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Outline

Modified Loop Quantum Cosmology (mLQC): origins

Modified Friedmann dynamics in mLQC-I and mLQC-II

Infra red behavior of quantum Hamiltonian constraints in
mLQC-I and mLQC-II. Ruling out µo scheme in mLQC-I and
mLQC-II using von Neumann stability analysis

Inflationary attractors and qualitative dynamics

Generic resolution of strong singularities and a
phenomenological demonstration for exotic singularities

Goals:
Do some key results of LQC survive in mLQC-I and mLQC-II?

How different qualitatively is Planck scale physics of these loop
cosmologies?

2 / 28



Introduction
LQC based on following quantization procedure in LQG to quantize
homogeneous spacetimes after classical symmetry reduction.

Various quantization ambiguities can arise in the process of
obtaining the quantum Hamiltonian constraint.

Standard LQC only one such quantization. Many robustness and
consistency tests passed. With in LQC, restrictions on quantization
ambiguities understood (eg. µo vs. µ̄ scheme).
Some key results:

Second order non-singular quantum difference equation.
Exactly solvable for spatially flat universe with a massless scalar.
Big bang replaced by a bounce at a universal values of spacetime curvature.
Bounce symmetric in isotropic universe.
Modified effective Friedmann-Raichaudhuri equations with ρ2 correction.
Naturalness of inflation. Phenomenological predictions for CMB.
Geodesic completeness and generic resolution of strong singularities.
Bounce in presence of anisotropies and Fock quantized inhomogeneities.

(Agullo, Alesci, Ashtekar, Barrau, Brahma, Bojowald, Cartin, Corichi, Craig, Date, Dapor, Diener, Engle, Grain, Gupt, Henderson,

Hossain, Joe, Kaminski, Karami, Li, Ma, Martin-Benito, Mena-Marugan, Mielczarek, Montoya, Nelson, Olmedo, Saini, Sloan, Szulc,

Taveras, Thiemann, Pawlowski, Perez, PS, Vandersloot, Wang, Wilson-Ewing, ... (01–..)) 3 / 28



Modifications of standard LQC
Hamiltonian constraint composed of Euclidean and Lorentzian terms:

Cgrav = C(E)
grav − (1 + γ2)C(L)

grav

where
C(E)

grav =
1
2

∫
d3x εijkF i

ab
EajEbk√

det(q)

and
C(L)

grav =
∫

d3x K j
[aKk

b]
EajEbk√

det(q)

In LQC, quantization of spatially flat models obtained after combining
C(E)

grav and C(L)
grav. If terms are treated distinct, then form of quantum

Hamiltonian constraint significantly different.
Two ambiguities at this level:

Quantize C(L)
grav as above after using identities on classical phase

space and expressing in terms of holonomies. Leads to mLQC-I.
Use K i

a = γ−1Ai
a in C(L)

grav, and then quantize. Results in mLQC-II.
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mLQC-I and mLQC-II (timeline)
First considered by Bojowald (02). Obtained non-singular fourth order
difference equation for µo type quantization for mLQC-I.
Forgotten till 2009. Thought to be bringing little change to LQC.
Analyzed by Yang, Ding, Ma (09) for µ̄ scheme, for mLQC-I and mLQC-II.
Symmetric bounce claimed for both mLQC-I and mLQC-II. Modified
Friedmann dynamics unknown. Forgotten again till 2017.
mLQC-I re-discovered while understanding cosmological sector of
LQG by Dapor, Liegener (17). Asymmetric bounce in contrast to results of
Yang, Ding, Ma (09)! Emergent cosmological constant in pre-bounce
branch. Modified Friedmann dynamics unknown.
Quantization of mLQC-I following LQC with a massless scalar field
for µ̄ scheme (Assanioussi, Dapor, Liegener, Pawlowski (18)).

