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Outline

Introduction

Ambiguities in background dynamics resulting from different
regularizations of Hamiltonian constraint – modified loop
quantum cosmologies: mLQC-I, mLQC-II

Ambiguity in choice of momentum of the scale factor in the
Hamiltonian for scalar perturbations

Comparison of primordial power spectrum in different models
with initial conditions imposed in the contracting branch

Summary

Goal: What is the effect of different ambiguities on the primordial
scalar/tensor power spectrum in different regimes?

Caveat: Assuming validity of dressed metric approach as
understood in LQC so far for modified LQC models.
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Introduction
Inflationary paradigm resolves several puzzles in the standard
cosmological model. Provides a framework to explain the
formation of large scale cosmic structure in the universe.

But, inflation is past incomplete (Borde, Guth, Vilenkin (03)). Quantum
gravity expected to resolve big bang singularity and provide a
Planck scale extension of the inflationary paradigm.

Such a non-singular extension exists in LQC (Agullo, Ashtekar, Nelson (12)).
Existence of attractors for isotropic as well as anisotropic LQC
(Barrau, Gupt, Linsefors, Martineau, PS, Ranken, Schander, Vandersloot, Vereshchagin (07-16)).
Inflation natural in LQC (Ashtekar, Corichi, Karami, Sloan (10-13)).

QG effects not washed out by inflation. Non Bunch-Davies vacuum
states at onset of inflation result in stimulated particle creation
leading to departures from GR (Agullo, Navarro-Salas, Parker (11))

Non-trivial pre-inflationary dynamics potentially provides a window
to observe quantum gravity effects in CMB.
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LQC and perturbations
In the last decade, cosmological perturbations in LQC explored
using different approaches (Agullo, Ashtekar, Barrau, Bojowald, Bolliet, Bonga, Cleaver, De

Blas, F-Mendez, Gomar, Grain, Gupt, Hossain, Kagan, Kirsten, Li, Marugan, M-Benito, F-Mendez, Mielczarek,

Morris, Nelson, Olmedo, Shankaranarayanan, Sheng, Sreenath, Vidotto, Wang, Wilson-Ewing, Zhu, ... (08-..))

Dressed metric (Agullo, Ashtekar, Nelson (13)) and the hybrid approach (Gomar,

M-Benito, F-Mendez, Marugan, Olemdo (13)) have gained most attention recently.
Both utilize Fock quantized perturbations over loop quantized
background. Qualitative results in agreement.

Quite non-trivial that results agree with standard cosmology while
providing a window to test LQC effects. Many interesting novel
and robust results, which include:

Suppression of power for ` ≤ 30 for a choice of initial states
(De Blas, Olmedo (16); Ashtekar, Gupt (17))

Signatures in non-gaussianities due to bounce
(Agullo, Bolliet, Sreenath (18))

Overcoming tension in CMB data concerning power anomaly
and lensing amplitude (Ashtekar, Gupt, Jeong, Sreenath (20)) 4 / 24



Dressed metric approach (Agullo, Ashtekar, Nelson (13))

Based on QFT on quantum spacetimes (Ashtekar, Kaminski, Lewandowski (09)).
Quantum state of form: ψ0 ⊗ ψ1 with −i~∂φψ0(v, φ) = Ĥ0ψ0(v, φ) and
ψ1(Q,T, φ) is such that backreaction of perturbations on
background is negligible (test-field approximation).

Dynamics of ψ1(Q,T, φ) is completely equivalent to that of a state
evolving on an metric “dressed” with QG corrections

g̃abdx
adxb = ã

(
−dη̃2 + dxidx

i
)

where

ã4 = 〈Ĥ
−1/2
0 â4Ĥ

−1/2
0 〉

〈Ĥ−1
0 〉

, dη̃ =
(
〈Ĥ−1

0 〉〈Ĥ
−1/2
0 â4Ĥ

−1/2
0 〉

)1/2
dφ

Expectation values computed using sharply peaked ψ0 states.

Assumptions in our analysis: We consider sharply peaked states on
effective geometry. We assume implications from subtle infrared
issue in LQC (Kaminski, Kolanowski, Lewandowski (19)) can be successfully
addressed. Assume no backreaction effects (Gomar, M-Benito, Marugan (15);

Schander and Thiemann (19))
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Hamiltonian for cosmological perturbations

Dressed metric approach (as well as hybrid approach) utilizes
canonical formulation introduced by Langlois (94).

