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Introduction

In recent years, quantization of isotropic models in LQC, has revealed very rich
physics at the Planck scale. Rigorous understanding reached using extensive
analytical and numerical methods and phenomenological models. (Important
contributions by many colleagues and groups around the world.)

The classical big bang singularity is replaced by a big bounce in the Planck
regime. Underlying quantum geometry, via non-local nature of field strength of
the connection, removes the classical boundaries of spacetime. Examples of
isotropic models where singularity resolution has been explicitely shown at the
quantum level: massless scalar in spatially flat and curved spacetime, in
presence of positive and negative cosmological constants, massive scalar etc.

Effective spacetime description captures details of the underlying quantum
theory to an excellent precision. In particular, for universes which bounce at
scales greater than Planck volume. Many physical implications studied. Also
used to study cosmological perturbations and inhomogeneous models.

Using effective dynamics, it was recently proved that there exist no strong
singularities in the spatially flat isotropic model (PS (09)). These include exotic
singularities other than the big bang. However, there can exist events where
curvature invariants diverge, as first shown by Cailleteau, Cardoso, Vandersloot,
Wands (08). These were proved to be weak singularities, which can occur in
certain dark energy scenarios. These results extend to spatially curved isotropic
models (PS, Vidotto (10)).
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Going beyond isotropy

Due to non-zero Weyl curvature, Bianchi models provide the simplest yet a very
non-trivial test of the physics as understood in isotropic LQC. Very rich physics.
Many important lessons can be potentially drawn, including for qualitative dynamics,
BKL behavior, cosmological perturbations and generic resolution of singularities.

Quantization of Bianchi-I, Bianchi-II and Bianchi-IX models performed (Ashtekar,
Wilson-Ewing (08-10)). Various subtleties in quantization addressed. Limitations of
previous works overcome. What is the resulting physics of these models? (For

Bianchi-I model, some implications studied by Chiou, Vandersloot (07); Maartens, Vandersloot (08);

Calleteau, PS, Vandersloot (09); Artymowski, Lalak (11))

Some of the questions we will address in this talk:

In isotropic models, bounces occur when energy density reaches a maximum
value. What is the nature of bounces in Bianchi models? Note that in the
isotropic models, due to zero Weyl curvature, for matter with a fixed equation of
state, all curvature invariants can be written in terms of energy density. This is
no longer true in Bianchi models.

What are the properties of energy density, expansion and shear scalars? Are
they bounded? Recall that these quantities determine the fate of geodesic
extendability via Raychaudhuri equation in GR, and also of curvature
components.

What is the fate of strong singularities in Bianchi-I model? – p. 3



Outline

Nature of singularities – a very brief overview

A brief re-cap of isotropic model (of needed results)

Towards the resolution of strong singularities in Bianchi-I model. For matter with
a vanishing anisotropic stress, i.e. ρ = ρ(p1p2p3), (no magnetic fields)

All known strong singularities are resolved
Weak singularities can occur
Examples: perfect fluid with equation of state w > −1.

Physics of Bianchi-II and Bianchi-IX models
Bounds on energy density, expansion and shear scalars
Role of energy conditions in Bianchi-II model
Non-trivial role of inverse triad corrections for spatially compact topology

Applications: massive scalar field in Bianchi models (and how to make
pancakes from cigars).
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Nature of singularities
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Different types of Singularities

Classification of events where curvature invariants diverge in isotropic models. Can
also occur in Bianchi models.

Big Bang/Big Crunch: The scale factor vanishes in finite time causing the
energy density blows up. Curvature invariants diverge. Occurs for all matter
satisfying null energy condition (except Λ): ρ+ P ≥ 0.

Type I singularities (Big Rip): The scale factor, energy density and pressure
diverge at a finite time in future. The universe rips apart. Dominant energy
condition (ρ > |P |) is violated.

Type II singularities (Sudden): Discovered by Barrow and co-workers (01-04).
Occur at finite value of scale factor and a finite time. As the singularity is
approached the energy density vanishes but pressure diverges, causing
divergence in spacetime curvature. Generalization to anisotropic models by
Barrow, Tsagas (04).