Modified Friedmann dynamics with higher order corrections than ρ2

in LQC, and subtle behavior of solutions explaining discrepancy in
claims found (Li, PS, Wang (18)). Asymmetric (symmetric) bounce in
mLQC-I (mLQC-II). Emergent Planckian cosmological constant and
rescaled Newton’s constant in pre-bounce regime for mLQC-I.
Inflationary models (Li, PS, Wang (18-..)), CMB (Agullo (18)), generic
singularity resolution (Saini, PS (18)), Von Neumann stability (Saini, PS (19))
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Quantum Hamiltonian constraint in mLQC-I
(Yang, Ding, Ma (09); Saini, PS (19))
For massless scalar as matter in µ̄ scheme (recall: µ̄2 = (4

√
3πγ`2Pl)/|p|, arises from

taking physical metric into account for minimum areas of loops in field strength
(Ashtekar, Pawlowski, PS (06))), quantum Hamiltonian constraint turns out to be:

C2

2
|v|
∣∣∣|v + 1|1/3 − |v − 1|1/3

∣∣∣3∂2
φ|v〉 = F ′+(v)|v + 8〉+ f ′+(v)|v + 4〉

+(F ′o(v) + f ′o(v))|v〉
+f ′−(v)|v − 4〉+ F ′−(v)|v − 8〉,

with

f ′+ (v) = −C3 (v + 2)(|v + 3| − |v + 1|), f ′−(v) = f ′+ (v − 4), f ′o (v) = −f ′+ (v) − f ′−(v),

F′+ (v) =
4κ2 C1

γ4
[Mv (1, 5)f ′+ (v + 1) − Mv (−1, 3)f ′+ (v − 1)](v + 4)Mv (3, 5)[Mv (5, 9)f ′+ (v + 5) − Mv (3, 7)f ′+ (v + 3)],

F′+ (v) =
4κ2 C1

γ4
[Mv (1,−3)f ′−(v + 1) − Mv (−1,−5)f ′−(v − 1)](v − 4)Mv (−5,−3)[Mv (−3,−7)f ′−(v − 3) − Mv (−5,−9)f ′−(v − 5)],

F′o (v) =
4κ2 C1

γ4
[Mv (1, 5)f ′+ (v + 1) − Mv (−1, 3)f ′+ (v − 1)](v + 4)Mv (3, 5)[Mv (5, 1)f ′−(v + 5) − Mv (3,−1)f ′−(v + 3)]

+
4κ2 C1

γ4
[Mv (1,−3)f ′−(v + 1) − Mv (−1,−5)f ′−(v − 1)](v − 4)Mv (−5,−3)[Mv (−3, 1)f ′+ (v − 3) − Mv (−5,−1)f ′+ (v − 5)]

Mv (a, b) := |v + a| − |v + b|,

C1 = 2(1 + γ
2 )

√
6γ

3
2

28 33κ
3
2 ~

1
2 α

,C2 =
(

3

2

)3( 6

κ~γ

)3/2

α,C3 =
γ2

2κ

27

16

(
8π

6

)1/2 αlPl

γ
3
2

, α := 2/3(3 × 31/2 )1/2
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Quantum Hamiltonian constraint in mLQC-II
(Yang, Ding, Ma (09); Saini , PS (19))
For massless scalar as matter in µ̄ scheme, quantum Hamiltonian constraint is:

C2

2
|v|
∣∣∣|v + 1|1/3 − |v − 1|1/3

∣∣∣3∂2
φ|v〉 = f ′+(v)|v + 4〉+ S ′+(v)|v + 2〉

+(f ′o(v) + S ′o(v))|v〉
+S ′−(v)|v − 2〉+ f ′−(v)|v − 4〉

with

S ′+(v) = 4
(1 + γ2)
γ2 C3(v+1)(|v+2|−|v|),S ′−(v) = S ′+(v−2),S ′o(v) = −S ′+(v)−S ′−(v)

Unlike LQC, difference equation in mLQC-I and mLQC-II is a
fourth order difference equation.
Similar structure of quantum Hamiltonian constraint when
one uses µo scheme, but with very different properties.
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Effective Hamiltonian for mLQC-I
Assume one can obtain effective Hamiltonian as in LQC using
coherent states for µ̄ scheme (eg. Taveras (08), Liegener (to appear)).
Assume validity of effective dynamics (Diener, Gupt, Joe, Megevand, PS (14-..))

