
Introduction
Diffeo covariant quantum Yang Mills theory

Distorted charged black holes
The spherically symmetric limit

Summary & Outlook
Appendix: magnetic charges

Quantum theory of charged black hole horizons

Konstantin Eder, Hanno Sahlmann

FAU Erlangen-Nürnberg

K.E and H.S: Phys. Rev. D 97, 086016

December 3, 2018

Konstantin Eder, Hanno Sahlmann Quantum theory of charged black hole horizons



Introduction
Diffeo covariant quantum Yang Mills theory

Distorted charged black holes
The spherically symmetric limit

Summary & Outlook
Appendix: magnetic charges

Section 1

Introduction

Konstantin Eder, Hanno Sahlmann Quantum theory of charged black hole horizons



Introduction

In this talk:

Loop quantum gravity
Quantized isolated horizons
Yang-Mills matter fields

Why?

Matter contribution to BH entropy?
Consistency check of LQG



Introduction

Possible matter contribution to BH entropy:

Entanglement entropy of matter [Bombelli et al. 86, Srednicki ‘93]

Sent = c A
l2
UV

+ . . .

Log corrections from Euclidean path integral [Sen ‘12]

For example: Electromagnetic field

SPI = aH
4 +

(
C1 + (4π)3C2

Q4
H

a2
H

+ . . .

)
ln aH + . . .

In the context of LQG: Indistinguishable punctures with matter
degeneracy [Ghosh, Noui, Perez ‘13].



Introduction

In LQG:

kinematical quantization for matter fields
particularly natural: YM fields
not used for quantum IH (notable exception: non-minimally coupled
scalar [Ashtekar, Corichi, Sudarsky ‘03])

By including YM matter fields: Consistency check.

implementation of matter boundary conditions on the horizon
Bekenstein-Hawking law for the entropy?
U(1) vs. SU(2) gauge fixing

In addition:

also count YM states on the horizon?
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Hamiltonian YM theory

Consider YM theory with simple compact gauge group G :

YM action

SYM[A] = 1
8πg2

∫
M
〈F ∧ ∗F 〉 = 1

16πg2

∫
M

√
−gFµνIFµνI d4x

〈·, ·〉: minus the Killing metric of Lie(G) (pos. definite !)
vector potential: A = i∗ΣA
YM magnetic and electric fields: B = i∗ΣF , E = i∗Σ(∗F )



Diffeomorphism covariant quantization

Poisson bracket

{AI
a(x),Eb

J (y)} = −4πg2δb
a δ

I
Jδ

(3)(x , y)

Basic algebra generated by holonomies and fluxes [Rovelli,Smolin,Ashtekar+Lewandowski,. . . ]

hp(A) = P exp
(∫

p
A
)

En(S) = 1
g

∫
S

nIEI



Diffeomorphism covariant quantization

Quasilocal definition of non-Abelian charge subtle.

For S closed oriented surface

Modulus of flux [Corichi+Nucamendi+Sudarsky’00,Ashtekar+Beetle+Fairhurst’00]

electric: QS := 1
4π

∫
S
‖E‖ magnetic : PS = 1

4π

∫
S
‖B‖

Covariant flux [Abbot, Deser ‘82, Thiemann‘00, Zilker+S, E+S]

Q′S
I := 1

4π

∫
S
Adh(E)I P ′S

I = 1
4π

∫
S
Adh(B)I



Diffeomorphism covariant quantization

Quantization as for gravity, with gauge group G : [Thiemann ’97]

HYM = L2(ĀG ,dµG
AL)

Basis: Charge-network states |γ, λ〉, λe : highest weight labels

Charge operator (↔ area operator in LQG)

Q̂(S) |γ, λ〉 = g

 ∑
p∈γ∩S

Q(λp)

 |γ, λ〉
Q̂′(S) more complicated. Operates in

⊗
p πλp .



Diffeomorphism covariant quantization

Electrodynamics: special case G = U(1).

