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Cosmologists are interested to study modified gravity theories in the IR 
in the hopes of understanding dark energy and, perhaps, dark matter. 

But most candidates require new fields and new parameters.  
These reduce their testability and explanatory power. 

Is there a principle which modifies gravity in a way that gives 
dynamics to the dark energy, but has no new parameters or fields? 

Meanwhile, LQG theorists have learned that GR and quantum 
gravity are in important senses close to TQFTÕs.There are senses in 
which the low energy limit of QG is dominated by a TQFT.  L plays 
an important role in these insights. 

This suggests that  any IR modification of gravity should be closely tied to  
topological field theories.  Here is one way to do that: 

Quasi topological principle:   Introduce only new terms in L that are 
topological when L is constant.  ie L gets its dynamics from disrupting 
a topological symmetry.
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Quasi topological principle:   introduce only new terms in L that are 
topological when L is constant.  ie L gets its dynamics from disrupting 
a topological symmetry.

There are two topological invariants in 4d we might disrupt:

I G! B =
!

M
! abcdRab ! Rcd !

!

M
f [! ]! abcdRab " Rcd

!
!

M
f [! ]Rab " RabI P ontryagin =

!

M
Rab ! Rab

They are both interesting.  But is there a principle that fixes 
the functions f[L]?

There is a particular choice of  f[L] that enhances what we 
might consider to be a symmetry on Òground states,Ó ie 
solutions of maximal symmetry.
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Quasi topological principle:   introduce only new terms in L that are 
topological when L is constant.  ie L gets its dynamics from disrupting 
a topological symmetry.

There are two topological invariants in 4d we might disrupt:

I G! B =
!

M
! abcdRab ! Rcd !

!

M
f [! ]! abcdRab " Rcd

!
!

M
f [! ]Rab " RabI P ontryagin =

!

M
Rab ! Rab

In fact, each option leads to several theories. 

We start with the simplest.
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Theory one



The first step:

Recall the chiral Plebanski theory:

EqÕs of motion:

SPleb = õ
!

M

1
8! G

"
! AB ! RAB "

"
6

! AB ! ! AB "
1
2

# ABCD ! AB ! ! CD
#

+ Smatter .
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0 =
! SPleb

! ! ABCD
! " (AB " " CD ) = 0 ;

0 =
! SPleb

! " AB
! RAB =

#
3

" AB + ! ABCD " CD + 8 " GTAB ;

0 =
! SPleb

! AAB
! SAB =: D" AB = 0



The Plebanski equations of motion (+c.c.  equations):                                                                                                                                                                                    

0 =
! S

! ! ABCD
! " (AB " " CD ) = 0

! AB = eA ! A ! eB
A !Implies there exists a frame field e AAÕ, such that:                                                                                                                                                                                    

0 =
! S

! ! AB
! RAB =

"
3

! AB + # ABCD ! CD

So there is no torsion for pure GR                                                                                                                                 

The Einstein  eqÕs
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SAB = T(AA !
! eB )

A ! = 0

! S
! AAB

= 0 ! SAB =: D! AB = 0



Self-dual solutions and a partial duality symmetry

SPleb = õ
Z

M

1
8! G

✓
! AB ! RAB "

"
6

! AB ! ! AB "
1
2

# ABCD ! AB ! ! CD "
3

2"
RAB ! RAB

◆

+ Smatter .

This partial symmetry is enhanced if we add one new term:

SPleb = õ
!

M

1
8! G

"
! AB ! RAB "

"
6

! AB ! ! AB "
1
2

# ABCD ! AB ! ! CD
#

+ Smatter .

ÒSelf-dualÓ solutions:    Weyl=matter=0 RAB =
!
3

" AB

Suggests a duality symmetry:

! AB ! RAB
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There is just one change to the Plebanski EoM:

0 =
! S

! AAB
! D " ⌃AB # SAB = !

3
2! 2 d! " RAB

So now there is torsion proportional to dL:                                                                                                                                  
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=
1

2!
d! ! ea ! eb = 2T[a ! eb]

SAB =: D! AB = TAA Ó ! e B
A ! =

! SGB

! AAB
= "

3
2" 2 d" ! RAB (" ) .

When we evaluate it on self-dual solutions:                                                                                                                                 

Ta =
d!
2!

! ea

Sab =
3

2! 2 d! ! Rab



This torsion is exactly what is needed 
to make the Einstein eqÕs with 
Weyl=matter=0 consistent for variable 
L.  These are the generalized self-dual 
solutions.