Effective Hamiltonian:
H =

3v
8πGλ2

{
sin2(λb)−

(γ2 + 1) sin2(2λb)
4γ2

}
+HM , λ2 = 4

√
3πγ`2Pl

CHeff ≈ 0⇒ sin2(λb±) =
1±
√

1− ρ/ρI
c

2(γ2 + 1)
, ρI

c ≡
3

32πλ2γ2(γ2 + 1)G
=

ρc
4(γ2 + 1)

ρ = ρc
I

ρ = ρ0

b+

b-
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ρ

si
n
2
(λ
b)

Both branches necessary for a consistent evolution across the
bounce. Switch from b− to b+ at the bounce.
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Modified Friedmann equations for mLQC-I
For b− branch (post-bounce):

H2 =
8πGρ

3

(
1−

ρ

ρI
c

)[
1 +

γ2

γ2 + 1

( √
ρ/ρI

c

1 +
√

1− ρ/ρI
c

)2 ]
,

For b+ branch (pre-bounce):

H2 =
8πGβρΛ

3

(
1−

ρ

ρI
c

)1 +

 1− 2γ2 +
√

1− ρ/ρI
c

4γ2
(

1 +
√

1− ρ/ρI
c

)
 ρ

ρI
c

 ,
β :=

1− 5γ2

1 + γ2 , ρΛ :=
3

8πGβλ2(1 + γ2)2

At very early times in pre-bounce regime:

H 2 ≈ 8πGβ

3 (ρ+ ρΛ) ,Gβ = βG

The pre-bounce phase asymptotes to a branch with a Planckian
cosmological constant and rescaled Newton’s constant. Important
to use different sets of Friedmann-Raichaudhuri equations before
and after bounce. Else one finds an unphysical symmetric bounce.
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Effective Hamiltonian for mLQC-II

H = − 3v
2πGλ2γ2 sin2

(
λb
2

){
1 + γ2 sin2

(
λb
2

)}
+HM

Vanishing of Hamiltonian constraint yields

sin2(λb±/2) = −1±
√

1 + γ2ρ/ρc
2γ2

Unlike mLQC-I, only one physical branch possible. The b+ branch
covers the entire evolution across the bounce.

Modified Friedmann equation:

H 2 = 8πGρ
3

(
1 + γ2 ρ

ρc

)(
1− (γ2 + 1)ρ/ρc

(1 +
√
γ2ρ/ρc + 1)2

)

Bounce at ρII
c = 4(γ2 + 1)ρc.
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Comparison of mLQC-I and mLQC-II with LQC
Non-trivial modifications to Friedmann dynamics for mLQC-I and
mLQC-II in comparison to LQC in Planck regime.
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v

In mLQC-I, spacetime curvature remains Planckian before the
bounce yet satisfies Einstein field equations but with a quantum
gravitational origin matter. Similar earlier result in a loop
quantization of a Kantowski-Sachs model (Dadhich, Joe, PS (15))

In mLQC-II, spacetime curvature decreases quickly on both sides of
the bounce as in LQC. No emergent matter or a rescaled G.
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Properties of difference equations at large volumes
Using stability properties of finite difference equations we can find
whether quantum Hamiltonian constraints in mLQC-I and mLQC-II
for µo and µ̄ schemes are compatible with GR at large volumes.

