Black holes and reversibility

Matteo Smerlak

Perimeter Institute for Theoretical Physics

ILQGS March 24, 2015

Setup: gravitational collapse

- A black hole forms from ingoing matter.
- Trapping horizon forms and peels off outgoing geodesics.
- ► Thermal Hawking radiation is emitted.
- Breakdown of predictability?

Information loss as a physical problem

"Information loss violates a basic tenet of quantum mechanics."

- ▶ Information loss happens all the time:
 - with open systems (decoherence)
 - with non-Cauchy "out" surfaces

[Wald 13]

▶ Information loss does not mess up with conservation laws.

[Banks, Peskin, Susskind 84; Unruh, Wald 95]

▶ The only real question is: what difference would it make?

What physical effects relate to the information loss problem?

Outline

Black holes as squeezers

Past/future entanglement

(A)cyclic processes

The Hawking effect

Two-mode squeezed vacuum

$$|\psi_{AB}
angle \propto \sum_{n=0}^{\infty} (anh r)^n |n,n
angle \quad \Longrightarrow \quad
ho_A \propto \sum_{n=0}^{\infty} (anh r)^n |n
angle \langle n|$$

Stronger squeezing, higher temperature ($e^{-\hbar\omega/kT} = \tanh r$).

Observing TMSV

BEC

SQUID

Nonlinear optics

Hydrodynamics

Open questions

The evaporation problem is a runaway problem

```
radiation \implies mass loss \implies smaller hole \implies higher squeezing \implies more radiation...
```

The questions for us are

- does this lead to an explosive behavior?
- does thermality break down at late times?
- what astrophysical signatures should we look for?

Outline

Black holes as squeezers

Past/future entanglement

(A)cyclic processes

Entanglement in finite systems

In finite dimensions, entanglement entropy

$$S[\rho_A] \equiv -\text{tr}_A[\rho_A \ln \rho_A] \quad \text{with} \quad \rho_A \equiv \text{tr}_B[\rho_{AB}]$$

is unitarily invariant and satisfies the triangle inequality

$$|S[\rho_A] - S[\rho_B]| \le S[\rho_{AB}] \le S[\rho_A] + S[\rho_B].$$

Page's conjecture

[Page (93,13)]

Reversibility: three open questions

Is the evaporation process

1. unitary, viz. is purity preserved?

$$S_{\rm vN}[\rho_{\rm out}] = S_{\rm vN}[\rho_{\rm in}]$$
 ?

[Hawking (76)]

2. cyclic, viz. does entanglement return to its initial value?

$$\lim_{u\to+\infty} S_{\mathrm{P}}(u) = \lim_{u\to-\infty} S_{\mathrm{P}}(u) ?$$

[Page (93)]

3. conservative, viz. do energy input and output match?

$$\lim_{u\to+\infty}M(u)=0 ?$$

Working assumptions

Neglect

- angular momentum (of spacetime and fields)
- backscattering
- non-conformal interactions

but not

semiclassical backreaction (even strong).

Reduces field dynamics to 2d CFT:

$$\phi(t,r) = r^2 \int_{S^2} d\Omega^2 \, \Phi(t,r,\Omega)$$

Renormalized entanglement entropy

In QFT, entanglement entropy is UV-divergent. Substract vacuum contribution

Defines renormalized entanglement entropy

$$S_{\mathsf{P}}(u) = [\rho_{\psi}(u)] - S[\rho_{\mathsf{0}}(u)]$$

[Holzhey, Larsen, Wilczek (94)]

The Page curve

Starting from the (non-covariant) CFT formula for a segment

$$S[\rho(R)] = \frac{1}{3} \log \frac{L(R)}{\epsilon}$$

[Holzhey, Larsen, Wilczek (94)]

we obtain the geometric formula

$$S(u) = \frac{1}{12} \ln \chi(u)$$

[Bianchi, MS 14]

with $\chi = \omega_+/\omega_-$ the in-out redshift factor.

Vaidya spacetime: the Hawking phase

$$S(u) = \frac{1}{12} \log \left(\frac{1 + W(e^{-u/4M})}{W(e^{-u/4M})} \right) \sim \frac{u}{48M}$$

[Bianchi, de Lorenzo, MS 14]

"Hawking spacetime": thunderbolt

$$S(u) \sim \frac{1}{12} \log \left(\frac{4M}{u - u_H} \right)$$

[Bianchi, de Lorenzo, MS 14]

From spacetime to the Page curve

More examples illustrate the connection between geometry and entanglement...

