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Introduction

Loop Quantum Cosmology:
Big Bang singularity is replaced by Quantum Bounce.

Quantum theory of Cosmology
Supposed to be trusted at higher energy scales than GR.

Would like to ask an a priori questions:
Does the theory allow inflation?
If so how likely is it?

Follow Laplace’s Principle of Indifference
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Introduction Inflation

Inflation

Accelerated expansion of the early universe

Typically fuelled by ’slow roll’ of scalar field down a potential
Inflation mechanism ’solves’ physical problems...

Flatness
Horizon problem

... but introduces others
Appears to need fine tuning
Gibbons & Turok: Probability of N e-foldings suppressed by Exp(−3N)
Typically need 60-70 e-foldings
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Introduction Defining Probability

Probability

Want to measure a priori probabilities:
Idea (Gibbons & Turok, ’06): Solution Counting

Solution Counting
Liouville Measure on phase space, want to count solutions: Fix a surface I in
phase space that all solutions cross exactly once
Pull back symplectic structure ω to this surface to form a measure

P(X) =

∫
A ω∫
I ω

Problem: The surface I is typically non-compact, so we need cut-offs,
regularizations etc
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Introduction Defining Probability

Probability

Why use a priori probabilities?
Can introduce a probability distribution:

P(A) =

∫
A F(u) ω∫
I F(u) ω

Concept of Information

I(F) = −
∫

F(u)ln(F(u))du

Extremized by uniform distribution.

A priori probabilities useful when very high or very low.

Need a lot of information to justify choice of F for an event.
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Introduction Warm up problem

Warm up problem: Orbital Dynamics

Planet orbiting sun (equatorial): 4D phase space: {r, Pr;φ, Pφ} Fix total
energy E gives constraint:

C = 2E − P2
r −

P2
φ

r2 +
1
r

Where E < 0 for a bounded orbit. The symplectic structure is

ω = dPφ ∧ dφ + dPr ∧ dr

Each orbit crosses φ = 0 once, hence solve constraint for Pr and pull back to
φ = 0 slice:

←−ω =
Pφ dPφ ∧ dr√

2Er4 − P2
φr2 + r3

r ∈ [0,
−1
2E

] Pφ ∈ [0,
√

r + 2Er2]
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Introduction Warm up problem

Warm up problem: Orbital Dynamics

Total measure:

N =
∫

I

←−ω =
π

2
√
−2E

Apply to physical problem: Eccentricity

e =
√

1 + 8EP2
φ

Region of phase space for a eccentricity e > e0:

A = {r ∈ [
−1 + e0

4E
,
−1− e0

4E
] , Pφ >

√
e2

0 − 1
4E
}

P(e > e0) =
1
N

∫
A

←−ω

=
√

1− e2
0
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Introduction Warm up problem

Warm up problem: Orbital Dynamics

Interpretational Issues
Almost circular orbits unlikely

Solar system populated by almost circular orbits

Solar system unlikely?
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Introduction Warm up problem

Warm up problem: Orbital Dynamics

Interpretational Issues
Almost circular orbits unlikely

Solar system populated by almost circular orbits

Solar system unlikely?

Resolution
No - Consider the question asked.

Orbits picked out by other physics

Low probability of event -> Heavy burden on model to explain.
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Loop Quantum Cosmology Effective Equations

Loop Quantum Cosmology

Work from the effective Hamiltonian for LQC (Ashtekar, Pawlokwski &
Singh; Bojowald; Willis; Taveras etc)
4D Phase Space: {φ, Pφ; ν, b}

H =
P2

φ

2ν
− 3πν

sin2(λb)
λ2 + 4π2γ2νV(φ)

Equations of motion:

φ̇ =
Pφ

2πγν
Ṗφ = −2πγνV,φ

ν̇ =
3ν

2γ

sin(2λb)
λ

ḃ = −
P2

φ

πγν2 = −4πγφ̇2

Notice: b monotonic non-increasing, system symmetric under

{ν, b, φ, Pφ} → {αν, b, φ, αPφ}
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Loop Quantum Cosmology Effective Equations

Useful Symmetry

The system has a useful symmetry:

{ν, b, φ, Pφ} → {αν, b, φ, αPφ}

Under transformation:

φ(t) → φ(t)
ν(t) → αν(t)

Space-time physics is unchanged. Symmetry can be viewed as gauge.

In k=0 cosmologies have to introduce fiducial cell

Symmetry is rescaling fiducial cell
or

Between solutions with fixed cell.
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Loop Quantum Cosmology Effective Equations

New Features

There are two new key features of LQC which we will exploit:

Unique Bounce Point at b = π
2λ (recall b monotonic)

Superinflation (Ḣ > 0)

From EoM:

H =
1
3

ν̇

ν
=

1
2γ

sin(2λb)
λ

Before bounce H < 0 after bounce H > 0
We must have superinflation.