Massive scalar field φ with potential V (φ) = 1
2m

2φ2 minimally
coupled to gravity in spatially flat FLRW spacetime.

Hamiltonians (using Mukhanov-Sasaki variable Q and its
momentum P ):

HS = N(t)
2

∫
d3k

(
P 2
s

a3 + a
(
Ω2
Q + k2)Q2

s

)
with

Ω2
Q = 3κ

p2
φ

a4 − 18
p4
φ

a6π2
a
− 12aVφ

pφ
πa

+ a2Vφφ

and
HT = N(t)

∫
d3k

(
2κP

2
t

a3 + a

8κk
2Q2

t

)
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Perturbations
Equation of motion (scalar perturbations):

Q̈k + 3HQ̇k + k2 + Ω̃2

ã2 Qk = 0

with Ω̃2 determined from dressed metric approach.

Ω̃2 = 〈Ĥ
−1/2
0 â2Ω̂2â2Ĥ

−1/2
0 〉

〈Ĥ−1/2
0 â4Ĥ

−1/2
0 〉

In the test-field approximation using sharply peaked states,
background quantities in Mukhanov-Sasaki equation can be
replaced by their analogs in the effective spacetime description.

Primordial power spectrum computed at the end of inflation:

PR = k3

2π2
|Qk|2

z2 , with z = φ̇/H

Similarly,

PT = 16k3

π
|Qk|2
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Primordial scalar power spectrum: three regimes

UV RegimeInfrared Regime

Oscillatory Regime

k = kLQCk = kIR k = kOb

10-6 10-4 0.01 1
k/k*

10-10

10-9

10-8

10-7

10-6
PS

QG effects define a characteristic scale kLQC =
√

a′′

a ≈ 3.20

Smallest interesting k value determined by φB: kOb ≈ 0.89 for
LQC (when φB = 1.15)

Together they provide a window to capture QG effects in power
spectrum. This window changes on modification to background
evolution.
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Regularization ambiguities in Hamiltonian constraint
In LQC, Euclidean and Lorentzian parts of the Hamiltonian
constraint combined before quantization. Modified versions of
LQC arise if these terms are treated distinct.

Cgrav = C(E)
grav − (1 + γ2)C(L)

grav

where
C(E)

grav =
1
2

∫
d3x εijkF

i
ab

EajEbk√
det(q)

and
C(L)

grav =
∫

d3xKj
[aK

k
b]
EajEbk√

det(q)

mLQC-I: (Yang, Ding, Ma (09); Dapor, Liegener (17))

Quantize C(L)
grav using identities on classical phase space and

expressing in terms of holonomies.

mLQC-II: (Yang, Ding, Ma (09))

Use Ki
a = γ−1Aia in C(L)

grav, and then quantize.
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Effective Hamiltonians for mLQC-I and mLQC-II
mLQC-I:

HmLQC−I =
3v

8πGλ2

{
sin2(λb)−

(γ2 + 1) sin2(2λb)
4γ2

}
+HM , λ2 = 4

√
3πγ`2Pl

Two branches for b. Switch from one to another at bounce.
Bounce density ρI

c = ρc
4(γ2+1) with ρc = 3

8πGλ2γ2

mLQC-II:
HmLQC−II = −

3v
2πGλ2γ2 sin2

(
λb

2

){
1 + γ2 sin2

(
λb

2

)}
+HM

Bounce at ρII
c = 4(γ2 + 1)ρc

Comparison with LQC:

-20 -10 10 20
t

100

104

106

108

1010

v
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Modified loop quantum cosmology: main results
Unlike LQC where the difference equation is of second order,
quantum Hamiltonian constraint of mLQC-I and mLQC-II is a
difference equation of fourth-order. Consistency of infra-red
behavior checked using von-Neumann stability analysis (Saini, PS (19))

mLQC-I results in an asymmetric bounce. Universe has a Planck
curvature in pre-bounce branch with an emergent cosmological
constant for µ̄-scheme (Assanioussi, Dapor, Liegener, Pawlowski (18)). Rescaled
Newton’s constant (Li, PS, Wang (18)). Emergent matter depends on the
way area of the loops are assigned. String gas type emergent matter
for µ0-scheme (Liegener, PS (19)).
mLQC-II results in a symmetric bounce with a classical pre-bounce
regime as in LQC but with a different bounce density.
Modified Friedmann dynamics far more non-trivial than LQC.
Higher order corrections than ρ2 in LQC (Li, PS, Wang (18)).
Inflationary attractors found for various potentials. Probability for
inflation to occur extremely large (Li, PS, Wang (19)).
Effects in primordial scalar power spectrum studied for mLQC-I
(Agullo (18)).
Generic resolution of strong curvature singularities (Saini, PS (18))
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Initial conditions for different models
If initial conditions of the background are given at the bounce then
the only free parameter is φB. For existence of a non-trivial
window to capture QG effects, choose φB such that kLQC > kOb
(similarly for mLQC-I and mLQC-II).