RAB =
!
3

" AB

Consistency of generalized self-dual solutions:
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0 = DRAB =
d!
3

" AB !
!
3

3d!
! 2 " RAB (! ) =

d!
!

[
!
3

" AB ! RAB ] = 0

Ta =
d!
2!

! ea



Details of torsion  (IF NEEDED)

Aab = ! ab(e) + K abThe connection is a 1-form:                                                                                                                                                                                   

Kab is the contortion 1-form, related to the torsion 2-form:                                                                                                                                                                                   

Ta = Dea = dea + Aa
b ! eb

Ta = K a
b ! eb

We also introduced the 3-form:                                                                                                                                                                      D! ab = Sab = 2T[a ! eb]

Which we found was:                                                                                                                                                                                   Sab =
3

2! 2 d! ! F ab =
1

2!
d! ! ea ! eb = 2T[a ! eb]

Thus, for self-dual solutions:                                                                                                                                                                                   Ta =
1
!

d! ! ea

To compute the contortion trade for all Lorentz indices:                                                                                                                                                                                   

Tabc = e!
a e

"
bT

d
!" ! cd ,Kabc = e!

a K! bc

Use: 

to find that on self-dual solutions:                                                                                                                                                                                  

K abc =
1
4

(Tbac + Tacb ! Tcba)

K bc
! = !

1
2!

e[b
! ec]" ! " !
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More on SD solutions



Self-dual solutions L = constant      (CDJ)                                                                                                                                                              

Pick an SU(2) connection, AAB, such that  FAB satisfies                                                                                                                                                                                   

F (AB ! F CD ) = 0

DF AB = 0

Pick next a constant, L  and define:                                                                                                                                                                

! AB !
3
"

F AB

This satisfies:                                    and                                                                                                                        

! AB = eA ! A ! eB
A !

so there exists a frame field e AAÕ, such that:                                                                                                                                                                                    

D! A ! B !
= 0! (AB ! ! CD ) = 0

ie Torsion vanishes.                                                                    

Example:  de Sitter or AdS                                                                   
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Self-dual solutions L = variable                                                                                                                                                                   

Pick an SU(2) connection, AAB, such that  FAB satisfies                                                                                                                                                                                   

F (AB ! F CD ) = 0

DF AB = 0

Pick next a variable, L  and define:                                                                                                                                                                

! AB !
3
"

F AB

This satisfies:                                                                                                                                                           

! AB = eA ! A ! eB
A !there still exists a frame field e AAÕ, such that:                                                                                                                                                                                    

! (AB ! ! CD ) = 0

D! AB ! SAB = D(
3

" (x)
F AB ) = "

3
" 2 d" # F AB = "

1
"

d" # ! AB

still,  solves the Einstein eq with:                                                                                                                      ! ABCD = 0

FAB =
!
3

" AB + # ABCD " CD

But now there is torsion:   and using (SD) it is what we need 
to let L be variable:                                                                                                                                                          
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(SD)

FtoR



SPleb = õ
Z

M

1
8! G

✓
! AB ! RAB "

"
6

! AB ! ! AB "
1
2

# ABCD ! AB ! ! CD "
3

2"
RAB ! RAB

◆

+ Smatter .

L also has eqs of motion:

EqÕs of motion:

Plus one more:

0 =
! SPleb

! !
!

! 2

9
" AB " " AB = RAB " RAB .
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Solved identically on the generalized self-dual solutions!

! AB !
3
"

F AB

0 =
! SPleb

! �ABCD
! ⌃(AB " ⌃CD ) = 0 ;

0 =
! SPleb

! ⌃AB
! RAB =

⇤

3
⌃AB + �ABCD ⌃CD + 8 " GTAB ;

0 =
! SPleb

! AAB
! SAB =: D⌃AB = #

3
2⇤2 d⇤ " RAB (#) .



Quasi topological dynamics of L                                                                                                                                                                                    

Integrate the new term by parts:                                                                                                                                                                                    

SCS = !
õ

16! G

!

M

3
!

(RAB " RAB ! RA ! B !
" RA ! B ! ) = !

õ
16! G

!

M

3
!

dI m(YCS )

Reproduces the  
Im part of the   
Chern-Simons 
invariant of the 
Ashtekar connection 
on initial and final 
surfaces

= !
õ

8! G

!

! f inal

3
2!

I mYCS +
õ

8! G

!

! initial

3
2!

I mYCS

+
õ

16! G

!

M
d(

3

!
)I mYCS
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YCS = T r
!

