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Introduction

In this talk:

@ Loop quantum gravity
@ Quantized isolated horizons
@ Yang-Mills matter fields

Why?

@ Matter contribution to BH entropy?
@ Consistency check of LQG



Introduction

Possible matter contribution to BH entropy:

Entanglement entropy of matter (sombeli et al. 86, Srednicki ‘93]

For example: Electromagnetic field

4
+(C1+(47r)3C2§2H+-.-) Inag + ..
H

In the context of LQG: Indistinguishable punctures with matter
degeneracy [Ghosh, Noui, Perez ‘13].



Introduction

In LQG:

@ kinematical quantization for matter fields
@ particularly natural: YM fields

@ not used for quantum IH (notable exception: non-minimally coupled

Scalar [Ashtekar, Corichi, Sudarsky ‘03])
By including YM matter fields: Consistency check.

@ implementation of matter boundary conditions on the horizon
@ Bekenstein-Hawking law for the entropy?
e U(1) vs. SU(2) gauge fixing

In addition:

@ also count YM states on the horizon?
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Hamiltonian YM theory

Consider YM theory with simple compact gauge group G:

1
SYM[A]:ng /(F/\*F 16g /FFW’FW,d“

@ (-,-): minus the Killing metric of Lie(G) (pos. definite !)
@ vector potential: A = ifA
@ YM magnetic and electric fields: B = i F, E = ig(xF)



Diffeomorphism covariant quantization

Poisson bracket

{AL(x), ES(y)} = —4ng°52656) (x, y)

Basic algebra generated by holonomies and fluxes [Rovelii smoiin Ashtekar + Lewandowsii. .|

h,(A) = Pexp (/pA) E,.(S) = é/sn'E,



Diffeomorphism covariant quantization

Quasilocal definition of non-Abelian charge subtle.

For S closed oriented surface

Modulus of flux [Corichi+Nucamendi+Sudarsky’'00,Ashtekar-+Beetle+Fairhurst'00]

1 1
electric: Qs := —/ IE|| magnetic : Ps = —/ IB]|
47 S 47 S

Covariant flux abbot, Deser ‘82, Thiemann'00, Zilker-+S, E+S]




Diffeomorphism covariant quantization

Quantization as for gravity, with gauge group G: [hiemann o7
Hym = L*(Ag,dpgy)

Basis: Charge-network states |y, A}, Ae: highest weight labels

Charge operator (+> area operator in LQG)

QS A =g D, Q) | 11,4

peYNS

Z{)\’(S) more complicated. Operates in ), 7,



Diffeomorphism covariant quantization

Electrodynamics: special case G = U(1).

o Basis: Charge-network states |y, n) = h - - - ik
@ n. € Z (charges)
@ For closed surfaces S: Gauss law = charge operator

Q(S) = —LE(S)

Action of charge operator [corichitKrasnover]

Q) vmy=g | > ne|lv.n)
eNS#)

g: elementary charge
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Classical phase space

Black hole in the presence of
gauge matter fields

@ M has inner boundary given by IH H =2 R x S2
@ = YM action picks up boundary term

@ = can be neglected by appropriately
restricting the phase space (c+n+s 00a+8+F 00]

o IH requires T,,/*/"=0 along any null normal /*

Energy-momentum tensor YM-field




Classical phase space

Use spin structure Spin™ (M) to work out symmetries

: ; I _ I= |
o F,, antisymmetric = Fyupp = Gag'€ap + Oup €ap
(b(AB)’: gc-valued symmetric tensor

EM-tensor in spinor bundle

1 1
Tange = “on (Dag> Pag) =: _g||¢AB”2

e use T,,/"I"=0

Matter BC (NEHs)

g = —2Re(e}) vols EI = —2Im(¢}) vols

@ generalization of [Ashtekar+Corichi+Krasnov ‘99,
Corichi+Nucamendi+Sudarsky ‘00]

o ¢} gc-valued Newman-Penrose coefficient (¢} := 1A 0B )



Classical phase space

Extending [Engle, Noui, Perez, Pranzetti '10] [Perez, Pranzetti '10]:

total action

SE Sgrav[Av E] + SYM[Av E] + SCS [AU+] 4 SCS[AO'_]

Symplectic structure SU(2) Chern-Simons theory: (ki CS level)
ch 01,02) = / 1AL N02As L i
where Al :=T"+ /25, e’ SU(2) connections on S* with curvature

