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Introduction and brief review

Plebanski action with Holst term:

SO(4) BF term Holst term Simplicity constraints

SPleb,M[X, w,φ] =
1
2

∫

M

[
tr(X ∧ F [w]) +

1
γ

tr(#X ∧ F [w]) +
1
2
φAB # XA ∧XB

]

Barbero-Immirzi parameter

tr(X1 X2) = X1
A δAB X2

Bsome definitions:

!XA = εAB XB
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Lagrange multiplier:

Simplicity constraints:

symmetric traceless

φAB = φBA εAB φAB = 0

!XA ∧XB =
V

4!
εAB V = !XA ∧XB εAB = tr(X ∧X)where
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Non-degenerate solutions: V != 0assuming non-degeneracy, that is:

gravitational sector

topological sector
sectors become mixed

trivializes the Holst term no effect on classical dynamics

without Holst term with Holst term

choosing the second sector of solutions

solving half the equations of motion

S[e, w] =
1
2

∫

M

(
tr((e ∧ e) ∧ F [w]) +

1
γ

tr("(e ∧ e) ∧ F [w])
)
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Spinfoam method:

start with a quantum theory of BF + Holst terms only  

advantage: well-defined measure

M −→ ∆4consider a triangulated manifold

Z∆ =
∫

µ∆[Xf ,Mt] eiS∆[Xf ,Mt] S∆[Xf ,Mt] =
∑

f∈∆

Xf Mf

wµ
A −→Mt = P exp

(∫
w

)
Xµν

A −→ Xf
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Spinfoam method continued:

integrate bivectors explicitly Z∆ =
∫ ∏

t∈∆

dMt δ(Mf )

re-expand in terms of representations of 

magnetic basis

coherent state basis |j+,!n+ > ⊗ |j−,!n− >

|j+,m+ > ⊗ |j−,m− >

reason: amplitude in localized chunks associated to tetrahedra and 4-simplices

quantum bi-vector

making contact with boundary formalism

SO(4) ∼ SU(2)⊗ SU(2)

allows the imposition of simplicity constraints as operator constraints
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Spinfoam method continued:

impose simplicity constraints

turns out that we do not need volume simplicity

remember:

diagonal simplicity simplicity of bi-vector on each triangle 

!XA ∧XB =
V

4!
εAB

cross simplicity

volume simplicity

pairwise simplicity for triangles sharing an edge

pairwise simplicity for triangles sharing an vertex

diagonal + cross on BF amplitude implies volume

on the 4-simplices these split up as
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Spinfoam method continued:

strength of imposition

diagonal simplicity are 1st class 

in the an operatorial sense on the representation basis states

cross simplicity constraints are 
2nd class

weaken the constraint 
imposition

first order path integral similar to a phase space path integral

one should check the properties of the constraints w.r.t. the BF symplectic structure

γ !=∞

impose strongly
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Spinfoam method continued:

boundary state space coincides with that of LQG restricted to a single graph

wonderful property

Result

 EPRL/FK spin foam models 

[Engle, Pereira, Rovelli ‘08 ]

[Engle, Livine, Pereira, Rovelli ‘08 ]

[Livine, Speziale ‘08 ]

[Freidel, Krasnov ‘08 ]
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Take-away point:

Immirzi parameter plays a non-trivial role 

in both 

spin foam models

and

loop models
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Some remaining questions:

spin foam quantization is not a conventional method of quantization

check that it gives gravity in the semi-classical limit

looking for gravitons, cosmological sectors etc.

check correspondence to Dirac quantization

[Bianchi, Rovelli, Vidotto ’10]

[Rovelli ’06 and subsequently]

[Ashtekar, Campiglia, Henderson ’09]
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Re-examining the canonical theory:

continuum canonical analysis

not just primary but secondary simplicity constraints

second class system

canonical variables:

constraint system:

along with first class Gauss, 3-diffeo and Hamiltonian contraints

[Buffenoir, Henneaux, Noui, Roche ’04]

[Krasnov, Alexandrov ’08]

[Alexandrov, Buffenoir, Roche ‘07]

wjXi = ε0ijk Xjk

Secondary = f(Xi, wj)

Primary = tr(!Xi Xj)
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explicit reduction results in an Immirzi parameter-free phase space

formal phase space path integral quantization

kills the Immirzi parameter dependence in the path integral [Alexandrov ’08]

