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Overview

Long term: General problem of recovering semiclassical gravity once a 
quantum/emergent gravity model has been proposed.

Many different approaches: Semiclassical states/large N/composite Þelds/phase 
transitions/hydrodynamic limit will connect the microscopic d.o.f. with the 
macroscopic ones (e.g. classical phase space of GR+constraints)

Short term: coherent states in LQG (not just per se, but also for their impact 
on GFT)

1st part: a proposal for new coherent states (with insights from NC Fourier 
transform)[+epsilon: elucidate the relations with HK coherent states.]

2nd part: coherent states for collective/large scale observables.

Disclaimer: several proposals for coherent states. I will focus only on one (heat 
kernel). Generalizations might be possible. 
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Intro: coherent states

Coherent state as the closest possible approximation to a phase space point.

One possible approach to access the semiclassical limit of a quantum theory is 
to look for coherent states.

Caveat: discussion is at the kinematical level, but indeed dynamics is essential: 
one has to check that the CS are evolving nicely.
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Part I
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Gaussian: coherent state peaked on a point of the classical phase space

Creation annihilation operators

The scale controls the magnitude of the ßuctuations.

Notice that one can deÞne the real gaussian as the solution to the heat 
equation on the real line. 

Gaussian as heat kernel on the line
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Classical discrete phase space

Classical phase space parametrized (at Þxed 3-dimensional slice) by triads and 
connections

To construct quantum states the strategy is to pass from continuum structures 
to conÞgurations with support on graphs.

From now on, we forget about the continuum phase space, and we will be 
focussing on the description of geometry in terms of decorated graphs (ideally, 
a sampling of the continuum geometry, more on this later...)

We will consider a Þxed graph, suitably constructed, whose edges are 
decorated with SU(2) elements containing information about the connection 
and su(2) elements associated to integrated ßuxes

The embedding is Þxed too. One has to consider the case of dynamical graphs 
and dependence on the embedding. 

7

{ei
a(x), Ab

j (y)} = !" b
a" i

j " 3(x − y)

Monday, September 17, 2012



Classical discrete phase space/2

Triads and connections are stored into smeared quantities (ßuxes & 
holonomies): parallel transports on the edge of the (embedded) graph and the 
ßux as certain integral over plaquettes of the dual triangulation

Semiclassical states that we are seeking will store information about these 
discrete data speciÞed on a given graph.

This is a limitation of the discussion, further work is needed (ongoing project 
e.g. in GFT)
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Quantization

Classical phase space coordinates lead to the holonomy-ßux algebra

Note that h and ßuxes are not a canonical basis as the familiar p&qÕs of the 
particle on a line.

Important: In the rest of the discussion I will redeÞne the ßuxes by scaling 
them with an area, so that they are dimensionless.

Even more important: we want to compare quantum discrete states to classical 
discrete geometries. The reconstruction of a continuum (intrinsic and extrinsic) 
geometry is an additional step. The uncertainties in determining the 
corresponding continuum geometry will involve both classical and quantum 
effects.
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Coherent States for LQG

Kinematical states constructed out of graphs, with L links and V vertices

The wavefunction will be a function of L variables (normally group elements), 
one for each link of the graph.

Furthermore, gauge invariance is imposed by means of projection (through 
integrations on each vertex of the graph)

Already a lot is known on coherent states for LQG, at least at the kinematical 
level (Hamiltonian constraint still pending)

Applied in various contexts (LQG, spinfoam boundary states etc.)
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HallÕs states & analytic continuation

HallÕs states:  constructed with the smearing of the Dirac delta on Lie group 
with the heat kernel, and then analytically continue the peak group element.

Solve the heat equation, with initial condition given by the Dirac delta

These states are structurally very similar to gaussians.

Their peakedness properties are controlled by the heat kernel time parameter.

Properties were discussed in depth in the series of papers by Thiemann and 
collaborators
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Flux representation of LQG

All the previous work has been based on the construction of wavefunctions as 
functions on (several copies of) SU(2)

The possibility of having a Fourier transform between SU(2) and its Lie algebra 
gives us the opportunity to work with wavefunctions constructed on several 
copies of su(2).

Possibility given by properly deÞned plane waves

Flux representation of LQG, in which everything is expressed in terms of 
functions on su(2) endowed with a star product
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New (?) states

Heat kernel proposal: deÞne the coherent states edgewise with heat kernels by 
analytically continue the peak of the kernel from a group element of SU(2) to a 
group element of SL(2,C).

Reason: relations between SU(2), T*SU(2), SL(2C)

What about a state constructed multiplying the heat kernel with a plane wave, 
instead?

Reason: multiplication by a plane wave can be seen as a translation 
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Properties (List)
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Hall contÕd Plane wave

Holonomy 
expec.value*

correct + O(t) correct + O(t)

Flux expec. value correct + O(t) Exact

Fluctuations O(t) O(t)

Resolution of identity Yes Yes

Overlap properties Yes Yes

Annihilation Op. Yes ???
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In summary

Message: with a bit of work one might construct adapted coherent states 
such that their characteristics are optimal w.r.t. a given choice of variables 
parametrizing the classical phase space (at the discrete level)

However, so far, the state is speciÞed on a given graph and edge per edge, 
i.e. still in a microscopic sense

This corresponds to the speciÞc choice of parametrization of the discrete 
phase space

Other choices have been considered in the literature
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Comments

The expectation value of the holonomy operator is a bit off the peak for the 
expectation value. Consider a state which is peaked (i.e. the modulus of the 
wavefunction is maximum) on an SU(2) element
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Comment contÕd

The situation can be ameliorated with the introduction of operators, functions 
of the holonomy, that correct this feature at least for peaks close enough to 
the identity element of SU(2).