Many insights on viability of quantizations in LQC and black holes
(Bojowald, Date (04); Date (05); Cartin, Khanna (05); Bojowald, Cartin, Khanna (07); Nelson, Sakellariadou

(09); Tanaka, Amemiya, Shimano, Harada, Tamaki (11); PS (12); Yonika, Khanna, PS (18))

Results in agreement/complement effective dynamics (Corichi, PS (08))

Von Neumann stability of a finite difference equation ensures that
any mismatch between finite difference equation and PDE
(Einstein field eqs.) remains small in time evolution to large
volumes. With a typical ansatz: |v〉 = g

v
2 eiωφ the problem reduces

to finding growth of amplification factor g in the Fourier space.

Amplification factor must be bounded by unity. If larger than unity,
quantum Hamiltonian constraint has large departures from GR at
small curvatures. Generally signals unphysical effects.
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Von Neumann stability/instability for µo scheme
(Saini, PS (19))

In LQC, µo scheme is von Neumann stable for massless scalar
field as matter content. Two real roots for g which are
bounded by unity. In presence of any +Λ there exists a finite
volume at which one of the roots becomes greater than unity.
In mLQC-I and mLQC-II, von Neumann stability results in four
roots in two separate pairs. Both pairs needed for a physical
solution in mLQC-I, but only one pair needed in mLQC-II.
Without +Λ: In mLQC-I one pair has real roots equalling
unity, and the other pair has complex conjugate roots with
unit magnitude. In mLQC-II, physical pair has real roots
equalling unity. Unphysical pair has complex conjugate roots
with magnitude greater than unity.
With +Λ: For any value of Λ there exists a volume for which
both pairs of roots in mLQC-I and mLQC-II are greater in
magnitude than unity. No viable physical solution is possible.
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Von Neumann instability for µo scheme with +Λ

g1

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Λn

g2

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Λn

g3

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Λn

g4

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Λn

mLQC-I and mLQC-II are von Neumann unstable in presence of
+Λ. Do not yield GR at large volumes. Result in an unphysical
recollapse of the universe at large volumes (as in µo LQC).
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Von Neumann stability for µ̄ scheme
(Saini, PS (19))

The µ̄ scheme results in von Neumann stable finite difference
equation in LQC for all matter with equation of state ranging
from massless scalar field to +Λ. One of the roots of
amplification factor becomes greater than unity if matter
content chosen with energy density greater than ρc.
(No such states in the physical Hilbert space. Corresponds to
unphysical solution in effective dynamics since Hubble rate
becomes imaginary).

For mLQC-I, both pair of roots have unit magnitude with or
without Λ when energy density is less than or equal to the
bounce density.

Same situation for mLQC-II, for the pair of roots
corresponding to the physical solution.

mLQC-I and mLQC-II are von Neumann stable in µ̄ scheme
for physically allowed values of Λ. 15 / 28



Von Neumann stability for µ̄ scheme with +Λ
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mLQC-I is von Neumann stable for µ̄ scheme in presence of +Λ till
Λf ,I = Λ/Λc,I = 1 when ρ = ρI

c. Same situation for mLQC-II.
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Qualitative dynamical analysis of mLQC-I and mLQC-II
(Li, PS, Wang (18))

When analytical solutions are difficult to obtain, qualitative
dynamical systems analysis, phase space portraits and stability of
fixed points provides valuable hints on general features of
dynamical evolution.

Makes easy to find inflationary attractors in effective dynamics.
Found for LQC in PS, Vandersloot, Vereshchagin (06); PS, Ranken (12); Gupt, PS (13)

Phase space variables: For m2φ2 potential, introduce X and Y :

X = mφ√
2ρi

c
, Y = φ̇√

2ρi
c
; X2 + Y 2 = ρ/ρi

c ≤ 1

which satisfy equations of motion:
Ẋ = mY , Ẏ = −mX − 3H iY

Find the fixed point(s) and introduce perturbations around fixed
points in X and Y to determine the nature of fixed points. Extract
the behavior of phase space trajectories near the fixed points.
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Inflationary attractors for φ2 potential
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mLQC-I: Stable spiral in post-bounce. Unstable repelling node in pre-bounce branch.
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mLQC-II: Stable (unstable) spiral in post-bounce (pre-bounce) branch, as in LQC.
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Inflationary attractors for Starobinsky potential
In GR, Starobinsky inflation based on adding R2 term to action,
equivalent to adding V = 3m2

32πG

(
1− e−

√
16πG/3φ

)2
in Einstein frame.

