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Motivation and background

We are interested in the discretization of gauge theories, and
gravity in particular, such that gauge invariance is preserved.
Doing this for gravity is a major unsolved problem.
Our work is based on the procedure used in [Freidel, Geiller,
Ziprick 1110.4833] and later developed in [Dupuis, Freidel, Girelli
1701.02439], which separates discretization into two steps:

Subdivision, or decomposition into subsystems.
Truncation, or coarse graining of the subsystems.

We combine this with the formalism described in [Donnelly,
Freidel 1601.04744] and [Geiller 1703.04748] (see also [Rovelli
1308.5599]), where the presence of boundaries in gauge theories
introduces:

New degrees of freedom (edge modes), which may be used to dress
observables and render them gauge invariant.
New boundary symmetries, which transform the edge modes and
control the gluing map between subsystems.
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Summary of results

In this work [Freidel, Girelli, Shoshany 1811.04360] we rigorously
discretize 2+1 gravity (with zero cosmological constant), while
keeping track of the boundaries of the subsystems and the
corresponding edge modes, symmetries and charges.
As will be shown in detail below, we find relations between:

The continuous phase space of piecewise flat and torsionless
geometries,
The discrete spin network phase space of loop gravity,
The phase space of a collection of particle-like curvature and
torsion defects.
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Flat 2+1D gravity (Λ = 0)

Let G be a Lie group and g its Lie algebra. A possible choice is
G = SU (2) and g = su (2). Bold font denotes algebra elements.
Let M be a 2+1-dimensional manifold and let Σ be a
2-dimensional spatial manifold such that M = Σ×R.
We define the following geometric variables:

A: g-valued connection 1-form,
E: g∗-valued frame field 1-form,
F ≡ dA + 1

2 [A, A]: g-valued curvature 2-form,
T ≡ dAE ≡ dE + [A, E]: g∗-valued torsion 2-form.

Let the dot product denote the Killing form: E · F ≡ Ei ∧ Fi. The
action and equations of motion are:

S =
∫

M
E · F, F = 0, T = 0.

The symplectic potential is:

Θ = −
∫

Σ
E · δA.
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Edge modes

Consider a generalized Euclidean gauge transformation

A 7→ g−1Ag + g−1dg, E 7→ g−1 (E + dAz) g,

where the rotation g is a G-valued 0-form, and the translation z is a
g∗-valued 0-form.
On-shell, S is invariant, but Θ transforms with a boundary term:

Θ 7→ Θ−
∫

∂Σ
(z · δA− (E + dAz) · ∆g) ,

where ∆g ≡ δgg−1 is a shorthand for the Maurer-Cartan form on
field space.
A and E can be dressed by adding new boundary degrees of
freedom (edge modes) in order to make them (and thus Θ)
invariant. A new boundary symmetry algebra is introduced,
which transforms the edge modes.
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A map of Waterloo

Represents the spatial manifold Σ.
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Decomposition into subsystems

The blue graph represents the spin network Γ.
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Truncating / coarse graining

We would like to keep only the relevant gauge-invariant
observables from each subsystem.
Assume that the only way to probe the geometry (curvature and
torsion) is using holonomies along loops of the spin network.
Then, as far as observables are concerned, the following are
equivalent:
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Curvature and torsion defects

More precisely:
Let γv be a loop in the spin network.
Let h, h∗ be the Cartan subalgebras of g, g∗.
Define Cartan elements Mv ∈ h and Sv ∈ h∗. They encode all the
gauge-invariant information we can obtain about the geometry
inside the loop.
We will see below that Mv and Sv are the charges of the edge mode
symmetries.
Mv and Sv have the same value whether the geometry inside the
loop is continuous, concentrated only at one point, or anything in
between.
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The truncated geometry

The disks represent Mv, Sv for each loop.
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Map legend

The spin network Γ is composed of loops γv, links e∗ and nodes c∗.
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The dual cellular decomposition ∆

To each blue link e∗ we assign a red dual edge e.
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Dual legend

∆ is composed of cells c, edges e and vertices v.
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Everything together

The spin network Γ and the cellular decomposition ∆.
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Summary

We have a spin network graph Γ dual to a cellular decomposition
∆ such that:

Each link e∗ of Γ is dual to an edge e of ∆,
Each node c∗ of Γ is dual to a cell c of ∆,
Each vertex v of ∆ is regularized by an infinitesimal disk v∗ and
dual to a loop γv.