Type III singularities (Big freeze): Singularity occurs at a finite value of scale
factor and in finite time. Energy density, pressure and curvature invariants
diverge.
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Strength of Singularities

Not all singularities where curvature invariants diverge, necessarily signal the
breakdown of laws of physics. It is important to understand whether these are
strong or weak. Strong singularities: Big bang/big crunch, Big rip; Weak
singularities: Sudden singularities, shell-crossing singularities.

To determine the stength of singularities, one uses necessary and sufficient
conditions by Clarke and Królak (1985) (based on the seminal work of Tipler (77)
and Królak (80’s)). These involve integrals of Ricci and Weyl curvature tensors over
geodesics.
For a spacetime, admitting an incomplete, inextendible null geodesic parameterized
by affine parameter τ , a singularity at τ = τo is Królak strong, if and only if

∫ τ

0

dτ ′Rαβu
αuβ

or
∫ τ

0

dτ ′(

∫ τ ′′

o

dτ ′′|Cαβµνu
βuν |)2

diverges as τ → τo.

A singularity can be strong by Królak’s criteria, yet it can be weak according to
Tipler’s criteria. However, all singularities which are strong by Tipler’s criteria are
also strong by Królak’s criteria.
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Geometry of Singularities

Structure of singularities is much richer in the anisotropic models. Classified for
various matter models in Bianchi spacetimes in 60’s (Doroshkevich, Thorne, Ellis,
Jacobs, McCallum, ...) using behavior of three scale factors.

Point-like or isotropic singularities: All scale factors vanish as the singularity is
reached. In general, requires matter with a stiff equation of state (or a massless
scalar). a1, a2, a3 → 0.

Barrel singularities: One of the scale factors approaches a finite value. Other
two scale factors vanish. Example: a1 → finite, a2, a3 → 0.

Cigar singularities: One of the scale factors diverges. Other two approach zero.
Example: a1 → ∞, a2, a3 → 0

Pancake singularities: One of the scale factors vanishes. Other two approach a
finite value. Example: a1 → 0, a2, a3 → finite

All of these singularities occur with a divergence in ρ, and expansion (θ) and shear
(σ2) scalars. At these singularities curvature invariants diverge and geodesic
equations break down. These are strong singularities a la Tipler and Królak’s
conditions.
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A brief re-cap of isotropic models
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Hamiltonian Constraint (flat model)

Cgrav = −
∫

V

d3xN εijk F
i
ab (E

ajEbk/
√

| detE|)

Procedure: Express Cgrav in terms of elementary variables and their Poisson
brackets

– Classical identity of the phase space: (Thiemann (98))

εijk(E
ajEbk/

√

| detE|) −→ Tr(h
(µ)
k {h(µ)−1

k , V }τi)

(Peak tied to the fiducial volume of the cell introduced to define symplectic structure)

– Express field strength in terms of holonomies and quantize. Leads to quantum
difference equation.

Two types of quantum modifications:

(i) Curvature modifications from field strength. Solely responsible for bounce at
ρ = ρcrit ∼ 0.41ρPl.

(ii) Inverse triad corrections (also for the matter part). Not tied to any curvature
scale in the flat model. Only physically meaningful for spatially compact models (eg.
a closed universe).
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Effective Dynamics

Based on gemoetrical formulation of quantum mechanics. Effective dynamics turns
out to be an excellent approximation to quantum dynamics for various models.
Extensive numerical simulations performed over last 6 years.
Examples: massless scalar, inflationary potential, closed universe, old quantization
of Bianchi-I model.

Can be obtained using coherent state techniques under controlled approximations.

Derived for different matter sources: Massless scalar (Taveras (08)), Dust (Willis
(04)) (Another approach developed by Bojowald et al)

Caveat for this talk: We assume the validity of effective dynamics in Bianchi models.

Effective Hamiltonian: In terms of symmetry reduced connection c and triad p, for
lapse N = |p|3/2 = V

Heff = − 3V

8πGγ2

sin2(µ̄c)

µ̄2
|p|1/2 +HmattV

where µ̄ = λ/
√

|p|, with λ2 = 4
√
3πγl2Pl.