Assume the same potential for mLQC-I and mLQC-II, as
considered earlier in LQC (Bonga, Gupt (16); Ashtekar, Gupt (16))

Asymmetric potential. Slow-roll inflation only for φ ≥ 0.

Phase space variables: X =
√

V /ρi
c, Y = φ̇√

2ρi
c

Phase space for Starobinsky potential only for X < χ0. For
X > χ0, V (φ̃) = 3m2

32πG

(
1 + e−

√
16πG/3φ̃

)2
with φ̃ ≡ −

√
3

16πG ln
(∣∣1− X

χ0

∣∣).

Two fixed points:
(X ,Y ) = (0, 0). Similar properties as in φ2 inflation.
(X ,Y ) = (χ0, 0). Perturbative analysis leads to a
characteristic equation with one eigenvalue vanishing.
Degenerate, non-simple fixed point. Higher order analysis
becomes necessary. Turns out to be unstable.
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Inflationary attractors for Starobinsky potential
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mLQC-I: (X ,Y ) = (0, 0) is stable spiral in post-bounce. Unstable repelling node in
pre-bounce branch for m ≤ mPl, else unstable spiral.

mLQC-II and LQC: (X ,Y ) = (0, 0) is stable (unstable) spiral in post (pre)-bounce.
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Inflationary dynamics for other potentials
(Li, PS, Wang (18))

Inflationary attractors found in addition for
Fractional monodromy potential inspired by supergravity:
V = V1

∣∣ φ
φ0

∣∣p 1

[1+(φ0
φ

)n ]
2−p

n

Non-minimal Higgs potential: V = V0

(
1− e−

√
16πG

3 |φ|
)2

Regardless of potential, origin (X ,Y ) = (0, 0) found to be late
time attractor in LQC, mLQC-I and mLQC-II, showing
naturalness of inflation after bounce.
Exponential potential V = V0e−

√
8πGqφ:

Scaling solutions between potential and kinetic energy found.
Existence of a new fixed point for mLQC-I in pre-bounce phase
(X ,Y ) = (0, 0), not found in LQC and mLQC-II.
(X = φ̇

H

√
4πG

3 ,Y = 1
H

√
8πGV

3 ).
Absence of kinetic dominated fixed points, (X = ±1,Y = 0) for
mLQC-I in pre-bounce regime.
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General features of singularity resolution
(Saini, PS (18))

As in LQC, in mLQC-I and mLQC-II scale factor remains finite
and non-zero for all finite time evolution.
Hubble rates are universally bounded as in LQC, but Ḣ can
potentially diverge. For eg. in mLQC-II:

Ḣ =
4πG(ρ+ P)

3

[
3 + 2γ2(1 + ρ/ρc)− 3(γ2 + 1)

√
1 + γ2ρ/ρc

]
If P → ±∞ at a finite ρ, Ḣ → ±∞.
Spacetime curvature is not generically bounded in mLQC-I
and mLQC-II.
However, it can be proved that for all such events geodesics
can be extended in the effective spacetime. mLQC-I and
mLQC-II spacetimes turn out to be geodesically complete.
For any singularity at τ = τo,

∫ τ
0 dτ |Ri

0j0| computed in a
parallely propagated frame along any non-spacelike geodesic is
finite as τ → τo. There exist no strong singularities in the
effective spacetime. All potential divergences in spacetime
curvature correspond to weak singularities (Saini, PS (18))
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Types of exotic singularities

Type I singularity (Big Rip): In a finite time, scale factor,
energy density and pressure become infinite. All curvature
invariants diverge. Strong singularity.