Basis: Charge-network states |γ, n〉 = hn1
e1
· · · hnk

ek

ne ∈ Z (charges)
For closed surfaces S: Gauss law ⇒ charge operator
Q̂′(S) := − 1

4π Ê(S)

Action of charge operator [Corichi+Krasnov’97]

Q̂′(S) |γ, n〉 = g

 ∑
e∩S 6=∅

ne

 |γ, n〉
g : elementary charge
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Classical phase space

Black hole in the presence of
gauge matter fields

M has inner boundary given by IH H ∼= R× S2

⇒ YM action picks up boundary term
⇒ can be neglected by appropriately
restricting the phase space [C+N+S ’00,A+B+F ’00]

IH requires Tµν lµlν=̂0 along any null normal lµ

Energy-momentum tensor YM-field

Tµν = 2√
−g

δSYM

δgµν = 1
4π

(
〈Fµρ ,F ρ

ν 〉 −
1
4gµν 〈Fαβ ,Fαβ〉

)



Classical phase space

Use spin structure Spin+(M) to work out symmetries

Fµν antisymmetric ⇒ F I
AA′BB′ = φ I

AB ε̄A′B′ + φ̄ I
A′B′ εAB

φ I
(AB) : gC-valued symmetric tensor

EM-tensor in spinor bundle

TAA′BB′ = − 1
2π 〈φAB , φAB〉 =: − 1

2π ‖φAB‖2

use Tµν lµlν=̂0

Matter BC (NEHs)

E⇐
I = −2Re(φI

1) volS2 B⇐
I = −2Im(φI

1) volS2

generalization of [Ashtekar+Corichi+Krasnov ‘99,
Corichi+Nucamendi+Sudarsky ‘00]
φI

1 gC-valued Newman-Penrose coefficient (φI
1 := ιAoBφI

AB)



Classical phase space

Extending [Engle, Noui, Perez, Pranzetti ’10] [Perez, Pranzetti ’10]:

total action

S = Sgrav[A,E ] + SYM[A,E] + SCS[Aσ+ ] + SCS[Aσ− ]

Symplectic structure SU(2) Chern-Simons theory: (k± CS level)

Ω±CS(δ1, δ2) = k±
4π

∫
S2
δ1Ai

σ± ∧ δ2Aσ± i

where Ai
σ± := Γi +

√
2π
aH
σ±e i SU(2) connections on S2 with curvature

F (Aσ±)i = F (Γ)i + 2π
aH
σ2
±(∗E )i + dΓe i .



Classical phase space

BC in terms of Ashtekar connection: [A+C+K ’99]

F (A+)
⇐=

i = 2
(
Ψ2 − Φ11 − R

24
)

(∗E⇐)i

can be rewritten using

dΓe i = 0 (Γ torsion-free)
F (Γ)i = F (A+)i + c(∗E )i (c : H → R extrinsic curvature scalar)
Φ11 = 2πTµν(lµkν + mµm̄ν) = 2‖φ1‖2 for YM-fields

Coupling bulk ↔ horizon (incl. matter):

F (Aσ±)i = 2
(

Ψ2 − 2‖φ1‖2 + π
aH
σ2
± + c

2

)
∗E⇐

i
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Quantum theory

Extending [Engle, Noui, Perez, Pranzetti ’10] [Perez, Pranzetti ’10]:

Hilbert space: Hkin = Hgrav ⊗HYM ⊗Hσ+
CS ⊗H

σ−
CS

Implementation gravity constraints:

F (Aσ±) picks up distributional contributions at punctures
boundary DOF described by CS theory on S2 with punctures P

Hilbert space quantized SU(2) CS theory:

Hσ±CS ≡ H
SU(2)
k± (P, {j±p })



Quantum theory

Quantized BC imply coupling between jp, j+
p and j−p :

Ĵ i
±(p) := k±

4π limε→0
∫

Dε(p) F̂ (Aσ±)i (limits exist strongly)

Ĵ i (p) := 2
κβ limε→0 Ê i (Dε(p))

Dε(p): disk of radius ε about p ∈ P

quantized gravity BCs

Ĵ i
±(p) = ±

aH
2π d+σ2

±
σ2
−−σ

2
+

Ĵ i (p) ∀p ∈ P

d = 2
(
Ψ2 − 2‖φ1‖2)+ c (distortion parameter)