All solutions bounce at a unique value of b
Define our gauge fixed 2D surface I to be b = π

2λ , H = 0
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Loop Quantum Cosmology Probabilities

Bounce point

Recall we have fixed a 2D surface for counting solutions.

’Non-prejudiced’ point
Can be done for any b = const surface.

Contains all solutions

Non-compact constraint surface

Following the methods above we pull back our symplectic structure to obtain:

←−ω =

√
3π

λ2 − 4π2γ2V(φ) dν ∧ dφ

Recall: Looking for fractional volume of I that leads to sufficient inflation.
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Loop Quantum Cosmology Probabilities

Calculating Probabilities

We want to find the number of solutions that have property A.

P(A) =

∫
A ω∫
I ω

Recall physics invariant under {φ, ν} → {φ, αν}:

Integrals over ν are gauge

Physical questions only depend on φ.

P(A) =

∫
φ∈A

√
3π
λ2 − 4π2γ2V(φ) dφ∫

φ∈I

√
3π
λ2 − 4π2γ2V(φ) dφ
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Loop Quantum Cosmology Superinflation

Robust Superinflation in LQC

In LQC we see a robust phase of superinflation:

Begins at b = π
2λ H = 0

Ends at b = π
4λ H = Hmax

Was originally thought this could entirely replace inflation even without
potential.

Amount of superinflation determined by value of φ and potential during
this phase.

Minimum amount ν →
√

2νbounce

Ends with H large, Ḣ = 0
Good conditions for slow roll.

David Sloan (IGC) Slow Roll in LQC 01-19-2010 16 / 27



Loop Quantum Cosmology Superinflation

Superinflation in LQC

Superinflation can be very short lived.

Driven to set H on exit
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Fixed Potential Inflaton Motion

Inflation

We want a situation in which we see slow roll inflation.
Approximately described by H = const ie Ḣ/H2 << 1
Introduce a specific potential: V(φ) = m2φ2

2 resembles damped harmonic
oscillator:

φ̈ + 3Hφ̇ + m2φ = 0

Physically motivated inflaton mass: m = 6 ∗ 10−7mpl (COBE normalization)
H is dynamical, but for slow roll inflation should be approximately constant.
with damping parameter ζ = H

2m
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Fixed Potential Dynamics

Dynamics

To understand dynamics of the system, split into three cases at the bounce
point:

Potential Domination (V(φ) > φ̇2)

Small Kinetic Domination (φ̇2 > V(φ) >> 0)

Extreme Kinetic Domination (V(φ) ≈ 0)

Note that all cases can be expressed in terms of φb.
To simplify algebra: Define F = V(φ)

ρc
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Fixed Potential Dynamics

Potential Domination

F > 1/2
Long superinflation
Slow roll begins during superinflation
Universe undergoes ’super-exponential’ phase
Superinflation followed by long inflation phase.
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Fixed Potential Dynamics

Kinetic Domination

10−10 < F < 1/2
Short superinflation
Inflaton undergoes slow roll
Slow decay of Hubble leads to ’almost-exponetial’ expansion
Outside extreme kinetic domination achieve >68 e-foldings

David Sloan (IGC) Slow Roll in LQC 01-19-2010 21 / 27



Fixed Potential Dynamics

Extreme Kinetic Domination

F < 10−10 for <68 e-foldings
Inflaton starts near minimum of potential
Rolls up to small value, begins slow roll down
Very short superinflation
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Fixed Potential Dynamics

Summary of Dynamics

Universe starts pre-bounce

Bounce

Superinflation

Inflation
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Fixed Potential Probabilities

Probability Distribution

As we have a measure we can form our probability distribution on F where
F = V(φ)/ρc:

P(F > F0) =
1
N

∫ 1

F0

√
F−1 − 1 dF

Where

N =
∫ 1

0

√
F−1 − 1 dF

And since we get 68 e-foldings for F > 10−10

P(68e− foldings) ≈ 0.9999
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Fixed Potential Probabilities

Robustness

Decrease mass, results approximately same
m ≈ 10−8mpl → P(68efolds) > 0.99

Increase mass, results approximately same
m ≈ 10−5mpl → P(68efolds) > 0.99

Can change form of potential (work in progress)
V(φ) ≈ φ4, eφ
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Conclusions Results

Conclusions

We can define a measure of probability a la Gibbons & Turok in LQC

Inflation now appears very likely

Key features of LQC required for calculation

Inflation can begin at high densities
Needs physics close to planck scale.

Bounce point gives unique place to calculate probabilities

Superinflation sets conditions for long slow roll inflation
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Conclusions Future Work

Future Work

Apply to more complicated systems
More complicated potentials

Higgs V(φ) = m2(φ2 − φ2
0)

Quartic V(φ) = Λφ4

Bianchi Cosmologies

Understand superinflation phase in inhomogeneous cosmology
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