For all models, we require 72 e-folds during inflation. This
determines φB in different models.

In LQC: φB = 1.15mPl (kLQC = 3.20; kOb ≈ 0.89)
In mLQC-I φB = 1.27mPl (kmLQC−I = 1.60; kOb ≈ 0.65)
In mLQC-II φB = 1.04mPl (kmLQC−II = 6.40; kOb ≈ 1.11)

Evolve universe backward from bounce at φB and specify initial
conditions for perturbations as 4th-order adiabatic states at
t ≈ −1.1× 105 tPl for LQC and mLQC-II.

Pre-bounce regime in mLQC-I mimics deSitter evolution. Choose
Bunch-Davies vacuum as initial state, as in (Agullo (18)).
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Ambiguity in treatment of πa

Subtlety: Ω2
Q contains inverse powers of πa.

Classically πa = −6aȧ/κN . If used in LQC it vanishes at bounce
making Ω2

Q singular.

Strategy: (Agullo, Ashtekar, Nelson (13))

Vanishing of the background classical Hamiltonian constraint

H(0) = −κπ
2
a

12a +
p2
φ

2a3 + a3V ≈ 0

implies 1/π2
a = κ/(12a4ρ). Leads to

Ω2
+ = a2 (Vφφ + 2fVφ + f2V

)
, where f =

√
24πG/ρφ̇

with a and ρ determined from effective dynamics.

Above expression true only for expanding branch where πa is
negative. (Zhu et al (18); Navascues, de Blas, Marugan (18))

Another strategy: Use solution of effective dynamics. Differences
appeared significant only in infra-red regime (Agullo, Bolliet, Sreenath(18))
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In the contracting branch,

Ω2
− = a2 (Vφφ − 2fVφ + f2V

)
Discontinuity in Ω2

Q at the bounce.

Inspired by a strategy used in the hybrid approach, we can assume
a smooth extension

Ω2 = a2
(
Vφφ + 2 cos (λb) fVφ + f2V

)

Ω+
�

Ω-
�

Ω�

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1.×10-10

2.×10-10

3.×10-10

4.×10-10

5.×10-10

6.×10-10

t

14 / 24



Ambiguity in treatment of πa

Strategy used in Hybrid approach: (Gomar, Mendez, Marugan, Olmedo (15))

1
π2
a
→ 16π2G2γ2λ2

9a4 sin2 (λb)

This replacement in classical background Hamiltonian constraint,
leads to the effective background Hamiltonian constraint of LQC.

For 1/πa term in Ω2
Q:

1
πa
→ −4πGγλ cos (λb)

3a2 sin (λb)

This choice takes into account different signs of πa across the
bounce. Using these replacements one obtains a candidate
expression of Ω2

Q in effective dynamics (Ω2
eff).

Similar constructions can be made for mLQC-I and mLQC-II using
their effective Hamiltonians.
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Effect of Ω2 vs Ω2
eff

Equation of motion can be rewritten as (for Ω2
o = (Ω2; Ω2

eff))

ν ′′k + (k2 + s)νk = 0, with ν = aQ, s = Ω2
o −

a′′

a

|Ω�|

|Ω���
� |

|�� /�|

-20000 -15000 -10000 -5000 0
10-11

10-8

10-5

0.01

t

|Ω�|

|Ω���
� |

|�� /�|

50 100 500 1000 5000 104
10-9

10-7

10-5

0.001

t

Ω2
eff is 106 times greater than Ω2 at bounce. Curvature term

dominates both except near t ∼ 104tPl. At late times it is 100
times larger than Ω2

o term.

Choice of Ω2 vs Ω2
eff naively does not seem to matter for power

spectrum.