A ! dA +
1
3

A3
"

! YCS

! AAB
= RAB



Quasi topological dynamics of L                                                                                                                                                                                    

Integrate the new term by parts:                                                                                                                                                                                     

SCS = !
õ

16! G

!

M

3
!

(RAB " RAB ! RA ! B !
" RA ! B ! ) = !

õ
16! G

!

M

3
!

dI m(YCS )

Reproduces the  
Im part of the   
Chern-Simons 
invariant of the 
Ashtekar connection 
on initial and final 
surfaces

= !
õ

8! G

!

! f inal

3
2!

I mYCS +
õ

8! G

!

! initial

3
2!

I mYCS

+
õ

16! G

!

M
d(

3

!
)I mYCS

Note that SS is the right Hamilton-Jacobi function to enforce that, on 
the initial or final surface, the spacetime is deSitter.                                                                                                                                                        

S! =
õ

8! G

!

!

3
2!

ImY CS (A)

But, could the initial and final LÕs be different, as they appear to be in our 
universe?  Does the new term suffice to make L variable, or even dynamical?                                                                                                                              
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Quasi topological dynamics of L                                                                                                                                                                                    

Integrate the new term by parts:                                                                                                                                                                                    

SCS = !
õ

16! G

!

M

3
!

(RAB " RAB ! RA ! B !
" RA ! B ! ) = !

õ
16! G

!

M

3
!

dI m(YCS )

Reproduces the  
Im part of the   
Chern-Simons 
invariant of the 
Ashtekar connection 
on initial and final 
surfaces

= !
õ

8! G

!

! f inal

3
2!

I mYCS +
õ

8! G

!

! initial

3
2!

I mYCS

+
õ

16! G

!

M
d(

3

!
)I mYCS

The third term suggests L is a dynamical variable, conjugate to                                                                                                                                                                                     ! CS = ImYCS(A)

Recall tCS was proposed as a measure of intrinsic time    (Smolin, Soo, 1994)                                                                                                                                                                                     

!18

{ ! (x), ! CS (y)} =
16" G! 2

3
#3(x, y)



We consider the same theory in Palatini variables:                                                                                                                                                                                    

! a !
"SM

"ea

We see the new term is the Gauss-Bonnet invariant.                                                                                                                                                                                  

S =
1

8! G

Z

M
"abcd

⇢
ea ! eb ! Rcd(#) " 2! ea ! eb ! ec ! ed "

3
2!

Rab ! Rcd

�
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!
3

=

!
! abcdRab ! Rcd

e4

Sab ! T [a " eb] = #
3

2! 2 d! " Rab

! abcdeb "
!

Rcd #
!
3

ec " ed
"

=
"
3

#a



Consistency in Palatini variables:                                                                                                                                                                                    

! a !
"SM

"ea
! abcd eb !

!
F cd "

!
3

ec ! ed
"

=
"
3

#a

D ⌧a =
3

✏abcd

!
Tb ! F cd " ! Tb ! ec ! ed "

d!
3

! eb ! ec ! ed
"

.

D ! a =
3
"

#abcdTb !
!

F cd "
!
3

ec ! ed
"

.

S =
1

8! G

Z

M
"abcd

⇢
ea ! eb ! Rcd(#) " 2! ea ! eb ! ec ! ed "

3
2!

Rab ! Rcd

�
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New non-linearities in the eqÕs of motion.

But RAB (w) is a function of Ta:

Where K, the contorsion, is a linear function of T:

! AB = ÷! (e)AB + K AB

Ta = K a
b ! eb

Rab(! ) = Rab(÷! (e) + K ) = ÷Rab(÷! (e)) + ÷DK ab + K a
cK cb

So we have to  invert a quadratic  equation for T:

So the curvature 2-form is a quadratic function of T:

!21

SAB =: D! AB = TAA Ó ! e B
A ! =

! SGB

! AAB
= "

3
2" 2 d" ! RAB (" ) .

Sab = T[a ! eb] = "
3d!
2! 2 !

!
÷Rab(÷! (e)) + ÷DK ab + K a

c ! K cb
"



! AB = ÷! (e)AB + K AB

Ta = K a
b ! eb

So we have to  invert a quadratic  equation for T:

Expand around a self-dual solution:

Ta = !
d!
2!

" ea + . . .

!22

Sab = T [a ! eb] = "
3d!
2! 2 !

!
÷Rab(÷! (e)) + ÷DK ab + K a

c ! K cb
"

Sab = T[a ! eb] = "
d!
2!

! ea ! eb + . . .