The cells describe a piecewise flat and torsionless geometry.
The geometry is completely flat and torsionless everywhere on the
interior of each cell.
The curvature and torsion are concentrated at the vertices v, are
distributional:

F ∝ δ (v) , T ∝ δ (v) ,

and depend on the Cartan elements Mv, Sv as will be shown below.
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The holonomy variables inside the cells

Inside each cell c, we define:
hc (x): a dressed rotational holonomy from the node c∗ (at the
center of c) to a point x ∈ c.
yc (x): a dressed translational holonomy from the node c∗ (at the
center of c) to a point x ∈ c.

Then A and E are given inside c by:

A
∣∣
c= h−1

c dhc, E
∣∣
c= h−1

c dychc.

By construction, F = T = 0 inside c.
The relation for A in terms of hc may be inverted to find:

hc (x) = hc (c∗)−→exp
∫ x

c∗
A.

hc (c∗), the value of the dressed holonomy hc at the node c∗,
conveys extra information that cannot be obtained from the
connection alone. Note that in general hc (c∗) 6= 1.
Similarly, in general yc (c∗) 6= 0.
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The holonomy variables inside the cells
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The holonomy variables inside the disks

Inside each disk v∗, we analogously define:
hv (x): a dressed rotational holonomy from the vertex v (at the
center of v∗) to a point x ∈ v∗.
yv (x): a dressed translational holonomy from the vertex v (at the
center of v∗) to a point x ∈ v∗.
In general, hv (v) 6= 1 and yv (v) 6= 0.

Then A and E are given inside v∗ by:

A
∣∣
v∗= h−1

v dhv + h−1
v Mvhv dφv,

E
∣∣
v∗= h−1

v dyvhv + h−1
v (Sv + [Mv, yv]) hv dφv,

where φv is the angular coordinate on the disk.
By construction, F = pv δ (v) and T = jv δ (v) inside v∗, where

pv ≡ h−1
v Mvhv, jv ≡ h−1

v (Sv + [Mv, yv]) hv.

This means that F = T = 0 everywhere inside v∗. Note that v∗ is a
punctured disk, so v itself is not inside v∗, it is on its boundary!
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The continuity conditions on the cells

A and E must be continuous when moving from a cell c to an
adjacent cell c′. This is obtained by introducing

hcc′ = h−1
c′c : a constant G element,

yc′
c = −hcc′yc

c′hc′c: a constant g∗ element.
Then we have, for x on the boundary between the cells:

hc′ (x) = hc′chc (x) , yc′ (x) = hc′c

(
yc (x)− yc′

c

)
hcc′ .
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The continuity conditions on the disks

Similarly, for a cell c and a disk v∗ we introduce:
hvc = h−1

cv : a constant G element,
yc

v = −hvcyv
c hcv: a constant g∗ element.

Then for x on the boundary between the cell and the disk:

hc (x) = hcv eMvφv(x) hv (x) ,

yc (x) = hcv

(
eMvφv(x) (yv (x) + Svφv (x)) e−Mvφv(x)−yc

v

)
hvc.
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The right action

The dressed holonomies hc, yc, hv, yv may be acted upon by two
commuting actions.
The right action, with 0-form parameters g (x) and z (x), is:

hc 7→ hcg, yc 7→ yc + hczh−1
c ,

hv 7→ hvg, yv 7→ yv + hvzh−1
v .

It imposes the gauge transformation we have seen before:

A 7→ g−1Ag + g−1dg, E 7→ g−1 (E + dAz) g.
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The left action

Let H be the Cartan subgroup of G and h the Cartan subalgebra.
Define constant rotation parameters gc ∈ G, gv ∈ H and constant
translation parameters zc ∈ g∗, zv ∈ h∗ for each cell c and disk v∗.
The left action is:

hc 7→ gchc, yc 7→ zc + gcycg−1
c ,

hv 7→ gvhv, yv 7→ zv + gvyvg−1
v .

