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Introduction: the Ponzano-Regge state-sum model

The Ponzano-Regge state-sum model is formally defined by

ZPR(∆
∗
2) =

∑

{jf }

∏

f

(2jf + 1)
∏

v

{6j}

where ∆∗
2 is the dual 2-skeleton of a triangulated 3-manifold ∆.

[Ponzano, Regge (68)]

This expression is almost always divergent. Understanding the structure
of these divergences is crucial for

◮ Spinfoam models, of which the PR model is the epitome.

◮ Group field theory, where they might generate a renormalization
flow.

◮ Quantum topology, in order to define a Ponzano-Regge invariant.
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Counting the vertices of the triangulation?

Ponzano and Regge associated these divergences to the vertices of the
simplicial complex ∆, and proposed the improved definition

Z ′
PR(∆

∗
2) = lim

Λ→∞

1

Λ3|∆0|

Λ∑

{jf }

∏

f

(2jf + 1)
∏

v

{6j}.

[Ponzano, Regge (68)]

Unfortunately, this fails.

[Barrett, Naish-Guzman (09)]
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Flat connections and discrete Bianchi identity

The Ponzano-Regge model can be given a gauge-theoretic definition, as
the partition function of a system of flat connections.

ZPR(∆
∗
2) =

∫

SU(2)E
dA

∏

f

δ
(
Hf (A)

)

◮ Discrete connection: A = (ge)e ∈ SU(2)E

◮ Haar measure: dA =
∏

e dge

In this setting,

◮ Curvature of A:

H(A) = (Hf (A) =
∏

e∈∂f

g±1
e )f ∈ SU(2)F

◮ Gauge transformation of A along k ∈ SU(2) (assume single vertex):

γA(h) = (kgek
−1)e .
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Freidel and Louapre’s proposal

Some of these δ functions are redundant, as there are discrete Bianchi
identities: for each vertex v ∈ ∆0, there is an ordering of the faces
surrounding it such that

−→∏

f

H±1
f = 1.

Freidel and Louapre then proposed to collapse a spanning tree in ∆ to
remove these redundancies. This amounts to removing a tree of faces in
∆∗

2 , yielding

Z ′
FL(∆

∗
2) =

∫

SU(2)E
dA

∏

f∈∆∗
2 \T

δ
(
Hf (A)

)

[Freidel, Louapre (03)]
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Counter-examples

For lens spaces, there are triangulations such that ∆∗
2 has only one face,

and

Z ′
FL(∆

∗
2) =

∫

SU(2)

dg δ(gp) = ∞.

The same happens for the 3-torus.

“In general we do not expect this invariant to be finite for

topologically non trivial closed manifold.”

[Freidel, Louapre (03)]
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Counting the bubbles of the foam?

It was proposed that these are higher analogues of loop divergences,
arising because of the spins get unbounded along bubbles: collections of
faces forming closed surfaces.

[Perez, Rovelli (00)]

In 3 dimensions, there is correspondance between vertices of ∆ and
bubbles of ∆∗

2 . This correspondance breaks down in four dimensions.
The notion of bubble divergence is the more general one.

This idea was recently used to estimate the divergence degree for certain
foams, coined ‘type 1’:

ZPR(type 1) =




Λ∑

j=0

(2j + 1)2




B−1

.

[Freidel, Gurau, Oriti (09)]
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Our goal: divergence degree and dominant part
We consider the regularized expression

Zτ (Γ,G) =

∫

SU(2)E
dA

∏

f

Kτ

(
Hf (A)

)

with

◮ Γ an arbitrary cell 2-complex (manifold or not) with one vertex
◮ G a compact (semi-simple) Lie group

◮ Kτ the heat kernel on G , Kτ (g) ∼
τ→0

( 1√
4πτ︸ ︷︷ ︸
Λτ

)dimG

exp
(
− |g |2

4τ

)

[Freidel, Louapre (03)]

and look for an asymptotic estimate of the form

Zτ (Γ,G) ∼
τ→0

ΛΩ(Γ,G)
τ Z ′(Γ,G)︸ ︷︷ ︸

<∞
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An implicit assumption

In previous investigations, it was always implicitely assumed that the
divergences can be captured by a purely combinatorial criterion:

◮ vertices in ∆ (Ponzano-Regge, Freidel-Louapre,
Barrett-Naish-Guzman)

◮ bubbles in ∆∗
2 (Perez-Rovelli, Freidel-Gurau-Oriti)

This implies that Ω is a multiple of dimG .

This is not true in general.

This is why the Ponzano-Regge, or Freidel-Louapre, regularizations fail,
and why the Freidel-Gurau-Oriti estimate cannot be general.
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Our results

◮ The combinatorial powercounting is true in trivial cases
◮ Γ simply connected
◮ G Abelian

where indeed
Ω(Γ,G) = (dimG)b2(Γ).

◮ In more general cases, this formula is twisted, and Ω is not a
multiple of dimG :

Ω(Γ,G) = b̃2.