. X 2 i .
F(Ar.) = F(N) + aiai(*E)' +dre'.
H



Classical phase space

BC in terms of Ashtekar connection: [arcix o

F(AT) =2 (V2 = 011 — ) (+E)

can be rewritten using

e dre’ =0 (I torsion-free)
e F(N = F(A") + c(*E)" (c: H— R extrinsic curvature scalar)
o ®13 =21T,, (I"kY + mtm”) = 2||¢1]]? for YM-fields

Coupling bulk <+ horizon (incl. matter):

FAs.) =2 (‘Vz —2[l¢1]* + Zod + g) +E'
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Quantum theory

Extending [Engle, Noui, Perez, Pranzetti '10] [Perez, Pranzetti '10]:
Hilbert space: Hiin = Hgrav ® Hym ® HE @ His

Implementation gravity constraints:

e F(A,.) picks up distributional contributions at punctures
@ boundary DOF described by CS theory on S? with punctures P

Hilbert space quantized SU(2) CS theory:

s = HUP(P, {ED)

k+




Quantum theory

Quantized BC imply coupling between jj,, j;r and j, :

o Ji(p):= % limeso fp ) F(As.)" (limits exist strongly)
o Ji(p) := Z lim._0 E'(Dc(p))
@ D(p): disk of radius € about p € P

quantized gravity BCs

Ji(p) VpeP

o d =2 (W, —2[|¢1]]?) + c (distortion parameter)

Solution BCs (as in matter-free case)

Jo=Jf +iz




Quantum theory

d, Wy, ¢ and ¢; have to be interpreted as local operators

distortion operator

d(p) = 2 (Val(p) - 211I12(p) ) +E(p)

Spherically symmetric configurations:

_ 2

@ defined as eigenvalues of distortion operator s.t. a(p) ==

® = jI = jp and j, = 0 vice versa (spherically symmetric states)



Quantum theory

Implementation of matter BCs:

° = ¢} — i(p)
° = {E:’ = —2¢lvols. defining equation for gge(p) = |é1ll(p)

New BC in QT:

ae(p) = 27r§‘2% (el.) charge-density operator

Ji.h

@ analogous for nontrivial magnetic charge
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Entropy of the charged BH

1) Count gravity states only

@ Fix the total charge Qu (or Q) and area ay of the BH

o Count #(surface) CS-states s.t. exist state in Hppys With
(Qu) =Quy and (ay) =ay
For distorted BHs: ¢; arbitrary = (/b\e not restricted. It follows that

Sp = %E%H + O(In ay) }

as before, independent of Qy (or Q}) .



Inclusion of matter DOF

Can we include matter in the counting?

@ No matter boundary term in symplectic structure, so no surface
Hilbert space (?)

@ Can still count field configurations (A1, Az ...) on the surface

Now details depend on choice of Qu, Q}, to be kept fixed:

o Qu behaves like >, VCasimir on A,. So finitely many
A-configurations for fixed Qp.

° (A?L, behave like v/ Casimir in ®,\p, so in general infinitely many
A-configurations for fixed Q},. For example

G=U): Quln) =g mln), ez
P

G =SU(2): a;-/: [Jotl ON @pjp=(1+i2+...)B...



Inclusion of matter DOF

2) Count gravity and matter states for U(1) keeping @y, fixed.

Regulator

[np] < Nimax for all p

Then

Nym (@ Np) :=[{n, ..., =[] < Nenas A g Y np = Qg
p

N(2Nmax)NP71

under the assumption Npax > g1 Q).



Inclusion of matter DOF

Then

State counting

k+1

BH’QH)_Z Z 8(agay — an)Ni( Ly DNe({p 1) (2Nmax)" ™

© aggy =4mB 3, \/(ds +dp)?— 1, dp =2j, +1
o Ni, (Ui ) = dim*,"P(P, (i )) (k= ki)

Verlinde formula

27 k+2 n 9
. il .4 sin ((2r + 1) {2290 sm 5
Ne({i}) = /o de —sin (5) (k+2)9 H E

sm

¢ r:= L% Z?:ljij



Inclusion of matter DOF

This gives

ﬁkmax aH
= | =S — o
S=hN 5 a +
ﬁ,\,max - In2 In(Nmax)
k /3 ™3

@ very similar to [Bombelli4+-Koul+Lee+Sorkin'86, Srednicki'93]
o B\ independent of CS k (compare [Ghosh, Noui, Perez ‘13))



Inclusion of matter DOF

3) Count gravity and matter states for U(1) keeping Qy fixed.
Asymptotics hard to determine, WIP eins:seisko]. From simplified model
expect

_Bkan  (Qn 5
5_54/E,+<g 5 Inay + ...