New non-linearities in the L eq of motion. ! AB = ÷! (e)AB + K AB

This time we have to  invert an  equation for L and dL/L

Again, we can expand around a self-dual solution.

Rab(! ) = Rab(÷! (e) + K [
d!
!

])

But the curvature two form is itself a function of  dL/L :

!23

!
3

=

!
! abcdRab ! Rcd

e4



What we know of solutions to first theory: 

1)  Torsion absorbs and protects derivatives of Lambda. 

2) Generalized self-dual solutions. 

3) Cosmological solutions: generalized FRW. 
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Are there consistent vacuum solutions with varying L and  
nonzero Weyl curvature?

RAB =
!
3

" AB + # ABCD " CD

DRAB = 0

! [D " 2
d!
!

]" ABCD # CD =
3d!
! 2 " ABCD " CDEF # EF

!25

!
3

=

!
! abcdRab ! Rcd

e4

These together 
imply that Weyl 
curvature vanishes  
(Eulidean??) 
KK

Does this imply that dL=0?



It seems theory one is unphysical.  What are the options? 

-Add or induce a kinetic energy for L. 

-Go away from the  special value for the coefficient 
of the Gauss-Bonet term. 

-Consider the theory based on the  Pontryagin invariant.
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Theory two: 

Induce or add a L kinetic energy                                                                                                                                                                    

 Frees L and Weyl to both propagate independently.                                     

Loosens constraints, cosmological and otherwise.                                                                                         



 L kinetic energy from torsion-squared                                                                                                                                                                    

Diffeomorphism invariance allows us to add the dimension two term:                                                                                                                                                                             

ST 2
=

!
8" G

!

M

!
" gg!" gµ#Ta

! µ Tb
"# #ab

Ta =
1
!

d! ! ea

This might be induced by quantum corrections or a fermion condensate, 
or might simply be added, in which case we have a new parameter, a.                                                                                                                                                                             

This gives a standard kinetic energy term for l = Ln L,  
near a self-dual solution.                                                                                                                                                                            

ST 2
=

3!
32" G

!

M

p
�gg!" #! $#" $

Expanding round a self dual solution, in powers of dL/L:                                                                  
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 Theory two: include  a L kinetic energy from torsion squared                                                                                                                                                                   
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Stwo =
1

8⇡G

Z

M
✏abcd

⇢
ea ^ eb ^ Rcd(!) � 2! ea ^ eb ^ ec ^ ed � 3

2!
Rab ^ Rcd

�

+ !
!

" gg!" gµ#Ta
! µ Tb

"# " ab



This gives an effective dynamics for L, 
near a self-dual solution.

÷⇤! = " AB ! " AB

!
1 " (

3
!

)2 F AB ! FAB

" AB ! " AB

"

Effective dynamics for L                                                                                                                        

÷! =
1
!

! µ

!
!

" ggµ ! 1
!

! !

"
Where           

There are fixed points at           

! µ! = 0;
!
3

=

!
F AB ! FAB

" AB ! " AB
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S =
1

8! G

!

M
"abcd

"
ea ! eb ! Rcd(#) " 2! ea ! eb ! ec ! ed "

3$
2!

Rab ! Rcd

#

!
3

=

!
!" abcdRab ! Rcd

e4

Option two: go  away from the special value.

Weyl now propagates.



 L kinetic energy from torsion hidden in curvature                                                                                                                                                                    

On self-dual solutions to the Aab  equations of motion,                                                                                                                                                                               

Rab(A) = ÷Rab[! (e)] + DK ab + K a
c ! K bc

Aab = ! ab(e) + K ab K bc
! = !

1
2!

e[b
! ec]" ! " !

The effective action has a new term in (dL)2 from                                                                                                                                                                          

S =
1

8! G

!

M
! ee!

a e"
b R ab

!" (A)

Snew =
1

8! G

! "

M

3
! 2 eg!" " ! ! " " ! +

"

#M
ea ! eb ! K ab

#

!32



 L kinetic energy from torsion hidden in curvature-2                                                                                                                                                                    

In fact, there are, in the neighbourhood of a de Sitter background, 
contributions to a L kinetic energy, coming from both the Einstein 
and the Gauss-Bonet term.  The result is 

!33

Sef f (e,! ) =
!

M

1
2

(1 ! ! )
3! 2

! 2
eg!" " ! ! " " ! + . . .
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Cosmological solutions of theory one:  
generalized FRW.



Cosmological solutions: generalized FRW.