Type II singularity (Sudden): At a finite value of scale factor
and energy density, pressure and curvature invariants diverge.
Weak singularity.

Type III singularity (Big Freeze): At a finite value of scale
factor, energy density, pressure and curvature invariants
diverge. Strong singularity.

Type IV singularity: Occurs at a finite value of scale factor.
Energy density, pressure and curvature invariants finite. Time
derivatives of spacetime curvature diverge. Weak singularity.

Type-I and III singularities resolved in LQC, but type-II and IV
singularities not resolved (Sami, PS, Tsujikawa (06); Samart, Gumjudpai(07); Naskar, Ward

(07); Cailleteau, Cardoso, Vandersloot, Wands (08); Wu & Zhang (08); PS (09); PS, Vidotto (11)).
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Resolution of type-I singularity
(Saini, PS (18))

Use ansatz P = −ρ− f (ρ), f (ρ) = ABρ2α−1

Aρα−1+B (Nojiri, Odintsov, Tsujikawa (05))

Type-I singularity occurs when parameters: 3/4 < α < 1, A > 0.

In GR, there is no big bang but only a future big rip singularity.
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ρ universally bounded in LQC, mLQC-I and mLQC-II. Big rip is
generically avoided and replaced by quantum recollapse.
Quantum recollapse asymmetric in mLQC-I. Post recollapse
universe with Planckian spacetime curvature and an emergent Λ.
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Non-resolution of type-II singularity
Past big bang (or future big crunch) and a future (or past) sudden
singularity in GR occurs for A/B < 0.
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In LQC, mLQC-I and mLQC-II past big bang singularity replaced
by big bounce because ρ is bounded. But, future sudden
singularity not resolved.

Past unresolved sudden singularity in LQC and mLQC-II.
No past-sudden singularity in mLQC-I. Universe asymptotes to a
Planckian spacetime curvature phase in pre-bounce.
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Resolution of type-III singularity

Occurs for α > 1. In GR, ρ, P, and curvature invariants diverge at
a finite scale factor. No big bang in past evolution.
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Boundedness of ρ resolves big freeze singularity. Big freeze
replaced by quantum recollapse.

LQC and mLQC-II universes are symmetric in pre and
post-recollpase branches. Post-recollapse universe in mLQC-I
asymmetric with an emergent Λ.
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Non-resolution of type-IV singularity
Occurs for 0 < α < 1/2. Only time derivatives of curvarture
invariants diverge at a finite scale factor. Since ρ is finite (and very
small) at these singularities, quantum geometry effects play no role
at these events.
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Past big bang singularity replaced by bounce in LQC, mlQC-I and
mLQC-II. But future type-IV singularity not resolved.

LQC and mLQC-II have a past type-IV singularity. Absent in
mLQC-I.
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Summary

Treating Euclidean and Lorentzian terms independently during loop
quantization results in non-trivial changes to the Planck scale
physics in loop cosmologies.
In mLQC-I universe has Planckian curvature before bounce.
Asymmetric bounce with an emergent Λ and a rescaled G. In
contrast, mLQC-II yields a symmetric bounce like in LQC.
Both mLQC-I and mLQC-II have fourth order quantum difference
equations, and higher order terms in energy density in modified
Friedmann and Raichaudhuri equations.
Inflation natural in both mLQC-I and mLQC-II. Phase space
dynamics qualitatively similar for mLQC-I, mLQC-II and LQC in
post-bounce. Pre-bounce similarities only for LQC and mLQC-II.
Generic resolution of strong singularities and geodesic completeness
for mLQC-I and mLQC-II.
Key qualitative features of LQC hold in mLQC-I and mLQC-II, but
quantitative differences remain to be fully explored.
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