It leaves A and E invariant. It represents a new boundary
symmetry for the edge mode degrees of freedom. On the vertices,
it is generated by the charges Mv and Sv. (Note that gc, zc
commute with Mv, Sv.)
Since the left and right action commute, the charges Mv and Sv are
gauge-invariant.
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The discretized symplectic potential

We decompose Θ into a sum over cells and disks:

Θ = ∑
c

Θc + ∑
v

Θv∗ , Θc ≡ −
∫

c
E · δA, Θv∗ ≡ −

∫
v∗

E · δA.
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The boundary of the cells

The cell c does not contain the disks surrounding it. Thus the
boundary ∂c of each cell is composed of:

Edges, labeled (cc′) where c′ is an adjacent cell. Note that
(cc′) = (c′c)−1.
Arcs, labeled (cv) where v is an adjacent disk.
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The boundary of the disks

Each disk v∗ is punctured and so does not contain the vertex v.
Thus the boundary ∂v∗ is composed of:

The vertex v,
Arcs, labeled (vc) where c is an adjacent cell. Note that
(cv) = (vc)−1.

In conclusion, we may rearrange the sums as:

Θ = ∑
c

Θc + ∑
v

Θv∗ =
Stokes’

∑
(cc′)

Θcc′ + ∑
(vc)

Θvc + ∑
v

Θv.
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The edge term

On each cell, we plug in A = h−1
c dhc and E = h−1

c dychc and get:

Θc =
∫

∂c
dyc · ∆hc,

where ∆hc ≡ δhch−1
c is a shorthand for the Maurer-Cartan form on

field space.
After rearranging the sum, each edge (cc′) has two contributions,
one from each of the two cells c, c′ sharing the edge, with opposite
orientation since (cc′) = (c′c)−1:

Θcc′ =
∫
(cc′)

(dyc · ∆hc − dyc′ · ∆hc′) .

Using the continuity conditions, this simplifies to

Θcc′ = ∆hc′
c ·
∫
(cc′)

dyc,

where ∆hc′
c ≡ δhcc′hc′c is a constant.
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The holonomy-flux algebra

Defining the flux along the edge,

Xc′
c ≡

∫
(cc′)

dyc,

we get
Θcc′ = ∆hc′

c · Xc′
c .

We see that we have obtained the familiar spin network phase
space T∗G,

Θcc′ = ∆hc′
c · Xc′

c ≡ Tr
(

δhe∗h−1
e∗ Xe

)
,

where:
he∗ ≡ hcc′ is the holonomy along the link e∗ connecting the node c∗

to the node c′∗,
Xe ≡ Xc′

c is the flux along the edge e (dual to the link e∗) which is the
boundary between the cells c and c′.

27/38



The arc term

Similarly, on the arcs we obtain

Θvc = ∆hc
v · Xc

v,

where

∆hc
v ≡ δhvchcv, Xc

v ≡
∫
(vc)

d
(
eMvφv yv e−Mvφv +Svφv

)
.

This is again the spin network phase space T∗G, where now
hvc is the holonomy from the vertex v to the node c∗,
Xc

v is the flux along the arc (vc).
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The vertex term

On the vertices, we obtain after some calculations

Θv = Xv · δMv − (Sv + [Mv, Xv]) · ∆hv (v) ,

where the “vertex flux” Xv depends on yv (v).
If we define the “position” qv and “momentum” pv:

qv ≡ h−1
v Xvhv ∈ g, pv ≡ h−1

v Mvhv ∈ g∗,

we can write
Θv = qv · δpv − Sv · ∆hv (v) .

This may be interpreted as the phase space of a relativistic particle
with mass Mv and spin Sv. The phase space variables contain the
edge modes hv (v) and yv (v).
Since each edge is shared by two cells, and each arc is shared by a
cell and a disk, the edge mode contributions from each side of the
edge or arc cancel. However, the edge modes on the vertices (the
corners of the cells) have nothing to cancel with.
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The full discretized potential

In conclusion, the full discretized symplectic potential is:

Θ = ∑
(cc′)

∆hc′
c · Xc′

c −∑
(vc)

∆hv
c · Xv

c+

+ ∑
v
(Xv · δMv − (Sv + [Mv, Xv]) · ∆hv (v)) .

First term: Spin network phase space T∗G per link (cc′).
Second term: Spin network phase space T∗G per arc (vc).
Third term: Particle-like defects. These degrees of freedom are the
edge modes.
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The Gauss constraint

In the continuum, the Gauss constraint imposes T = 0
everywhere except the vertices.
In the discrete theory, we have one constraint on each cell and
disk. On each cell c:

∑
c′3c

Xc′
c = ∑

v3c
Xv

c .
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The Gauss constraint

On each disk v∗:

∑
c∈v

Xc
v = Sv + eMv yv (v) e−Mv −yv (v) .

