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Introduction

In the last decade, there have been many concrete examples of
singularity resolution using loop quantum gravitational effects.
Central singularities in black holes can be eliminated (Ashtekar, Bojowald

(06); Modesto (06); Boehmer, Vandersloot (07); Campiglia, Gambini, Pullin, Olmedo, Rastgoo (07-15));

Corichi, PS (16)).

Focus so far has been on the details of singularity resolution
and mathematical consistency. Details of the physics of the
bounce regime and transition to white hole geometries not
explored.

Independently, various directions explored to understand the
implications of quantum gravity in gravitational collapse and black
hole to white hole transitions (Hajiceck, Kiefer (01); Bojowald, Goswami, Maartens, PS

(05); Husain, Winkler (06); Goswami, Joshi, PS (06); Ziprick, Kunstatter (10); Barcelo, Carballo-Rubio, Garay,

Jannes (11-15); Barrau, Bolliet, Christodoulou, Haggard, Perez, Rovelli, Speziale, Vidotto,... (14-16) )

Very interesting phenomenology but often with assumptions
about nature of singularity resolution.
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Understanding black hole to white hole transitions

• It is generally assumed, using isotropic LQC, that bounce is
symmetric. This simplifying assumption does not hold for
anisotropic and black hole spacetimes. For the only known model
of loop quantization of Schwarzschild interior having consistent UV
and IR limits and fiducial cell independence, white hole horizon
highly asymmetric compared to parent black hole. How does the
asymmetric bounce regime affect the time scales of black hole to
white hole transitions?

• It is assumed that there is only one quantum gravity regime in
the collapse. Is it really so? Or does the anisotropic evolution
implies multiple distinct regimes?

• How do the details of the quantum gravitational regime affect
conclusions about the transition times?

• Is there any mass dependence in time scales? Do tiny black holes
behave the same way as larger black holes? Should size matter?
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Goal

Using a concrete quantized model of black hole interior understand
details of quantum gravity regime and black hole to white hole
transition. Insights on answers to above questions can help in
making robust models and precise quantum gravity predictions.

Caveats: Exterior picture not available. Effective dynamics
assumed (recent rigorous verification for Bianchi-I spacetime which
has similar Hamiltonian structure (Diener, Joe, Megevand, PS (17)))

Outline:
Loop quantization of Schwarzschild interior (Corichi, PS (16))

Details of the quantum gravitational regime

Transition times: Bounce time(s) for crossing quantum gravity
regime/transition from interior BH to WH geometry;
Delivery time from parent black hole to white hole horizon

Mass (in)dependence and some implications

Summary
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Schwarzschild interior

The interior can be described by a Kantowski-Sachs cosmological
spacetime without matter. The spatial manifold has topology
R× S2. Radius of S2 associated with the Schwarzschild radius. A
fiducial length scale Lo needed for coordinate x in R.

Using the symmetries, and imposing Gauss constraint, the
connection and triads become:

Ai
a τi dxa =

c

Lo
τ3 dx+ b τ2dθ − bτ1 sin θ dφ+ τ3 cos θ dφ

Ea
i τ

i ∂

∂xa
= pc τ3 sin θ

∂

∂x
+
pb
Lo

τ2 sin θ
∂

∂θ
− pb
Lo

τ1
∂

∂φ

The connection and triad components are invariant under freedom
to rescale coordinates and satisfy: {c, pc} = 2Gγ, {b, pb} = Gγ

However freedom to rescale fiducial length Lo present. Under
rescaling Lo → αLo, pc and b invariant, but c→ αc, pb → αpb.
(Only Boehmer-Vandersloot and Corichi-Singh quantizations
independent of this freedom).
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Spacetime metric:

ds2 = −N2dt2 +
p2
b

|pc|L2
o

dx2 + |pc| (dθ2 + sin2 θ dφ2)

where p2
b

|pc|L2
o

= (2m/t− 1), |pc| = t2

Classical dynamics:

Hclass = −Nsgn(pc)

2Gγ2

(
(b2 + γ2)

pb√
|pc|

+ 2bc|pc|1/2

)

For lapse N = γsgn(pc)|pc|1/2/b, (for a black hole of mass m):

pb(T ) = 2mLo e
T
√
e−(T−To) − 1 , pc(T ) = 4m2 e2T

b(T ) = ±γ
√
e−(T−To) − 1 and c(T ) = ∓γLo

4m
e−2T .

Horizon (T = 0): pb = 0, pc = 4m2; singularity at pb = pc = 0.
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Quantization

Holonomies of connections b and c generate an algebra of almost
periodic functions with elements: exp(i(µb+ τc)/2). Kinematical
Hilbert space: L2(RBohr, dµb).