◮ (The dominant part Z ′(Γ,G) can be related to Reidemeister torsion, work
in progress.)
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Generalized Laplace approximation

The integral

Zτ (Γ,G) =

∫

SU(2)E
dA

∏

f

Kτ

(
Hf (A)

)
∼

τ→0
Λ(dimG)F
τ

∫

SU(2)E
dA e

−
∑

f |Hf (A)|
2

4τ

is peaked on the set F of flat connections φ, for which H(φ) = 1. In the
neighborhood of F , we have A = expφ(a) for a ∈ NφF , and

∑

f

|Hf (A)|2 = ‖dHφ(a)‖2gF .

F

φ a

Λ
−1
τ

Λτ

Gaussian integrals transversally to F .

[Forman (93)]
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A caveat: singular connections.

However, because 1 ∈ GF is usually not a regular value of the smooth
map H , i.e. H is not submersive on F , F is not a manifold, but rather
an ‘algebraic set’.

The singularities of F are the connections φ such that

ker dHφ 6= TφF .

We assume they do not contribute to the integral.

◮ True in two dimensions. [Sengupta (03)]

◮ We know one counter-example, see our paper.

The non-singular flat connection do form a manifold. Since

dim ker dHφ ≥ dimTφF ,

they are the flat connections where H has maximal rank.
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Powercounting
The Gaussian integrals bring about convergent factors, one per transverse
direction:

∫

NφF

da e
−‖dHφ(a)‖

2

gF /4τ = Λ
− dimNφF
τ det

(
(dH⊥

φ )†dH⊥
φ

)−1/2

︸ ︷︷ ︸
Gaussian determinant, indep. of τ

Hence

Zτ (Γ,G) = ΛΩ(Γ,G)
τ

∫

F

dφ f (φ),

with

Ω(Γ,G) = (dimG)F − dimNφF
i.e.

Ω(Γ,G) = (dimG)F −max
F

rk H .
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Cohomological interpretation

Our result can be given a cohomological interpretation. This is a neat
way to disentangle, about a flat connection φ, the variations a ∈ TφG

E

which

◮ leave φ flat (a ∈ ker dHφ)
◮ because they are infinitesimal gauge transformations (a ∈ Im dγφ)
◮ not for this reason (a /∈ Im dγφ)

◮ introduce curvature (a /∈ ker dHφ)

C 0
φ = g

︸ ︷︷ ︸
inf. gauge transfo.

dγφ−−−→ C 1
φ = TφG

E

︸ ︷︷ ︸
variations about φ

dHφ−−−−→ C 2
φ = g

F

︸ ︷︷ ︸
inf. holonomies

[Witten (89), Barrett-Naish-Guzman (09)]

Ω(Γ,G) = b2φ is the second Betti number in this twisted cohomology.

Note: when φ = 1, this is nothing but the cellular cohomology of Γ with
coefficients in g, and then

Ω(Γ,G) = (dimG)b2(Γ).
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Triangulation dependence of the divergence degree
Assume now that Γ is the dual 2-skeleton of a triangulation ∆(d) of a
d-manifold M (d).

Elementary manipulations on the expression of Ω(Γ,G) yield

Ω(∆(d),G) = dimM− dim ζ +
(
dimG

)
χ(M (d))

︸ ︷︷ ︸
topological invariant

+
(
dimG

) d−3∑

j=0

(−1)d+j |∆(d)
j |

︸ ︷︷ ︸
triangulation dependent

.

with

◮ M is the moduli space of flat connections
◮ ζ is the isotropy group of non-singular flat connections

◮ |∆(d)
j | the number of j-simplices
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Three dimensions

In three dimensions, this becomes

Ω(∆(d),G) = dimM− dim ζ

+
(
dimG

)
|∆(3)

0 |.

Back to Ponzano and Regge’s original intuition (“divergences are
associated to vertices of the triangulation”):

◮ They missed the topological term, and this is why their
regularization failed.

◮ But! They were right about the variation of Ω in a Pachner move:

δPachner

(
Ω(∆(d),G)

)
= (dimG)δPachner

(
|∆(3)

0 |
)
.
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Four dimensions

In four dimensions, the formula becomes

Ω(∆(d),G) = dimM− dim ζ + (dimG)χ(M (4))

+
(
dimG

)(
|∆(4)

1 | − |∆(4)
0 |

)
.

Again, the variation of Ω in a Pachner move is correctly captured by the
combinatorial estimate, the number of bubbles being

edges - vertices.
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Conclusions

◮ The divergence degree of a foam is given by the nomber of
transverse directions to the set of flat connections.

◮ The notion that it counts the “number of bubbles” is correct, but in
a subtle sense: Ω is the second Betti number in a twisted
cohomology. In particular it is not a multiple of dimG .

◮ In the case of manifolds, the old arguments relying on Pachner
moves capture the variation of Ω, but not Ω itself.

Can these methods be used to study the gravitational models? We do
not know.

Thanks!
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