate discrete primary and secondary simplicity constraints

 → reduce and find resulting symplectic structure
Phase space of discrete manifold

3d hypersurface discretization: \[\Sigma \rightarrow \Delta_3 \]

- \(t \): labels tetrahedra
- \(f \): labels triangles
- \(e \): labels edges

BF phase space parameters

- \(X^i \rightarrow X_f \)
- \(w_j \rightarrow M_f \)

- \(\text{bi-vectors} \)
- \(\text{holonomies} \)

- \(\mathfrak{so}(4) \) valued
- \(\text{SO}(4) \) valued

Self-dual/anti-self-dual splitting

- \(X_f^\pm = P^\pm X_f \)
- \(M_f^\pm = P^\pm M_f \)

\[P_{AB}^{\pm} = \frac{1}{2} (\delta_{AB} \pm \epsilon_{AB}) \]
Phase space of discrete manifold

Phase space structure:

on $BF + Holst$ phase space

\[
\{X^A_{f\pm}, M^{BD}_{f\pm}\} = \frac{\gamma}{\gamma \pm 1} C^{ABC}_{\pm} M^{CD}_{f\pm}
\]

\[
\{M^{AB}_{f\pm}, M^{CD}_{f\pm}\} = 0
\]

\[
\{X^A_{f\pm}, X^B_{f\pm}\} = \frac{\gamma}{\gamma \pm 1} C^{ABC}_{\pm} X^C_{f\pm}
\]

C^{ABC}_{\pm} structure constants for $so(4)$

coming from discrete action

Jacobian identity
(replacing connection with holonomy)
Phase space of discrete manifold

Collection of gauge-invariant quantities:

- Areas: A_f
- 2d-dihedral angles: $\alpha_{ee'}$
- 3d-dihedral angles: ϕ_e
- 4d-dihedral angles: $\theta_{f,e}$

there are three per triangle
Phase space of discrete manifold

Summary of constraints:

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Equation</th>
<th>Simplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss constraint</td>
<td>(G_t = \sum_{f \subset t} X_f)</td>
<td>closure of tetrahedron</td>
</tr>
<tr>
<td>Primary simplicity</td>
<td>(D_f = A_{f+} - A_{f-})</td>
<td>diagonal simplicity</td>
</tr>
<tr>
<td></td>
<td>(C_e = \phi_{e+} - \phi_{e-})</td>
<td>cross simplicity</td>
</tr>
<tr>
<td>Secondary simplicity</td>
<td>(E_{f,e} = \theta_{f,e+} - \theta_{f,e-})</td>
<td>edge simplicity</td>
</tr>
</tbody>
</table>

self-dual geometry = anti-self-dual geometry

[Reisenberger ‘98]
Phase space of discrete manifold

Reconstructing the geometry

discrete primary and secondary simplicity

Theorem: [Dittrich, JR '08]

one can reconstruct consistent tetrad assignments for edges of the hypersurface

+ a consistent extrinsic curvature for the triangulation

[Dittrich, JR '10]

for non-vanishing 3d-volume and non-parallel 4d normals for neighboring tetrahedra
Phase space of discrete manifold

Equivalence to discrete reality conditions

[Dittrich, JR ’10]

\[X_f^{\pm} \] becomes **triad** vectors \[x_f^{\pm} \]

the diagonal, cross and edge simplicity take the form

\[
\begin{align*}
x_f^+ &= x_f^- \\
e^{(-\Gamma_f[x])} m_f^+ e^{(-\Gamma_f[x])} m_f^- &= 1
\end{align*}
\]

\[\Gamma_f[x] \] is the 3d spin connection constructed from the triads

discretization of **continuum** reality conditions

\[
\begin{align*}
E_+ &= E_- \\
A_+ + A_- &= 2\Gamma[E]
\end{align*}
\]

[Alexandrov ’06]

[Wieland ’10]
Phase space of discrete manifold

Procedure:

Gauss constraints are first class

solve by going to gauge-invariant phase space

solve Gauss constraints

prevents any (time) gauge-fixing
Phase space of discrete manifold

Procedure:

find a basis for the gauge-invariant phase space

in each chiral sector pick all areas one per triangle

\[A_f^\pm \quad \phi_e^\pm \quad \theta_{f,e}^\pm \]
Phase space of discrete manifold

Procedure:

find a basis for the constraint set

```
D_f  C_e  E_{f,e}
```

all diagonal\[\text{one edge per triangle}\]

BUT that does not exhaust this constraint set

in the sense that the 4d dihedral angles are still not well-defined

there exist relations among the θ and α

$$\theta_{f,e^+} - \theta_{f,e^+} = \alpha_{ee^+} - \tilde{\alpha}_{ee^+}$$
Phase space of discrete manifold

Final description of constraints

Set 1: simplicity constraints

\[D_f, C_e, E_{f,e} \]

Set 2: gluing constraints

\[G_{f,ee'} = \theta_{f,e+} - \theta_{f,e'+} \]

or

\[G_{ee'} = \alpha_{ee'+} - \tilde{\alpha}_{ee'+} \]

or

\[G_e = \phi_{e+} - f(A), \quad K(\{A\}) \]

\[L(\{\theta\}) \]

relations between sectors

\[D_f = A_{f+} - A_{f-} \]

\[C_e = \phi_{e+} - \phi_{e-} \]

\[E_{f,e} = \theta_{f,e+} - \theta_{f,e-} \]

relations within sector
Reduction, part 1: simplicity constraints

Procedure

compute Dirac matrix of constraints

\[
\Delta_1 = \begin{pmatrix}
D_f & C_e & E_{f,e} \\
0 & 0 & * \\
0 & \frac{1}{\gamma} & * \\
* & * & * \\
\end{pmatrix}
\]

on the gravitational subsector

for \(\gamma \to \infty \) \(\{C_e, C_{e'}\} \) vanishes

cross simplicity forms first class subalgebra (without Holst term)