Modified Friedmann equation:

H2 =
8πG

3
ρ

(

1− ρ

ρcrit

)

+O(ǫ2), ρcrit =
3

8πGγ2λ2
= 0.41ρPl
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Phase of super-inflation when ρmax < ρ < ρmax/2. Many interesting
implications, including for the probability of inflation (Ashtekar, Sloan (10);
Corichi, Karami (10))

Allowed range of energy density 0 ≤ ρ ≤ ρcrit implies that the expansion scalar
of geodesics, θ = V̇ /V has an upper bound: θmax = 3/(2γλ). This bound is
responsible for completeness of geodesics in the effective spacetime PS(09).

Resulting physics leads to uniqueness of underlying quantization. Only one loop
or loop inspired quantization of isotropic cosmology has well defined UV and IR
limits and a bounded θ (Corichi, PS (09)). This is the improved dynamics
(Ashtekar, Pawlowski, PS (06))

Spacetime curvature:

R = 6

(

H2 +
ä

a

)

= 8πGρ

(

1− 3w + 2
ρ

ρcrit
(1 + 3w)

)

It is bounded above in effective spacetime unless w = P/ρ → ±∞. There can
be situations where the curvature invariants diverge. (Sudden singularities).

However, these are weak singularities and geodesics can be extended beyond
them. These are in general not resolved by quantum geometry. (Some
exceptions found for spatially curved models (PS, Vidotto (10))
All strong singularities are generically resolved in isotropic flat LQC. – p. 12



Example of a weak singularity in isotropic LQC

With an appropriate choice of equation of state, evolution can lead to a singularity
where pressure diverges at a finite energy density.

P = −ρ− f(ρ), f(ρ) =
ABρ2α−1

Aρα−1 +B

For A/B < 0, we obtain in classical theory: (a → αs, ρ → ρs, |P | → ∞).

The divergence in pressure causes curvature invariant to blow up at a finite scale
factor. This is an example of a sudden singularity.
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Strong singularities and Bianchi-I model
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Bianchi-I model

Spacetime metric: ds2 = −dt2 + a2
1 dx

2 + a2
2dy

2 + a2
3dz

2

The scale factors are related to triads as:

p1 = ε1 l2 l3 |a2 a3|, p2 = ε2 l1 l3 |a1 a3|, p3 = ε3 l2l1|a1a2|

Directional Hubble rates:
Hi =

ȧi

ai
=

1

2

(

ṗj
pj

+
ṗk
pk

− ṗi
pi

)

Expansion scalar: θ = (H1 +H2 +H3)

Shear scalar σ2 = σαβσαβ

σ2 =

3
∑

i=1

(Hi − θ)2 =
1

3

(

(H1 −H2)
2 + (H2 −H3)

2 + (H3 −H1)
2)

These scalars determine the fate of geodesic extendibility in spacetime
(Raychaudhuri equation). θ′ = −θ2/3− σαβσαβ −Rαβu

αuβ

A divergence of these quantities, also implies associated divergence of spacetime
curvature components.
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Bianchi-I model in LQC

Quantization: Early works (Chiou, Szulc, Martin-Benito, Mena-Marugan,
Pawlowski). Improved quantization: (Ashtekar, Wilson-Ewing (09)). Leads to a
non-singular quantum difference equation. Isotropic LQC obtained by integrating
out anisotropic degrees of freedom.

Effective Hamiltonian: Similar treatment as in the isotropic models. Captures
underlying quantum geometric effects of the quantum constraint in a continuum
effective spacetime description.

Heff = − 1

8πGγ2V

(

sin(µ̄1c1)

µ̄1

sin(µ̄2c2)

µ̄2
p1p2 + cyclic terms

)

+ Hmatt

where

µ̄1 = λ

√

p1
p2p3

, µ̄2 = λ

√

p2
p1p3

, and µ̄3 = λ

√

p3
p1p2

.

Matter Hamitlonian treated as in Fock quantization.
Vanishing of the Hamiltonian constraint ⇒

ρ =
1

8πGγ2λ2
(sin(µ̄1c1) sin(µ̄2c2) + cyclic terms) ≤ 0.41ρPlanck .

The maximum of energy density coincides with that of the isotropic model.
– p. 16



Expansion and Shear scalars

Using Hamilton’s equations,

ṗi =
pi
γλ

(sin(µ̄jcj) + sin(µ̄kck)) cos(µ̄ici)

It is bounded above.