Action of triad operators:

p̂b |µ, τ〉 =
γl2Pl

2
µ |µ, τ〉, p̂c |µ, τ〉 = γl2Pl τ |µ, τ〉

Classical Hamiltonian constraint:

CHam = −
∫

d3x e−1εijkE
aiEbj(γ−2 F k

ab − Ωk
ab)

F i
ab expressed in terms of holonomies over loops in x− θ, x− φ

and θ − φ planes.
Departure from ‘improved dynamics’ by using fixed areas of loops.
The edge of the loop along x direction has length δcLo, and the
edges along S2 have length 2mδb. Quantum geometry fixes
minimum area of loops (∆ = 4

√
3πγl2Pl).

7 / 19



Quantum Hamiltonian constraint

Quantization results in an anisotropic difference equation with
unequal spacings in volume V = 4π|pb||pc|1/2:

ĈΨ(µ, τ) =

[ (
Vµ+δb,τ

− Vµ−δb,τ + Vµ+3δb,τ+2δc − Vµ+δb,τ+2δc

)
Ψ(µ + 2δb, τ + 2δc)

+
(
Vµ−δb,τ − Vµ+δb,τ + Vµ+δb,τ−2δc − Vµ+3δb,τ−2δc

)
Ψ(µ + 2δb, τ − 2δc)

+
(
Vµ−δb,τ − Vµ+δb,τ + Vµ−3δb,τ−2δc − Vµ−δb,τ+2δc

)
Ψ(µ− 2δb, τ + 2δc)

+
(
Vµ+δb,τ

− Vµ−δb,τ + Vµ−δb,τ−2δc − Vµ−3δb,τ−2δc

)
Ψ(µ− 2δb, τ − 2δc)

+
1

2

[ (
Vµ,τ+δc − Vµ,τ−δc + Vµ+4δb,τ+δc

− Vµ+4δb,τ−δc

)
Ψ(µ + 4δb, τ)

+
(
Vµ,τ+δc − Vµ,τ−δc + Vµ−4δb,τ+δc

− Vµ−4δb,τ−δc

)
Ψ(µ− 4δb, τ)

]

+2(1 + 2γ
2
δ
2
b )(Vµ,τ−δc − Vµ,τ+δc )Ψ(µ, τ)

]
/(2γ

3
δ
2
bδcl

2
Pl)

(δb =
√

∆/2m and δc =
√

∆/Lo)

Considering τ as a clock, evolution occurs in steps 2δc. One can
evolve across the central singularity at τ = 0 starting with initial
conditions at τ = 2nδc and τ = 2(n− 1)δc. Non-singular evolution.

Agreement with classical theory near the horizon.
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Effective dynamics

Effective Hamiltonian:

Heff = −Nsgn(pc)

2Gγ2

[
2

sin(δcc)

δc

sin(δbb)

δb
|pc|1/2+

(
sin2(δbb)

δ2
b

+ γ2

)
pb |pc|−1/2

]

Using lapse N = γsgn(pc)|pc|1/2δb/ sin(δbb), Hamiltonian
dynamics yields:

b(T ) = ±
1

δb
cos

−1
[
bo tanh

(
1

2

(
boT + 2 tanh

−1
(1/bo)

)) ]

with bo = (1 + γ
2
δ
2
b )

1/2

c(T ) =
2

δc
tan

−1
(
∓
γLoδc

8m
e
−2T

)
, pc(T ) = 4m

2

(
e
2T

+
γ2L2

oδ
2
c

64m2
e
−2T

)

pb(T ) = −2
sin(δcc)

δc

sin(δbb)

δb

|pc|
sin2(δbb)

δ2
b

+ γ2

Modified Hamilton’s equations yield a minimum allowed value of
pc: pc (min) = γ∆1/2m. Central singularity replaced by bounces.
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Important features:

Recovery of GR at infra-red scales
Bounce of pb and pc at well defined scales
Independence from fiducial length scale Lo

No other loop quantization of Schwarzschild interior shares all
these features.
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The final white hole mass is approximately a quartic power of the
initial black hole mass.
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Bounce turns out to be highly asymmetric due to anisotropic shear.

Such an asymmetry common in all anisotropic models in LQC.
Examples: Kasner transitions in Bianchi-I spacetime (Gupt, PS (11)),
No white holes in Boehmer-Vanderloot quantization
(Dadhich, Joe, PS (15)) etc.
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A closer look at quantum gravitational regime(s)

Differences between classical and effective Hamiltonian due to

c→ sin(δcc)

δc
, b→ sin(δbb)

δb
Quantum regime can be characterized by relative departure of
sin(δbb)/δb from classical b, and of sin(δcc)/δc from classical c.