[Bianchi, de Lorenzo, MS 14]

... but in this approach, where

spacetime \implies entropy,

backreaction is an input. Next best thing after blind guess!

Importance of other, less narrow approach.

Outline

Black holes as squeezers

Past/future entanglement

(A)cyclic processes

Unitarity violations?

Several authors propose that evaporation is non-unitary (in the QFT sector):

- decoherence without dissipation: spin bath model [Unruh, Wald 95; Unruh 12]
- quantum gravity decoherence: defects in spacetime weave

[Perez 14]

Here I'll explore another possibility: unitary but acyclic evaporation.

The moving mirror

- Mirror starts at rest...
- ▶ ... then accelerates...
- ... then is inertial again.

 $\Delta S \propto \text{(relative rapidity)}$

Unitary but acyclic.

What does cyclicity imply?

Outgoing energy flux

Other natural observable at \mathcal{I}^+ : energy flux

$$F(u) \equiv 4\pi r^2 \langle \operatorname{in}|T_{uu}|\operatorname{in}\rangle$$

and Bondi mass

$$M(u) \equiv M_0 - \int_{-\infty}^u du' \, F(u').$$

In the 2d approximation,

$$F(u) = -\frac{1}{24\pi} \left(\frac{\dddot{p}(u)}{\dot{p}(u)} - \frac{3}{2} \frac{\ddot{p}(u)^2}{\dot{p}(u)^2} \right)$$

[Fulling, Davies, Unruh (76)]

The it from bit equation

$$2\pi F(u) = 6\dot{S}(u)^2 + \ddot{S}(u)$$

- "Page curve" S(u) determines energy flux F(u)
- ▶ Energy flux F(u) determines Page curve S(u), via

$$-\ddot{\psi}(u) + 12\pi F(u) \psi(u) = 0$$
 where $\psi \equiv e^{6S}$

- ► Flux F(u) is "exceptional": $F(u) + \delta F(u)$ not a flux
- ▶ Implies quantum inequality: $|F|\tau^2 \lesssim 1$

It-from-bit and the GSL

$$2\pi F(u) = 6\dot{S}(u)^2 + \ddot{S}(u)$$

Generalizes GSL in two ways:

- Includes non-adiabatic term (identity rather than ineq.)
- Does not require special causal structure (event horizon)
- ▶ Gives back GSL when $|\ddot{S}| \ll \dot{S}^2$. For a Schwarzschild black hole, with

$$\dot{S} = \frac{1}{48M_B}$$
 and $F = -\dot{M}_B = -\frac{\dot{S}_{\mathrm{BH}}}{32\pi M_B}$

you get

$$dS_{\rm BH}+dS=\frac{u}{96M}>0.$$

A black hole's last gasp

$$2\pi F(u) = 6\dot{S}(u)^2 + \ddot{S}(u)$$

At the "Page time" u_* , the flux is negative: $F(u_*) < 0$.

Black hole's "last gasp".

Time scales

Lifetime of a black hole

From the it-from-bit equation we get that if

- ▶ the evaporation process is cyclic
- energy is conserved: $M_B(u) > 0$,

then the purification time must be large:

$$au_P \geq \xi \; rac{(M_0^2 - M_1^2)^2}{M_1 m_P^2} = \left\{ egin{array}{ll} \mathcal{O}(M_0^4/m_P^3) & {
m if} \;\; M_1 = \mathcal{O}(m_P) \\ \mathcal{O}(M_0^3/m_P^2) & {
m if} \;\; M_1 = \mathcal{O}(M_0/2) \end{array}
ight.$$

[Carlitz-Willey 87; Bianchi, MS 19]

Recent nonsingular black hole models fail to respect this bound.

[Frolov, Vilkoviski 91; Hayward 06; Bardeen 14; Rovelli, Vidotto, Haggard 14]

An open problem

semiclassical spacetime gab

- 1. Is there a nonsingular black hole spacetime such that evaporation is cyclic and (sub)-conservative?
- 2. What kind of spacetime does Page's curve describe?

Conclusions

- ► Focus on asymptotic observers (us).
- ▶ In field theory, unitarity is not equivalent to cyclicity.
- ► From a (guessed) geometry, can compute the Page curve.
- ▶ Inverse problem seems insightful, thanks to it-from-bit.

Thanks to

A. Ashtekar, E. Bianchi, T. de Lorenzo, A. Perez, C. Rovelli.