Solution BCs (as in matter-free case)
jp = j+

p + j−p



Quantum theory

d , Ψ2, c and φ1 have to be interpreted as local operators

distortion operator

d̂(p) = 2
(

Ψ̂2(p)− 2‖φ̂1‖2(p)
)

+ ĉ(p)

Spherically symmetric configurations:

defined as eigenvalues of distortion operator s.t. d̂(p) = − 2π
aH

⇒ j+
p = jp and j−p = 0 vice versa (spherically symmetric states)



Quantum theory

Implementation of matter BCs:

⇒ φI
1 → φ̂I

1(p)
⇒ E⇐

I = −2φI
1volS2 defining equation for φ̂e(p) := ‖φ̂1‖(p)

New BC in QT:

φ̂e(p) = 2π Q̂(p)
â(p)

(el.) charge-density operator

analogous for nontrivial magnetic charge
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BH Entropy

Entropy of the charged BH

1) Count gravity states only

Fix the total charge QH (or Q′H) and area aH of the BH
Count #(surface) CS-states s.t. exist state in Hphys with

〈Q̂H〉 = QH and 〈âH〉 = aH

For distorted BHs: φ1 arbitrary ⇒ φ̂e not restricted. It follows that

SBH = βk
β

aH
4 + O(ln aH)

as before, independent of QH (or Q′H) .



Inclusion of matter DOF

Can we include matter in the counting?

No matter boundary term in symplectic structure, so no surface
Hilbert space (?)
Can still count field configurations (λ1, λ2 . . .) on the surface

Now details depend on choice of QH , Q′H to be kept fixed:

Q̂H behaves like
∑

p
√
Casimir on λp. So finitely many

λ-configurations for fixed QH .
Q̂′H behave like

√
Casimir in ⊗pλp, so in general infinitely many

λ-configurations for fixed Q′H . For example

G = U(1) : Q̂′H |n〉 = g
∑

p
np |n〉 , np ∈ Z

G = SU(2) : Q̂′H = |Jtot| on ⊗p jp = (j1 + j2 + . . .)⊕ . . .



Inclusion of matter DOF

2) Count gravity and matter states for U(1) keeping Q′H fixed.

Regulator

|np| ≤ Nmax for all p

Then

NYM(Q′H ,NP) :=|{n1, . . . , nNP : |np| ≤ Nmax, ∧ g
∑

p
np = Q′H}|

≈(2Nmax)NP−1

under the assumption Nmax � g−1|Q′H |.



Inclusion of matter DOF

Then

State counting

N (aH ,QH) =
∞∑

n=0

k+1∑
d±p1 ,...,d

±
pn =1

δ(a{di} − aH)Nk({j+
p })Nk({j−p })(2Nmax)n−1

a{di} = 4πβ
∑n

i=1

√
(d+

pi + d−pi )2 − 1, dp = 2jp + 1

Nk±({j±p }) = dimHSU(2)
k (P, {j±p }) (k := k+)

Verlinde formula

Nk({ji}) =
∫ 2π

0
dθ 1

π
sin2
(
θ

2

) sin
(
(2r + 1) (k+2)θ

2

)
sin
( (k+2)θ

2

) n∏
i=1

sin
(
di
θ
2

)
sin θ

2

r := b 1
k
∑n

i=1 jic



Inclusion of matter DOF

This gives

Entropy

S = lnN = βNmax
k
β

aH

4l2
P

+ . . .

βNmax
k ≈ ln 2

π
√
3

+ ln(Nmax)
π
√
3

very similar to [Bombelli+Koul+Lee+Sorkin’86, Srednicki’93]
βNmax

k independent of CS k (compare [Ghosh, Noui, Perez ‘13])



Inclusion of matter DOF

3) Count gravity and matter states for U(1) keeping QH fixed.
Asymptotics hard to determine, WIP [KE+HS+Selisko]. From simplified model
expect

S = β′k
β

aH

4l2
P

+
(

QH
g − 5

2

)
ln aH + . . .