Similar conclusions about Ω2 vs Ω2
eff for mLQC-I and mLQC-II.
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Primordial scalar power spectrum in LQC
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  k* = 7.28
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PS
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-6
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10
-4

0.001 0.010 0.100 1

k /k*

10
-5

10
-4

0.001

0.010

0.100

1

ℰ

P̄s computed as average taken in range k ∈
(
5× 10−6, 50

)
over

small bins with 5 wavenumbers each.

Relative difference E = 2|Ps − P ′s|/|Ps + P ′s|

Relative difference quite significant in interval k/k∗ ∈ (10−4, 10−3).

Relative difference less than 10% in IR regime and about 0.1% in
UV regime.
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Primordial scalar power spectrum in mLQC-I
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For Ω2
eff we use

1
π2
a
→ 64π2G2λ2γ2

9a4
[

(1 + γ2) sin2 (2λb)− 4γ2 sin2 (λb)
]

and
1
πa
→ −

8πGλγ
(
1− 2(γ2 + 1) sin2 (λb)

)
3a2
√

(1 + γ2) sin2 (2λb)− 4γ2 sin2 (λb)
Also,

Ω2 = a2 (Vφφ + 2
(
1− 2(γ2 + 1) sin2 (λb)

)
fVφ + f2V

)
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Primordial scalar power spectrum in mLQC-I
Large amplification in power in IR regime compared to LQC and
mLQC-II. This is due to Planck scale emergent cosmological
constant in pre-bounce epoch.

Faster growth for amplitude in intermediate regime.

Relative difference in amplitude of power spectrum for Ω2 vs Ω2
eff

varies significantly in IR and intermediate regime. Maximum
relative difference is 10% in IR, and greater than 100% in
intermediate regimes (as in LQC).

Smaller than 0.1% difference in UV regime.
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Primordial power spectrum in mLQC-II
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With
Ω2 = a2 (Vφφ + 2 cos(λb/2)fVφ + f2V

)
Ω2

eff obtained using:
1
π2
a
→ 4π2γ2λ2

9a4 sin2 (λb/2) (1 + γ2 sin2 (λb/2))

1
πa
→ −2πγλ cos (λb/2)

3a2 sin (λb/2)
√

(1 + γ2 sin2 (λb/2))

Relative difference in magnitude of power spectrum can be quite
large in intermediate regime. Is 30% in IR regime. And less than
0.1% in UV regime. 20 / 24



Comparison of scalar power spectrum for LQC and
mLQC-II
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eff)

Relative difference between LQC and mLQC-II larger in IR regime
for Ω2 (greater than 60%) than Ω2

eff (less than 40%).

Significant difference at the boundary of IR and intermediate
regimes, especially for Ω2

eff .

Relative difference varies between 1-100% in the intermediate
regime. In the UV regime the difference is less than 1%.
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Comparison of tensor power spectrum for LQC, mLQC-I
and mLQC-II
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Amplitude in mLQC-I and its growth in intermediate regime
significantly different from LQC and mLQC-II.

Relative difference between amplitude of tensor power spectrum for
LQC and mLQC-II larger than 50% in IR regime.

Relative difference varies widely in intermediate regime, and is less
than 1% in IR regime.

22 / 24



Summary and conclusions

Different treatments of the Lorentzian term in the Hamiltonian
constraint, result in non-trivial changes in physics of bounce
and pre-bounce. Still, mLQC-II bears qualitative similarity
with LQC. However, mLQC-I results in an asymmetric bounce
with a pre-bounce universe with Planckian curvature.
Treatment of πa in the scalar perturbation Hamiltonian has
been performed in different ways. We used approaches used
widely in dressed metric as well as one inspired from hybrid
approach.
Results between LQC, mLQC-I and mLQC-II agree in UV
regime (contributing most to observable modes) where
ambiguity in πa is also of little significance.

Qualitative predictions for observable modes for linear
perturbations in dressed metric approach robust to considered
Hamiltonian regularization and πa ambiguities.

23 / 24



Summary and conclusions

However, these ambiguities do leave a significant trace in IR
and intermediate regimes.
Relative difference between LQC and mLQC-II can be as large
as 50-100% in IR and in intermediate regimes depending on
choice of πa.
mLQC-I in IR and intermediate regime leaves qualitatively
different signatures with a very large amplitude and its rapid
growth of amplitude for scalar as well as tensor power
spectrum.
Different choices of πa generally result in at least 10% relative
difference in IR and intermediate regimes for the same model.

Do these differences due to ambiguities translate to qualitatively
different observable signatures, such as in non-gaussianities?
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