@ Similar to (but by no means same as) [Sen '12]
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BH entropy

Spherically symmetric BHs in SU(2) approach: defined as eigenstates of
distortion operatorienge, Noui, Perez, Pranzetti '10] [Perez, Pranzetti '10]

~ 2
dp)y =~ v VpeP

= for YM matter (requiring consistency with SU(2) framework):

Be(p)p = 2m Ly

@ direct coupling charge <> area eigenvalues

@ But: Both spectra discrete = generically no solutions



BH entropy

Possible resolutions:

@ for G = U(1): Bohr compactification Rp,,, = continuous charge
eigenvalues

@ analytic continuation to § =i
[Achour+Noui+Perez'15,Achour+Mouchet+Noui'16]

Bohr compactification:

o forU(l) = Spu = % +...
@ problem: only available for G Abelian



BH entropy

Analytic continuation to 3 =
@ continuous area eigenvalues (= works for any YM theory) from
. 1 .
Jp — 5(—1—&—/5,,), s, €R

@ CS level k becomes complex = requires analytic continuation of
Verlinde's formula

Dimension formula jachour+Noui+Perez'15,A+Mouchet+N'16]

: 2 1 se\” wns+i(l1—n) %
dlmHEioo({sp})”;% (3) emrtili=m3

sp: spin-network labels, s := ("7, s,,)/n




BH entropy

For Qu # 0: sp ~ Q(Ap) 726~ (sp fixed by A,), hence

n
dp=1% A Qu _ am
n 47Qy n 4mn

s =

@ = in highest order: Spy = % + ... for any G
@ charge discrete = counting CS DOF <« counting matter DOF
@ = charge contributes to lower order corrections in entropy:

BH entropy for G = U(1)

5BH=%+(g_1QH—1)InaH+...

@ Again: compare to [Sen '13]



Summary & Outlook
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@ studied IHs in the presence of YM fields
o derived classical and quantum BC for (distorted) charged IHs
e computed entropy of (distorted) charged IHs with/without

consideration of matter

We found: LQG picture works fine including quantized YM fields!
counting gravitational states only: For any G

_ Pran
Spa = 3 2 —|—O(|naH)

Including matter in the counting (U(1) case):

@ Ensemble defined by fixed Qy: Charge enters subleading order

@ Ensemble defined by fixed @};: Regulator! Modifies leading order,
charge dependent subleading order.

Qualitative agreement with other approaches.



Problems with spherically symmetric limit:

@ Requires constant charge density. Too few states for general G.

@ Analytic continuation following Achour et al:
aH _
SBH:T+(g 'Qu—1)Inay+...
Have an idea how to include magnetic charges:

@ Replace holonomies by exponentiated magnetic fluxes in HF algebra

@ Introduce nonzero magnetic flux through variant KS representation



What else can be done?

Technical stuff:
@ entropy: leading and subleading term for all cases
@ matter other than gauge fields

o cutoff: for field strength rather than for flux?
@ other possibilities to implement spherical symmetry

Conceptual stuff:

@ role of the regulator?
@ can matter cancel the Immirzi parameter dependence?
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Magnetic charges

Turns out that YM BH stable requires Py # 0 = include magnetic
charges (here: G =U(1))

@ Stokes' theorem: exponentiated magnetic fluxes through surface S
<> holonomy along 0S

@ Hence: Consider algebra of electric fluxes E(S) and (exponentiated)
magnetic fluxes Hs

[E(S),Hs/] = g I(S,05")Hs

@ Choose some variant of Koslowski-Sahlmann rep. ks 12

Representation

~

H(S) = eigfs B(O)has, E(S)

o B(®: background magnetic field



Magnetic charges

states |y, n|yo, m), Yo: background closed graph carrying magnetic
flux m

@ gauge invariance = no magnetic charge (for 9S = 0)

@ = introduce strings going from BH horizon to infinity
£ A = H hg [A],
@ get new states |7, n|vo, m, o, my)

= nontrivial magnetic charge

entropy computations may be generalized to this construction
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