Z =
∫

µconstraint hypersurface eiSconstraint hypersurface

[Alexandrov, Buffenoir, Roche ‘07]
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The crux of the matter:

dichotomy between continuum canonical reasoning
and

spin foam reasoning
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Aim:

formulate discrete primary and secondary simplicity constraints

reduce and find resulting symplectic structure

to shed light on this dichotomy by examining 
canonical theory on a discrete manifold 
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Phase space of discrete manifold

3d hypersurface discretization:

labels tetrahedra
t f e

labels triangles labels edges

BF phase space parameters

SO(4)

holonomiesbi-vectors

self-dual/anti-self-dual splitting Xf± = P±Xf

Mf± = P±Mf

Σ −→ ∆3

PAB
± =

1
2
(δAB ± εAB)

Xi → Xf wj →Mf

so(4) valued valued
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Phase space of discrete manifold

Phase space structure:

Jacobian identity

{MAB
f± ,MCD

f± } = 0

(replacing connection with holonomy)

on BF + Holst phase space

CABC
structure constants for so(4)

coming from discrete action

{XA
f±, XB

f±} =
γ

γ ± 1
CABC
± XC

f±

{XA
f±,MBD

f± } =
γ

γ ± 1
CABC
± MCD

f±

18

Dienstag, 12. April 2011



Phase space of discrete manifold
Collection of gauge-invariant quantities:

Areas

2d-dihedral angles

3d-dihedral angles

Af

φe

θf,e4d-dihedral angles

αee′

19
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Phase space of discrete manifold

Summary of constraints:

Gauss constraint

Primary simplicity

Secondary simplicity

Gt =
∑

f⊂t

Xf

Df = Af+ −Af−

closure of tetrahedron

diagonal simplicity

cross simplicity

edge simplicity

self-dual geometry = anti-self-dual geometry [Reisenberger ‘98]

Ce = φe+ − φe−

Ef,e = θf,e+ − θf,e−
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Phase space of discrete manifold

Reconstructing the geometry

discrete primary and secondary simplicity 

Theorem: 

one can reconstruct consistent tetrad assignments for edges of 
the hypersurface

[Dittrich, JR ‘08]

+

[Dittrich, JR ’10]

a consistent extrinsic curvature for the triangulation

for non-vanishing 3d-volume and non-parallel 4d normals for neighboring tetrahedra
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Phase space of discrete manifold

Equivalence to discrete reality conditions

discretization of continuum reality conditions 

[Dittrich, JR ’10]

in time gauge becomes triad vectors

is the 3d spin connection constructed from the triads

E+ = E−

A+ + A− = 2Γ[E] [Wieland ‘10]

[Alexandrov ’06]

the diagonal, cross and edge simplicity take the form 

e(−Γf [x]) mf+ e(−Γf [x]) mf− = 1

xf+ = xf−

Xf± xf±

Γf [x]
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Phase space of discrete manifold

Procedure:

Gauss constraints are first class

solve by going to gauge-invariant phase space

prevents any (time) gauge-fixing

solve Gauss constraints
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Phase space of discrete manifold

Procedure:

in each chiral sector pick all areas one per triangle

Af±

find a basis for the gauge-invariant phase space

φe± θf,e±
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Phase space of discrete manifold

Procedure:

all diagonal one edge per triangle

Df Ce

BUT that does not exhaust this constraint set

find a basis for the constraint set

Ef,e

in the sense that the 4d dihedral angles are still not well-defined

there exist relations among the θ α

there exist relations among the 

and

θf,e+ − θf,e′+ = αee′+ − α̃ee′+
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Phase space of discrete manifold

Final description of constraints

Df Ce

Set 1: simplicity constraints

Set 2: gluing constraints

or

Df = Af+ −Af−

Ce = φe+ − φe−

Ef,e = θf,e+ − θf,e−

Ef,e

Gee′ = αee′+ − α̃ee′+

relations between sectors

relations within sector

or

K({A})
L({θ})

Ge = φe+ − f(A),

Gf,ee′ = θf,e+ − θf,e′+
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Reduction, part 1: simplicity constraints
Procedure

[Engle, Pereira ‘08 ]

on the gravitational subsector

cross simplicity forms first class subalgebra 

{Ce, Ce′}

(without Holst term)

compute Dirac matrix of constraints

γ →∞

∆1 =





0 0 ∗

0 1
γ ∗ ∗

∗ ∗ ∗





for vanishes

Df Ce Ef,e
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Reduction, part 1: simplicity constraints

