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Kinematical issues for LQG:

•Are the graphs embedded in a 3 manifold or not?

Embedded follows from canonical quantization of GR.
But group field theory and other spin foam models are
simplest without embedding.

The geometric operators, area and volume do not measure
topology of the embedding

What observables or degrees of freedom are represented
by the braiding and knotting of the embeddings?
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Kinematical issues for LQG:

How should the graphs be labeled?

•SU(2) labels come from canonical quantization of GR.

     compact group labels lead to discrete spectra of areas + volumes

•Lorentz or Poincare in some spin foam models

continuous labels weaken discreteness of theory.

•Perhaps some or all of the group structure is emergent at low energy.
This would simplify the theory.

   Why should the symmetries of the classical limit be acting at
Planck scales?

But how could symmetries be emergent in a BI theory?

Are there consequences of dynamics that don’t depend on details of
labeling and amplitudes? 
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Kinematical issues for LQG:

Are the graphs framed or not?

Framing is needed if there is a cosmological constant; because
SU(2) is quantum deformed

q=e2πi/k+2 k= 6π/GΛ

To represent this the spin network graphs must be framed:
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Hamiltonian constraint

only the expansion move

Many conserved quantities with
no apparent relation to classical
GR

Dynamical issues for LQG:

Spin foam models
expansion AND exchange moves

Are there any

conserved

quantities?

3 valent moves

4 valent moves
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Dynamical issues for LQG:

Framing is also needed to
define exchange moves in
spin foam models

who is over and under?
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Questions about observables

• The geometric observables such as area and volume measure the
combinatorics of the graph. But they don’t care how the
edges are braided or knotted.  What physical information
does the knotting and braiding correspond to?

• How do we describe the low energy limit of the theory?

• What does locality mean?  How do we define local subsystems 
   without a background?
• How do we recognize gravitons and other local excitations?
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Questions about excitations:

• What protects a photon traveling in Minkowski spacetime from
        decohering with the noisy vacuum?

ANSWER:  The photon and vacuum are in different irreducible
     representations of the Poincare group.

• In quantum GR we expect Poincare symmetry is only emergent
   at low energies, at shorter scales there are quantum flucations
   of the spactime geometry not governed by a symmetry,

• So what keeps the photon from decohering with the 
        spacetime foam?
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Some answers:   (Markopoulou, Kribs )

hep-th/0604120    gr-qc/0510052

• Define local as a characteristic of excitations of the graph
states. To identify them in a background independent way
look for noiseless subsystems, in the language of quantum
information theory.

•  Identify the ground state as the state in which these propagate
coherently, without decoherence.

• This can happen if there is also an emergent symmetry which
      protect the excitations from decoherence.  Thus the ground

state has symmetries because this is necessary for  excitations
to persist as pure states.

Hence,  photons are in noiseless subsectors which have the
symmetries of flat spacetime.
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Suppose we find, a set of emergent symmetries
which protect some local excitations from
decoherence. Those local excitations will be
emergent particle degrees of freedom.
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Two results:

A large class of causal spinnet theories have
noiseless subsystems that can be interpreted as local
excitations.

There is a  class of such  models for which the
simplest such coherent excitations match the
fermions of  the standard model.

S. Bilson-Thompson,  F. Markopoulou, LS hep-th/0603022
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We study theories based on framed graphs in three spatial 
dimensions. 

The edges are framed:

The nodes become trinions:

Basis States:  Oriented,
twisted ribbon  graphs,
embedded in S3  topology,
up to topological class.

Labelings: any quantum
group…or none.
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The evolution moves:

Exchange moves:

Expansion moves:

The amplitudes: arbitrary functions of the labels

Questions: Are there invariants under the moves?

What are the simplest states preserved by the moves?



15

Invariance under the exchange moves:

The topology of the embedding remain
unchanged

All ribbon invariants are constants of the motion.
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Invariance under the exchange moves:

The topology of the embedding:
All ribbon invariants

For example: the link of the ribbon:
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Invariance under the exchange moves:

The topology of the embedding:
All ribbon invariants

For example: the link of the ribbon:

But we also want invariance
under the expansion moves:

The reduced link of the ribbon is a constant of the motion 

Reduced = remove all unlinked unknotted circles
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Definition of a subsystem:  The reduced link disconnects from the
reduced link of the whole graph. 