Immediately leads to universal bounds on directional Hubble rate, θ and shear
scalar.

Maximum of Hubble rates and expansion scalar: Hmax
i = 3/(2γλ) = θmax

Maximum of shear scalar:

σ2
I max =

10.125

3γ2λ2

As for the energy density, the upper bound on expansion and shear scalars is
independent of the matter content.

Upper bounds on ρ, Hi, θ and σ2 are direct consequences of the underlying
quantum geometry. In the limit λ → 0, (ρ, Hi, θ,σ2) → ∞.
Bounds are not saturated in evolution. Bounces occur before their maximum values
are reached.

Does the boundedness of above physical quantities, guarantee no singularities?
– p. 17



Curvature invariants in Bianchi-I model

Ricci scalar

R = 2

(

H1H2 +H2H3 +H3H1 +

3
∑

i=1

äi

ai

)

Kretschmann scalar

K = 4

(

H2
1H

2
2 +H2

1H
2
3 +H2

2H
2
3 +

3
∑

i=1

ä2
i

ai

)

Square of the Weyl curvature

CαβµνC
αβµν =

4

3

[

H2
1H

2
2 +H2

2H
2
3 +H2

3H
2
1 −H1H2H3(H1 +H2 +H3)

+

{

ä1

a1

(

ä1

a1
−H1H2 −H3H1 + 2H2H3 − 1

)

+ cyclic terms

}

]

In the classical theory, all curvature invariants diverge as the point, barrel, pancake
or cigar singularities are approached.

In effective dynamics, Hi are universally bounded. Fate of divergence controlled by
äi/ai terms.
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Ricci scalar in LQC

R = −24πG(ρ+ P ) +
1

V

(

ṗ1
p1

(κ12 + κ13) +
ṗ2
p2

(κ23 + κ21) +
ṗ3
p3

(κ31 + κ32)

)

+
1

2γ2λ2

[

3 + cos2(µ̄1c1)
(

sin2(µ̄3c3) + 4 sin(µ̄2c2) sin(µ̄3c3)− cos(2µ̄2c2)
)

+ cos2(µ̄2c2)
(

sin2(µ̄1c1) + 4 sin(µ̄1c1) sin(µ̄3c3)− cos(2µ̄3c3)
)

+ cos2(µ̄3c3)
(

sin2(µ̄2c2) + 4 sin(µ̄1c1) sin(µ̄2c2)− cos(2µ̄1c1)
)

−
(

sin2(µ̄1c1) sin
2(µ̄2c2) + sin2(µ̄1c1) sin

2(µ̄3c3) + sin2(µ̄2c2) sin
2(µ̄3c3)

)

]

.

Energy density and ṗi/pi are univerally bounded in LQC. κij = (cipi − cjpj) are
constants of motion.

Ricci scalar can only diverge if in evolution, volume becomes zero and/or pressure
becomes infinite, at a finite value of ρ, θ and σ2

Analysis of expressions for Kretschmann scalar and square of the Weyl curvature
also lead to above conclusion.

For all matter, considered so far in Bianchi models in GR, curvature invariants turn
out to be bounded in effective dynamics. – p. 19



Geodesics and Strength of singularities

What is the nature of singularities where curvature invariants diverge in Bianchi-I
LQC? Anaylsis of null geodesics and Królak’s conditions for strong singularities
leads to following conclusions:

In GR, point-like, barrel, cigar and pancake singularities involve one of the scale
factors to vanish and an associated divergence of directional Hubble rates. In
LQC, due to boundedness of Hi, all these singularities are avoided. The values
of the scale factors at which geodesic evolution breaks down in GR are
excluded from the effective spacetime of LQC.

All known types of strong singularities of the classical theory in Bianchi-I model
are generically resolved.

Curvature invariant diverging events due to infinite pressure at finite values of
scale factors: Geodesic equations are well behaved. Divergence occurs only in
äi/ai terms. Integrals in Królak’s conditions are finite. These are generalizations
of (sudden) weak singularities in isotropic LQC.