The Gauss constraint generates the rotational part of the
symmetry transformations corresponding to the left action. Recall
that this is the edge mode symmetry which leaves A and E
invariant.
The constraint is satisfied identically in our construction.
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The curvature constraint

In the continuum, the curvature constraint imposes F = 0
everywhere except the vertices.
In the discrete theory, we have for each vertex v:

hc1c2 · · · hcNc1 = hc1v eMv hvc1 .

It generates the translational part of the symmetry corresponding
to the left action, and is also satisfied identically.
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Shrinking the disks

Using the curvature constraint, one can choose a particular
transformation parameter which considerably simplifies things:

Xv becomes simply the edge mode yv (v),
The vertex Gauss constraint becomes simply ∑c3v Xc

v = Sv.
If we now assume that Sv = 0 for all v, that is, there are no torsion
defects, then we may shrink the disks to points.

The length of all arcs becomes zero, and we can take Xc
v = 0 for all v

and c. Then the cell Gauss constraint simplifies to ∑c′3c Xc′
c = 0,

which is the correct constraint for loop gravity. The vertex potential
becomes that of a spinless particle: Θv = qv · δpv.
Therefore, the torsionless case corresponds to the usual loop
gravity phase space, along with a collection of curvature defects:

Θ = ∑
(cc′)

∆hc′
c · Xc′

c + ∑
v

qv · δpv.
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Freezing the edge modes

We can now also “freeze” the edge modes.
Recall that the “position” qv and “momentum” pv are:

qv = h−1
v (v) yv (v) hv (v) , pv = h−1

v (v)Mvhv (v) .

We interpret yv (v) as the position in the rest frame and Mv as the
rest mass, while hv (v) acts like a Lorentz transformation.
By setting yv (v) = 0 and hv (v) = 1, we are “undressing” the
holonomies. Then qv = 0 and ∆hv (v) = 0, so

Θv = qv · δpv − Sv · ∆hv (v) = 0.

The vertex (particle-like) potential has vanished.
In conclusion, the loop gravity phase space is a special case of the
full phase space, where the geometry is torsionless and the edge
modes are frozen:

Θ = ∑
(cc′)

∆hc′
c · Xc′

c , ∑
c′3c

Xc′
c = 0, ∏

i
hcici+1 = eMv .

35/38



Shrinking the cells

Instead of shrinking the disks, we may shrink the cells (or
equivalently, expand the disks).

The boundary of each disk is identified with the spin network loop
that contained it.
The edges (cc′) now have zero length, and thus the fluxes
Xc′

c ≡
∫
(cc′) dyc vanish.

Therefore, the spin network symplectic potential Θcc′ = ∆hc′
c · Xc′

c
vanishes, and we are left with

Θ = −∑
(vc)

∆hv
c · Xv

c + ∑
v
(qv · δpv − Sv · ∆hv) .

If we furthermore assume Sv = 0, then we can again take Xv
c = 0

for all v and c, and get

Θ = ∑
v

qv · δpv.

In conclusion, in the spinless case, the phase space may be reduced
to a collection of particle-like curvature defects.
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Summary

We have found a relation between:
The continuous phase space of piecewise flat and torsionless
geometries,
The discrete spin network phase space of loop gravity coupled to a
collection of particle-like curvature and torsion defects.

In the torsionless case, we further found a relation between:
The loop gravity phase space alone,
The phase space of particle-like curvature defects.
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Future Plans

The defect picture in our formalism suggests a new perspective
for addressing the problem of the continuum limit, possibly
related to that of [Delcamp, Dittrich, Riello 1607.08881].
In 2+1D, our formalism can be extended to include a “dual
polarization”, in which the holonomies and fluxes switch places.
(Paper to appear soon.)
The most challenging task is to generalize our formalism to the
physically relevant case of 3+1D.

The cells will now be 3-dimensional, and the spin network loops
will encircle the edges of the cells.
This is work in progress, but we have already been able to show
that piecewise flat and torsionless geometries in 3+1D satisfy the
Gauss, vector and scalar constraints of loop quantum gravity.

Thank you for listening!
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