[Barrett, Crane '98]
[Baez, Barrett '00]
[Engle, Pereira '08]
Reduction, part 1: simplicity constraints

Procedure:

\[
\{f, g\}_1 = \{f, g\} - \{f, \Phi_\alpha\}(\Delta^{-1})_1^{\alpha\beta}\{\Phi_\beta, g\}
\]

Result: we have computed reduction for arbitrary triangulations
Reduction, part 1: simplicity constraints

Analysis
\[\gamma \text{ is still present} \]
\[\text{phase space variables } A_{f+}, \phi_{e+}, \theta_{f,e+} \]

Reduced phase space
\[\{ \phi_e, \phi'_e \}_1 = \gamma V_t \]
\[\{ A_f, \theta_{f,e} \}_1 = 1 \]

Loop Gravity
\[\{ X^a_f, X^b_f \} = \gamma \epsilon^{abc} X^c_f \]
\[\{ X^a_f, \tilde{M}^{bd}_f \} = \gamma \epsilon^{abc} \tilde{M}^{cd}_f \]

constructed from Ashtekar-Barbero connection
\[A_i^a = \Gamma_i^a + \gamma K_i^a \]
\[\tilde{M} \sim \exp A \sim \exp \gamma \theta \]

Agreement between our reduced phase space and (discrete) loop gravity phase space
Reduction, part 1: simplicity constraints

Analysis

Essentially, we have halved the SO(4) BF phase space down to an SU(2) BF phase space in agreement with twisted geometries approach

\[\phi_{e+}, \theta_{f,e+} \]

\(\phi_{e+} \) are still independent which is not true for a geometric configuration

Thus: both LG and discrete Plebanski (at this stage) have genuinely larger phase spaces than Regge calculus

Freidel, Speziale '10

Dienstag, 12. April 2011
Reduction, part 2: gluing constraints

Procedure

compute Dirac matrix of constraints

\[\Delta_2 = \{G_e, G'_e\}_1 \]

can compute for arbitrary triangulations \textbf{but} inversion is tricky

special configuration: boundary of equilateral 4-simplex

compute Dirac brackets

\[\{A_f, \theta_f\}_2 = 1 \]

\[\{\phi_e, \phi'_e\}_2 = 0 \]

\[\{\theta_e, \theta'_e\}_2 = 0 \]
Reduction, part 2: gluing constraints

Result: Immirzi parameter has disappeared from the symplectic structure

Result: first implementation of reality conditions on connection in a discrete setting
Reduction, part 2: gluing constraints

Analysis

Immirzi parameter is gone

we have reached Regge phase space ϕ_{e+} are no longer independent

calculating phase space path integral, one would have no Immirzi parameter

γ-free spin foam?

[length Regge calculus: Regge '61]
[phase space: Bahr, Dittrich 09, Dittrich, Hoehn 09]
Reduction, part 2: gluing constraints

Generalizing the analysis:

generic 4-simplex boundary

\[\bar{G}_e = \cos \phi_e - f_e(\{A\}) \]

Can re-express gluing as non-local constraints on the area

constraint hypersurface: length Regge calculus

generic triangulations

Gluing constraints not captured completely by

\[\bar{G}_e = \cos \phi_e - f_e(\{A\}) \]

constraint hypersurface: area Regge calculus

Remainder captured by a set conjugate constraints

\[K(\{A\}) \]
\[L(\{\theta\}) \]

constraint hypersurface: length Regge calculus
Reduction, part 2: gluing constraints

Degenerate configurations

\[V_{t \pm} = 0 \quad \text{degenerate 3-volume} \quad \sin \theta_e = 0 \quad \text{parallel normals} \]

Set 1: simplicity constraints

\[D_f = A_f^+ - A_f^- \]
\[C_e = \phi_e^+ - \phi_e^- \]
\[E_{f,e} = \theta_{f,e}^+ - \theta_{f,e}^- \]

Set 2: gluing constraints

\[G_{ee'} = \alpha_{ee'}^+ - \tilde{\alpha}_{ee'}^+ \]

or

\[G_e = \phi_e^+ - f(A), \quad K(\{A\}) \]
\[L(\{\theta\}) \]

non-degenerate configurations

30d hypersurface

4-simplex example

20d hypersurface

'configuration space analysis' of 4-simplex: obtain exactly 5 additional degrees of freedom if 4d volume is zero

arise in asymptotic analysis

(vector geometries or SU(2) BF configurations)

[Conrady, Freidel '08]
[Barrett, Fairbairn, Hellmann '08]
Outlook

Statement and question

Immirzi parameter is no longer present after a complete reduction by simplicity \textit{and} gluing should we be looking for γ-free spin foam models?

[Alexandrov '08, '10]
Outlook

Things to do

- irregular constraint systems require more careful analysis
 should deal with degenerate points separately

- reduction in gauge variant variables
 closer connection to continuum analysis

- generalize reduction of gluing constraints to arbitrary triangulations

- understand geometrical nature of constraints
 \[K(\{A\}) \]
 \[L(\{\theta\}) \]

- quantize the model