Curvature invariant diverging events due to vanishing volume: If in an evolution,
curvature invariants diverge at a finite value of ρ, θ and σ2 at a finite value of the
affine parameter and a vanishing volume, then geodesic equations in effective
spacetime break down. Strength of singularity depends on details of such a
‘solution.’ There is no known solution satisfying these properties in Bianchi
models.
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Fate of singularities: physical examples

For a perfect fluid with a constant equation of state w > −1 (w = P/ρ),
boundedness of energy density implies that physical volume never becomes
smaller than Vmin:

Vmin =

(

8πGγ2λ2C

3

)
1

1+w

where C is a constant determined by intial conditions.
For such a matter,

Geodesic evolution never breaks down. In contrast, in GR, for perfect fluid with
w > −1, geodesics are incomplete.

Tipler and Królak’s conditions are never satisfied. Recall that in GR, such a
perfect fluid always leads to a strong singularity.

Exotic matter: If we assume that as in the isotropic models, for an exotic choice of
equation of state, big rip, sudden and big freeze singularities exist in classical
Bianchi-I model. Then, for such a matter model,

As in isotropic LQC, no generalized big rip or big freeze singularities occur in
Bianchi-I LQC.

Generalized sudden singularities can occur in Bianchi-I LQC, as in isotropic
models. However, these are harmless. Geodesics can be extended beyond
them and their strength is weak.
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Bounds on ρ, θ and σ2 in Bianchi-II and Bianchi-IX models
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Bianchi-II model

Important subtleties in quantization in comparison to the Bianchi-I model (Ashtekar,
Wilson-Ewing (10)). Physical implications: general features with arbitrary matter
(Gupt, PS (11)); massless scalar (Corichi, Montoya (12))
Effective Hamiltonian:

Heff = − p1p2p3
8πGγ2λ2

[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms]

− 1

8πGγ2λ2

[

α

λ

(p2p3)
3/2

√
p1

sin (µ̄1c1)−
(1 + γ2)

4

(

p2p3
p1

)2
]

+Hmatt

Properties of energy density:

ρ =
1

8πGγ2λ2
[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms]+

1

8πGγ2

[

x

λ
sin (µ̄1c1)−

(1 + γ2)x2

4

]

where x = α
√

p2p3
p3
1

.

Energy density has a global maximum: ρ ≤ ρmax ≈ 0.54ρPl.

If one assumes the validity of effective dynamics till arbitrary small values of triads,
then energy density can take arbitrarily large negative values. This is also under the
assumption that solutions probing arbitrarily small triads exist. In practice such
solutions have not been found.
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Behavior of energy density in Bianchi-II model provides insights for the first time on
the role of energy conditions in LQC. Recall, that in GR, energy conditions are used
to eliminate potentially unphysical solutions. So far, we did not put any restriction on
the matter to be physical in effective theory. As in GR, one can assume the validity
of weak energy condition (WEC), which restricts the choice of matter.

Expansion scalar:

θ =
1

2γλ
(sin(µ̄1c1 + µ̄2c2) + sin(µ̄2c2 + µ̄3c3) + sin(µ̄3c3 + µ̄1c1) + λx cos (µ̄1c1))

If solutions exist such that x → ∞ in effective dynamics, then expansion scalar can
grow without bound. However, for all matter satisfying WEC, the maximum allowed
value of θ is:

θmax ≈ 6.05

2γλ
≈ 5.60

lPl

Shear scalar:
Has similar dependence on x as the expansion scalar. For matter satisfying WEC,

σ2
II max ≈ 57.58

3γ2λ2
≈ 65.82

l2Pl

In Bianchi-II model, energy conditions play an important role on the values of upper
bounds of expansion and shear scalars. Only when the energy density is
unbounded below, the expansion and shear scalars are unbounded. For all other
matter, θ and σ2 are bounded. – p. 24



Bianchi-IX model

Quantization: Wilson-Ewing (10)
Some details of physics: PS, Gupt (11)

The topology of the manifold is spatially compact S3. Fiducial volume
Vo =: ℓ3o = 16π2. Inverse scale factor effects, a la Thiemann (98) play an important
role.