Similar to (but by no means same as) [Sen ‘12]
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BH entropy

Spherically symmetric BHs in SU(2) approach: defined as eigenstates of
distortion operator[Engle, Noui, Perez, Pranzetti ’10] [Perez, Pranzetti ’10]

d̂(p)ψ = −2π
aH
ψ ∀p ∈ P

⇒ for YM matter (requiring consistency with SU(2) framework):

φ̂e(p)ψ = 2πQH
aH
ψ

direct coupling charge ↔ area eigenvalues
But: Both spectra discrete ⇒ generically no solutions



BH entropy

Possible resolutions:

1 for G = U(1): Bohr compactification RBohr ⇒ continuous charge
eigenvalues

2 analytic continuation to β = i
[Achour+Noui+Perez’15,Achour+Mouchet+Noui’16]

Bohr compactification:

for U(1) ⇒ SBH = aH
4 + . . .

problem: only available for G Abelian



BH entropy

Analytic continuation to β = i

continuous area eigenvalues (⇒ works for any YM theory) from

jp →
1
2(−1 + isp), sp ∈ R

CS level k becomes complex ⇒ requires analytic continuation of
Verlinde’s formula

Dimension formula [Achour+Noui+Perez’15,A+Mouchet+N’16]

dimHCS
k→∞({sp}) ≈

2
π

1
s 3
√

n

( se
2

)n
eπns+i(1−n) π

2

sp: spin-network labels, s := (
∑n

i=1 spi )/n



BH entropy

For QH 6= 0: sp ≈ Q(λp) aH
4πQH

(sp fixed by λp), hence

s =
∑n

p=1 sp

n = aH
4πQH

QH
n = aH

4πn

⇒ in highest order: SBH = aH
4 + . . . for any G

charge discrete ⇒ counting CS DOF ↔ counting matter DOF
⇒ charge contributes to lower order corrections in entropy:

BH entropy for G = U(1)

SBH = aH
4 +

(
g−1QH − 1

)
ln aH + . . .

Again: compare to [Sen ’13]
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Summary

studied IHs in the presence of YM fields
derived classical and quantum BC for (distorted) charged IHs
computed entropy of (distorted) charged IHs with/without
consideration of matter

We found: LQG picture works fine including quantized YM fields!
counting gravitational states only: For any G

SBH = βk
β

aH
4 + O(ln aH)

Including matter in the counting (U(1) case):

Ensemble defined by fixed QH : Charge enters subleading order
Ensemble defined by fixed Q′H : Regulator! Modifies leading order,
charge dependent subleading order.

Qualitative agreement with other approaches.



Summary

Problems with spherically symmetric limit:

Requires constant charge density. Too few states for general G .
Analytic continuation following Achour et al:

SBH = aH
4 +

(
g−1QH − 1

)
ln aH + . . .

Have an idea how to include magnetic charges:

Replace holonomies by exponentiated magnetic fluxes in HF algebra
Introduce nonzero magnetic flux through variant KS representation



Outlook

What else can be done?

Technical stuff:

entropy: leading and subleading term for all cases
matter other than gauge fields
cutoff: for field strength rather than for flux?
other possibilities to implement spherical symmetry

Conceptual stuff:

role of the regulator?
can matter cancel the Immirzi parameter dependence?
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Magnetic charges

Turns out that YM BH stable requires PH 6= 0 ⇒ include magnetic
charges (here: G = U(1))

Stokes’ theorem: exponentiated magnetic fluxes through surface S
↔ holonomy along ∂S
Hence: Consider algebra of electric fluxes E(S) and (exponentiated)
magnetic fluxes HS

[E(S),HS′ ] = g I(S, ∂S ′)HS′

Choose some variant of Koslowski-Sahlmann rep. [K+S ’12]

Representation

Ĥ(S) = e ig
∫

S
B(0)

h∂S , Ê(S)

B(0): background magnetic field



Magnetic charges

states |γ, n|γ0,m〉, γ0: background closed graph carrying magnetic
flux m
gauge invariance ⇒ no magnetic charge (for ∂S = ∅)
⇒ introduce strings going from BH horizon to infinity

f (string)
σ,ns [A] =

P∏
k=1

hnk
sk

[A],

get new states |γ, n|γ0,m, σ,m0〉
⇒ nontrivial magnetic charge
entropy computations may be generalized to this construction
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