Most significant non-perturbative effects contained in regime when
relative difference greater than 1%.
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Effective dynamics matches the black hole and white solutions
symmetrically in time T . Quantum regime bridges two classically
disjoint classical geometries.
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Some observations from the quantum regimes

Black holes of mass less than m = 0.7 are already quantum
from the horizon.
Generally there are two distinct quantum gravitational
regimes. The departures of sin(δcc)/δc from classical
connection c begin and end quickly in comparison to
departures of sin(δbb)/δb from classical connection b.
For some time, the effective geometry is a mixture of classical
black hole and white hole geometries. In this period, quantum
regime in c has passed and that in b is yet to begin.
Quantum regime in b very asymmetric in proper time τ . Very
short regime in the quantum black hole geometry, but a very
long regime in quantum white hole geometry.

For a black hole of mass m = 50:
Time to cross quantum regime in c: ≈ 3.6 Planck seconds
Time to cross quantum regime in b: ≈ 37000 Planck seconds
(Only 126 Planck seconds to reach bounce from black hole horizon)
Time to white hole horizon: ≈ 1.36× 1012 Planck seconds 13 / 19



Transition times

The detailed picture of the bounce(s) in the Schwarzschild interior
lead us to identifying three different transition times:

Bounce time to cross quantum regime in c (τ cB)

Bounce time to cross quantum regime in b, into white hole
geometry (τ bB)

Time to form the white hole horizon. (Delivery time, τD, from
the observable parent black hole to the observable offspring
white hole)

(In literature so far, no such clear demarcation because bounce
assumed to be symmetric and quantum gravity regime not probed).

Quantum regime (or the bounce regime) significantly dominated
by τ bB. This time also directly linked to white hole geometry
formation. Its properties determine the features of the ‘bounce
time’ through the quantum gravitational regime.
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How do bounce times change with mass of the black hole?

Size matters!

Depending on whether the black hole has mass close to Planck
scale or is much larger, bounce time can be quite different.

Bounce times to cross quantum gravity regime in connection c and
in connection b have different qualitative behavior.
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When Schwarzschild radius approaches underlying quantum
gravitational discreteness determined by area gap, mass
dependence becomes important in quantum gravity regimes.
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Different quantum gravity regimes have strikingly different
dependence on mass of the black hole.
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Proper time for bounce scales exactly as m for large black holes
(∀m ≥ 10) (universal relationship). It scales roughly as m2 for
Planck size black holes (m ∼ 0.7− 5)

Proper time for quantum gravity regime in c scales roughly as
m0.22 for large black holes. Weak growth in scaling as mass
increases.
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Delivery time

Unlike the bounce times which depend on mass of the black hole,
a universal behavior is found for delivery time.
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Delivery time scales exactly as m5 for black holes of all masses,
from very Planckian to large masses.
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Some implications

Bounce time for large masses surprisingly same as the one
found by Barcelo, Carballo-Rubio, Garay and Jannes (14)
using heuristic ideas of propagation of non-perturbative
effects.
Bounce time for small masses has same relationship as
proposed in Planck stars by Haggard and Rovelli (15).
Bounce time from classical black hole geometry to white hole
geometry in the interior always less than Hawking evaporation
time τH .
For large black holes, delivery time much larger than τH . For
an external observer a black hole horizon completely
disappears long before a white hole horizon forms. White
holes would appear in the universe without any traces of their
parent black holes. A baby universe from no where!
If a black hole has mass m . 1 then delivery time can be
much smaller than Hawking evaporation time.
Planck scale black holes explode before they can evaporate!
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Conclusions

Due to a concrete quantum gravitational model available, we
are able to perform a quantitative study of the transition times
from black hole to white holes. No such study either for black
hole bounces or for quantum gravitational regimes in LQC.
Transition from the classical black hole geometry to white
hole geometry in the interior given by τ ∼ m for all black
holes with large masses.
For Planck scale black holes, this transition time τ ∼ m2.
The delivery time is much longer because of the huge
asymmetry in the sizes of the parent black hole and the
offspring white hole. Scales as τ ∼ m5.
Size matters for bounce times, does not for delivery time.
Many open questions: How do these results improve existing
models of black hole bounce? Phenomenological
consequences? Are all or some of these results model
dependent? Consequences for black hole evaporation
paradigm?
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