Effective Hamiltonian:

Heff = −
p1p2p3

8πGγ2λ2

[

sin (µ̄1c1) sin (µ̄2c2) + cyclic terms

]

−
εℓo

8πGγ2λ

[

(p1p2)
3/2

f(p3) sin µ̄3c3 + (p2p3)
3/2

f(p1) sin (µ̄1c1) + (p3p1)
3/2

f(p2) sin (µ̄2c2)

]

−
ℓ2o(1 + γ2)

32πGγ2

[

2(p2

1 + p
2

2 + p
2

3) − (p1p2)
2
f(p3)

4
− (p2p3)

2
f(p1)

4
− (p3p1)

2
f(p2)

4

]

+ HmattV

Analysis of energy density reveals that if the approach to the singularity is isotropic,
then there exists a universal maximum: ρmax ≈ 11.74ρPl.
For anisotropic approach to singularity, ρ is finite, except for an isolated case where
two of the triads vanish and the third diverges. If effective dynamics is true even
when triads vanish and such an isolated solution exists, then energy density in
principle can be unbounded. In practice, ρ does not saturate the bound. – p. 25



Expansion scalar: For the isotropic approach to singularity, expansion scalar has a
global maxima

θmax ≈ 47.72

2γλ
≈ 44.18

lPl

For anisotropic approach to singularity, expansion scalar is finite except for an
isolated case (same as in the case of the energy density).

Shear scalar: Global maximum occurs for isotropic approach to the singularity.

σ2
IXmax ≈ 2165.91

3γ2λ2
≈ 2476.04

l2Pl

If the approach to singularity is anisotropic, then above maximum can be violated. If
an isolated case of one triad vanishing and two diverging in a physical evolution
exists in the effective dynamics, then the shear scalar is unbounded.

Role of the choice of lapse: (Gupt, PS (12)) Unlike any other quantization in LQC,
the choice of lapse affects the bounds on ρ, θ and σ2.
For N = 1,

ρIXmax ≈ 11.68ρPl, θmax ≈ 46.14

2γλ
≈ 42.73

lPl
, σ2

max ≈ 1723.65

3γ2λ2
≈ 1969.63

l2Pl

This dependence is tied to the important role played by inverse triad corrections in
the Bianchi-IX model.
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Massive scalar field in Bianchi models
(Upcoming work with B. Gupt)
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Massive scalar field in Bianchi-I model

Examples of (non-inflationary) solutions for φ2 potential. (Gupt, PS (12))
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Energy density and shear scalar are not saturated by their maximum values. – p. 28



Massive scalar field in Bianchi-II model

(Gupt, PS (12))
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Massive scalar field in Bianchi-IX model

Behavior of scale factors: a cyclic universe (Gupt, PS (12))
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Massive scalar field in Bianchi-IX model

Behavior of energy density and shear scalar
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Note that in this case the approach to singularity is highly anisotropic. Even then
energy density and shear are bounded below the values corresponding to those for
the isotropic approach to singularities.
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Summary

Physics of Bianchi models is very rich compared to the isotropic models in LQC.
We analyzed various physical implications assuming the validity of effective
dynamics at all scales. Results obtained here, put an emphasis on future tests
on the validity of effective dynamics in extreme situations.

Non-local effects from the field strength again play a crucial role in bounce. For
models with spatial compactness, inverse scale factor effects are also important.

Results on the resolution of strong singularities in Bianchi-I model indicate that
generic resolution of singularities may extend to anisotropic spacetimes. One
needs to understand details of singularities in vacuum spacetime and matter
with anisotropic stress.

Weak singularities can arise in Bianchi-I model, as in isotropic LQC.

Energy conditions play an important role on the way singularities are resolved in
Bianchi-II model. Does this signal that a “non-singularity theorem”, if it exists,
will require certain energy conditions (as singularity theorems in GR do)? Does
quantum geometry ignore ‘unstable’ matter configurations (which violate WEC)?
Is it an artifact of breakdown of effective theory as scale factors approach zero?
Or does it point to some yet to be understood subtle features of the models?

Upper bounds on ρ, θ and σ2 are different for different Bianchi models. These
bounds signal that geodesic equations are well behaved in effective spacetime.
Extensive simulations with various potentials show that even in highly
anisotropic situations, bounds are never saturated. – p. 32
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