Procedure:

we have computed reduction for arbitrary triangulations

{f, g}1 = {f, g}−{ f,Φα}(∆−1)αβ
1 {Φβ , g}

Result:

compute Dirac brackets
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Reduction, part 1: simplicity constraints

Analysis

Loop Gravity

{Xa
f , Xb

f} = γεabcXc
f

constructed from Ashtekar-Barbero connection

{
√

Aij , θijkl} = 1 (0.40)

{
√

AijAik cos φijk,
√

AijAil cos φijl} =
γ

2
Vijkl (0.41)

{Ea
ij , E

b
ij} = γεabcEc

ij (0.42)

{Ea
ij , E

b
ij} = γεabcEc

ij (0.43)

{Ea
ij , M

bd
ij } = γεabcM cd

ij (0.44)

M ∼ expA (0.45)

Aa
i = Γa

i + γKa
i (0.46)

6

agreement between our reduced phase space and (discrete) loop gravity phase space

M̃ ∼ expA ∼ exp γθ

{Xa
f , M̃ bd

f } = γεabcM̃ cd
f

is still presentγ

{Af , θf,e}1 = 1

{φe,φe′}1 = γVt

reduced phase space

phase space variables Af+, φe+, θf,e+
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Reduction, part 1: simplicity constraints

Analysis

both LG and discrete Plebanski (at this stage) have genuinely 
larger phase spaces than Regge calculus

Thus:

are still independent which is not true for a geometric configuration

Essentially, we have halved the SO(4) BF phase space down to an SU(2) BF phase space

in agreement with twisted geometries approach

phase space variables Af+, φe+, θf,e+

φe+

Freidel, Speziale ’10
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Reduction, part 2: gluing constraints

Procedure

special configuration:      boundary of equilateral 4-simplex

∆2 = {Ge, Ge′}1

can compute for arbitrary triangulations but inversion is tricky

{φe,φe′}2 = 0

compute Dirac matrix of constraints

compute Dirac brackets

{θe, θe′}2 = 0

{Af , θf}2 = 1
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Reduction, part 2: gluing constraints

Immirzi parameter has disappeared 
from the symplectic structure

Result:

first implementation of reality conditions on connection
in a discrete setting

Result:
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Reduction, part 2: gluing constraints

Analysis

calculating phase space path integral, one would have no Immirzi parameter 

Immirzi parameter is gone

we have reached Regge phase space

γ-free spin foam?

are no longer independentφe+

[length Regge calculus:  Regge ’61]

[phase space: Bahr, Dittrich 09, 
Dittrich, Hoehn 09]
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Reduction, part 2: gluing constraints

 gluing constraints not captured completely by

Generalizing the analysis:

K({A})
L({θ})remainder captured by a set conjugate constraints

can re-express gluing as non-local constraints on the area G̃e = cos φe − fe({A})

generic 4-simplex boundary

G̃e = cos φe − fe({A})

generic triangulations

constraint hypersurface :   length Regge calculus

constraint hypersurface :   area Regge calculus

constraint hypersurface :   length Regge calculus

[Barrett ’94]
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Reduction, part 2: gluing constraints
Degenerate configurations

Df Ce

Set 1: simplicity constraints

Set 2: gluing constraints

Df = Af+ −Af−

Ce = φe+ − φe−

Ef,e = θf,e+ − θf,e−

Ef,e

Gee′ = αee′+ − α̃ee′+

or

K({A})
L({θ})

Ge = φe+ − f(A),

non-degenerate

configurations

‘configuration space analysis’ of 4-simplex: obtain exactly 5 additional degrees 
of freedom if 4d volume is zero

[Conrady, Freidel ’08]

[Barrett, Fairbairn, Hellmann ’08]arise in asymptotic analysis
(vector geometries or SU(2) BF configurations)

Vt± = 0 degenerate 3-volume sin θe = 0 parallel normals

4-simplex example30d hypersurface 20d hypersurface
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Outlook

Statement and question

Immirzi parameter is no longer present after a complete reduction by simplicity and gluing 

should we be looking for γ-free spin foam models? [Alexandrov ’08, ’10]
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Outlook

irregular constraint systems require more careful analysis

Things to do

should deal with degenerate points separately

understand geometrical nature of constraints

reduction in gauge variant variables 

closer connection to continuum analysis

quantize the model

K({A})
L({θ})

generalize reduction of gluing constraints to arbitrary triangulations
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