This result is independent from t, but depends on the position of the peak. 
However, for holonomies close to the identity (small curvature), it is ok. The 
function f can be computed
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Relation to the HK?

It is clear that these states are closely related to the HK. However, we were 
not able to make the relationship as clear as it is possible.

In Fourier space it is manifest, but given the presence of the star product it is 
not obvious to understand what the operator is (even though it should be 
some generalization of the Laplacian)

The expectation is correct.
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Answer: easy
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There is also an annihilation operator

E i Ux 0 = Ux 0 E i
−x 0
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Properties (Updated List)
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Hall contÕd Plane wave

Holonomy 
expec.value*

correct + O(t) correct + O(t)

Flux expec. value correct + O(t) ???

Fluctuations O(t) O(t)

Resolution of identity Yes Yes

Overlap properties Yes Yes

Annihilation Op. Yes YES
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Part II
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Tensor product states

Choose a geometry (intrinsic and extrinsic)

Limitation to nice slices (low curvature)

Choose a graph and a given embedding (e.g. Poissonian sprinkling, method 
proposed by Bombelli, Corichi and Winkler)

Decorate the graph with the labels inferred from the embedding into the 
geometry

Construct a factorized state (before gauge invariance)

Optimize the various free parameters to minimize ßuctuations

Based on a Òmicroscopic samplingÓ of geometry
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Sahlmann, Thiemann, Winkler 2001
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The problem(s)

When you have a simple plane wave, you do not sample it locally, but rather you 
specify a global charge.

Need coarse grained quantities referring to more global quantities (analogues of 
center of mass quantities, etc.)

When interactions are present, factorized states might be problematic.

We do not want to be semiclassical at the scale of the single edge of the graph 

Example: ßuid dynamics does not come from a bunch of semiclassical particles 
(rather, one assumes the existence of certain equilibrium conditions allowing for a 
coarse grained description of the full quantum density matrix in terms of ßuid 
equations)

Advantage of LQG: already working with geometrical degrees of freedom (might 
be that the situation is more complicated, and that the metric degrees of freedom 
should appear as bound states in some pregeometric theory)
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Statistical properties of factorized states

Clearly, if we have an observable deÞned on each edge

and 

While mean values have no problem, the ßuctuations grow with the size of the 
system we are considering (in this sense they are not optimized)
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Ôe

#

=
"

e

∆Oe

Monday, September 17, 2012



Example: ßuxes

Just to Þx the ideas, let us assume that we want to consider the ßux across 
a surface S intersecting several times the graph, on different links

We might need to construct a non-factorized state adapted to this 
observable.

and to the conjugate variable
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Conjugate variable

The holonomy operator has the wrong commutation relation with ßuxes to 
represent some form of canonically conjugate variable (the integrated 
connection would be one)

There is one approximate Òcanonically conjugated variableÓ

One possible choice of canonically conjugate variable is

Clearly there are many ambiguities: one has to Þnd a complete parametrization 
of the discrete classical phase space in terms of extended surfaces/objects 
(analogy: phase space of a many particle system)
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Wavefunction

All the quantities we are manipulating are gauge variant: they must be then 
trasported to the same reference point, along a give system of paths, when we 
want to combine them and construct consistently a state

For instance, in our simple example

Consequence: while the observables associated to the single edges might get 
large quantum ßuctuations, the collective one has (Þxed) minimal ßuctuations 
(independently from the number of microscopic edges)
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More general

Consider a graph with N links (before gauge invariance is imposed), each link 
colored with a ßux that is computed with respect to a unique reference point.

A GL(N) transformation (most general invertible linear transformation) maps 
the state sampled through the isolated links to a state sampled through links 
group together in various ways.

One state is not factorized with respect to the degrees of freedom/
coordinates with which the other state is constructed. 

Bottomline: even when working with a Þxed graph, one can use non-factorized 
states designed to store the information about extended portions of the 
geometry from the very beginning.

At the classical level is obviously the same, provided that an invertible map 
between micro and macro coordinates exists.

At the quantum level, statistical properties (e.g. ßuctuations) can be adapted to 
the situation.
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Where is the RG? 

Scenario depicted so far: given the algebra of operators, dictated by the 
classical theory (modulo ordering ambiguities), you try to construct the 
wavefunctions (i.e. the Hilbert space of physical states)

Where is the RG? 

If we use extended/collective variables, scales are appearing in the states! Not 
just the scale associated to the edges (naively the Planck scale) but rather 
scales associated to the extension of the geometrical structures used to deÞne 
the states themselves.

Remark: there are indeed several scales. The curvature(s) scales, the scale of 
the observables to be optimized, and the sampling scale used to construct the 
scale (statistical in nature)

More to be understood, here.
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Discussion

Relevance: new boundary states for spinfoams/GFT

Mean Þeld approach to GFT (work in progress with A. Pittelli)

Shortcomings: staircase problems

Limitation/1: need to understand how to fully parametrize the classical 
(discrete) phase space in terms of ÒextendedÓ variables

Limitation/2: single graph (even though a random one). LQG includes all the 
possible graphs. There a suitable weighting/equilibrium condition has to be 
introduced (GFT?).

Dynamics: missing, but crucial to decide how to construct meaningful states 
(GFT again?)
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