This gives conserved quantities labeling subsystems.

After an expansion move:
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Chirality is also an invariant:

Properties of these invariants:   

•Distinguish over-crossings from under-crossings

•Distinguish twists

•Are chiral: distinguish left and right handed structures

These invariants are independent of choice of algebra G and 
evolution amplitudes.   They exist for a large class of theories. 

P:
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What are the simplest subsystems with non-trivial invariants?

Braids on N strands, attached at
either or both  the top and bottom.

The braids and twists are constructed 
by sequences of moves.  The moves
form the braid group.

To each braid  B there is then a 
group element g(B) which is a product 
of braiding and twisting.

Charge conjugation:  take the inverse element.
hence reverses twisting.
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We can measure complexity by minimal crossings 
required to draw them:

The simplest conserved braids then have three
ribbons and two crossings: 

 

Each of these is chiral:

P:
Other two crossing
braids have unlinked
circles.
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Braids and preons    (Bilson-Thompson)     hep-ph/0503213

preon ribbon
Charge/3 twist
P,C P,C
triplet 3-strand braid
Position?? Position in braid

In the preon models there is a rule about mixing charges:

No triplet with both positive and negative charges.

This becomes: No braid with both left and right twists.

This should have a dynamical justification, here we just assume it. 

The preons are not independent degrees of freedom, just elements of
quantum geometry. But braided triplets of them are bound by 
topological  conservation laws from quantum geometry. 
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Two crossing left handed + twist  braids:

No twists:

3 + twists 

1+ twist

2+ twists

Charge= twist/3

νL

eL
+

dL
r dL

b dL
g

uL
r uL

b uL
g
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Two crossing left handed + twist  braids:

No twists:

3 + twists 

1+ twist

2+ twists

Charge= twist/3

νL

eL
+

dL
r dL

b dL
g

uL
r uL

b uL
g

Including the negative twists (charge)
these area exactly the 15 left handed  
states of the first generation of the 
standard  model.

Straightforward to prove them distinct. 
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The right handed states come from parity inversion:

No twists:

3 - twists 

1- twist

2- twists

νR

eR
-

dR
r dR

b dR
g

uR
r uR

b uR
g
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Locality and translation in braided 
ribbon networks

Jonathan Hackett: hep-th/0702198
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Jonathan Hackett: hep-th/0702198

Under the dual pachner moves, 3-valent dual graphs propagate
but do not interact.

local moves:
Propagation of 2-
crossing braids

A braid can evolve to an isolated structure (a subgraph connected 
to a larger graph with a single edge, called the tether):

tether
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Basic results on propagation of 3-valent ribbon graphs:  

•If a and b are two edges in a link of a ribbon graph, and they are 
connected (ie part of the same curve in the link) , there is a sequence of 
local moves that takes an isolated structure tethered at a  to be
 tethered at b. 

•One isolated structure can be translated across another 
  isolated structure.

Hence there are no interactions.
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Key issues:

Interactions.. To get interactions we must add additional 
local moves.

Too many and the braids become unstable.
Too few and there are no interactions.
Is there a natural proposal for additional local
moves that are just right, and lead to locally stable
braids that interact?  

Generations, charges:  does the model work for higher
generations? 
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Three-valent framed graphs: open case

Bilson-Thompson, Hackett, Kauffman, in preparation

This is the case where
the braid is connected to a
large network at one end.

This is composed of four
trinions
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braids can be joined on both ends
to the network or on one end, or capped

in the following we discuss the capped 3-valent case
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Since we can twist the top end, 
braids are equivalent to half-twists

Note that before we identified 
charge with whole twists

Proof:

We can apply this to eliminate all braids
in favor of half-twists

+= half twist

New notation:
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We then have a new notation for a capped braid:  (a,b,c)

a triple of half integers that denote the twisted braid in a form with no
braids

a  b  c

Lou’s numbers
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Multiplying braids
Belt trick identity:    (σ12 σ 32  )3 = I   

Classification, identification of
higher genereations in progress.
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Four valent framed braids:

propagation and interaction
Yidun Wan,  Fotini Markopoulou,  ls
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Basic observations:

Evolution is via dual Pachner moves:

•Dual Pachner moves only defined for framed graphs. 

•Braids are stable when moves are only allowed on sets of nodes
that* are dual to triangulations of trivial balls in R3        (Fotini)

•Remaining dual pachner moves naturally give interactions
  between braids   (Yidun)

*including any nodes attached to each of the set
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The zeroth step is to make a good notation:

Framed edges are rep
by  tubes which are rep
by three edges:

Representation of nodes (dual to tetrahedra)

twists and projections sometimes make lines cross in the triplet:

framed edge is dual to a
face, which has three edges,
these are the 3 edges here
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The dual Pachner moves:    2 to 3 move

2 to 3 move

We put this in a 
canonical notation 
with nodes flattened:

or

Notice that the flattening of the nodes induces twists 
in framed edges. These are represented by crossings 
within triplets of lines.

All moves are invertible

Note: the 
framing 
determines
who is over
and under.
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The dual pachner moves:    1 to 4 move

1 to 4 move or, 
flattening
nodes 

the lines refer to edges of the 
dual triangulation
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The basic rule:

A dual Pachner move on 2, 3 or 4 interconnected nodes is only
allowed if they (and any nodes that attach to all of them)
are with their shared edges dual to a triangulation of a ball in R3.

This stablizes isolated non-trivial braids. 
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1-crossing  states propagate

2 to 3 move

Slide nodes 1 and 2 to the left

Next step: a 3 to 2 move
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Recall the canonical form of the
3 to 2  move: 
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summary:  2 to 3 + slide +  3 to 2 yields: 

Propagation is chiral: this braid propagates only to the right.

(because it leaves  twists behind)

Its mirror image propagates only to the left.
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1-crossing interaction 
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The 1-xing braid’s propagation can take it to the left of another braid:

we leave the routing on 
the right free for now.
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Step 1: a 2 to 3 move on x and y:
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Step 1: a 2 to 3 move on x and y:

Step 2: slide the triangle and 3 nodes left past the crossing:

this creates a 4-simplex which we want to collapse by a 4 to 1 move
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recall the fine print of the 4 to 1 move:

In canonical form: 
1 to 4 move
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put in 
canonical form

4 to 1 move
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Summary: 1 to 3 + slide + 4 to 1 combines to: 

The interaction is chiral, this braid does not ineract with
braids on its left.

Its mirror image interacts only with braids on the left.
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A two crossing braid propagating

This is an alternating braid
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As before, we begin with a 2 to 3 move:

We slide two nodes past the two crossings:

Rotate node 1 and rearrange: 

2 to  3

next step: the 3 to 2 move…
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The final 3 to 2 move:

3 to 2

2 to  3,
slide,
3 to 2

Again propagation is chiral. But this one does not catalyze 
interactions.  The triangle cannot be pulled past the second 
crossing.  

Result: 
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A two crossing braid
that propagates and interacts. 
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Propagation of a simple 2-crossing braid

2 to 3 move

slide past

one link
slide past 
second

Next we have to
do a 3 to 2 move
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Putting the result back in the initial form we have shown that
2 to 3 + slide + 3 to 2 yields:
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Two-crossing interaction:

Start:
(we  leave
left node
to fix later)

2 to 3 

Slide across both crossings:
Choose
left node
so 4 to 1
move
works

Prepare to do 
4 to 1 move: 4 to 1
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Summary:  a 2 crossing interaction:

by 2 to 3 + slide + 4 to 1
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Spin foam models:  add labels and their amplitude dependence

Notation: i
j

k

l m
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Dual Pachner Moves:
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j
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Now in progress:

•Are these excitations fermions?

They are chiral but could be spinors or chiral vectors.
Edges can be anyonic in 3d
We seek an inverse quantum Hall effect

•Momentum eigenstates constructed by superposing translations
on regular lattice.

•More on twists, charge, generations, interactions etc.

•Many other questions are still open…
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Conclusions:  (All with standard dual Pachner moves) 

3 valent case:

Braids are absolutely conserved, no interactions
New local moves needed to get interactions, under study
Capped braids propagate along edges of ribbons
Capped braid systematics intricate, under investigation
Correspondence to preon model but may have exotic states

4-valent case:  (with standard dual Pachner moves for sets dual to 
triangulations of regions of R3)

Isolated braids stable.
Braids propagate, propagation is chiral
Some combine with adjacent braids, hence interact
Interactions are chiral.
Correspondence with preons etc not yet established.