FRW ansatz:

Symmetries require of torsion:

e0 = dt ei = a(t)dxi

T0 = 0 T i = ! T(t)e0 " ei

Definition of torsion 2-form: Ta ! Dea = dea + ! a
b " eb

! i
0 = g(t)ei =

!
úa
a

+ T
"

ei ! i
j = 0 ,

Modified Hubble parameter: g =
úa
a

+ T

Curvature components:

F 0i =
1
a

(ag(t)) .e0 ! ei =
1
a

(úa + T a).e0 ! ei

F ij = g2(t)ei ! ej =
!

úa
a

+ T
" 2

ei ! ej
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Cosmological solutions: generalized FRW p2.

Perfect fluid:

Field equations reduced to FRW:

! 0 = " (t)#ijk ei ! ej ! ek

! i = " p(t)#ijk e0 ! ej ! ek

w = p/ !

T =
3 ú!
2! 2 g2

g2 =
!

úa
a

+ T
" 2

=
! + !"

3

g2 + 2
(ag).

a
= ! ! p + !

g2 1
a

(ag). =
! 2

9

!36

dA:  torsion equation

FRW equation

L equation of motion

Raychoudri equation



Solve for the torsion to find:

w = p/ !
T =

ú!
2!

!
1 +

⇢

!

"

g2 =

#
úa
a

+
ú!

2!

!
1 +

⇢

!

"
$ 2

=
! + ⇢

3

(ag).

a
=

1
a

#

úa +
ú!

2!
a

!
1 +

⇢

!

"
$ .

=
!
3

!


6
(⇢ + 3p)

(! + ⇢)
!

! !


2
(⇢ + 3p)

"
= ! 2.

From which we deduce, by the usual way, the conservation eq:

ú! + 3
úa
a

(! + p) = �T(! + 3p) +
2! T � ú!

"
.

! = 8 " G

Using the field equations, the RHS=0:

ú! + 3
úa
a

(! + p) = 0 .

So matter is conserved via the torsion free connection.  The role 
of torsion is just to account for the non-conservation of the Lambda 
energy-momentum. !37



We use this to simplify the FRW equations:

w = p/ !

! = 8 " G

We discover L just tracks matter. 

!
úa
a

+ T
" 2

=
! + !"

3

T =
ú!

2!

#
1 +

!"
!

$

ú" + 3
úa
a

(" + p) = 0

(! + !" )
#

! !
!
2

(" + 3p)
$

= ! 2.

! = !"
1 + 3w
1 ! 3w ⌦! !

! !

! + ! !
=

1 + 3w
2

! ! = ! / "

We can say this different ways. 
ú!
!

=
ú⇢
⇢

= ! 3(1 + w)
úa
a

. T =
ú!
!

1
1 + 3w

= ! 3
1 + w
1 + 3w

úa
a

,

!38



The effect of L is to renormalize NewtonÕs constant:

w = p/ !

! = 8 " G

! ! = ! / "

!
úa
a

" 2

=
ø!"
3

ø! =
!
2

(1 + 3w)2

1 ! 3w
.

a ! t
2

3(1+ w ) ,

!39

Pure radiation (w=1/3) plus L is forbidden:

! = !"
1 + 3w
1 ! 3w

⌦! !
! !

! + ! !
=

1 + 3w
2

Two ways out: add L kinetic energy or go away from q=1.



With q away from one :

w = p/ !

! = 8 " G

! ! = ! / "

!40

The usual BBN constraint on DG gives a constraint on q

⇢

!
=

1
2

!

" 1 ! 3w
1 + 3w

+

# $
1 ! 3w
1 + 3w

%2

+
8(✓ ! 1)
✓(1 + 3w)

&

' .

Now we consider pure radiation (w=1/3) and any q, 
and find a renormalized NewtonÕs constant.

ø! = !
1 +

!
!

! ! 1
"

1 ! 2"
!

! ! 1
!

# 2 .

! 0.1 <
! G
G

< 0.14 1.83 < ! < 1.92
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Theory three: 

We use the Pontryagin invariant instead of the Gauss-
Bonnet invariant.                                                                                                                                                                                                                                                                                                                                                     



Theory three:  

S =
1

8! G

!

M
"abcd "

ea ! eb ! Rcd(A) " 2! ea ! eb ! ec ! ed#
+

3
2!

Rab ! Rab

We use the Pontryagin invariant instead of the Gauss-Bonnet invariant.                                                                                                                                                                                  

!42

The Pontryagin density is parity odd and vanishes on FRW spacetimes. 

It couples to matter fields through an anomaly, in the conservation of 
the chiral current.                                                                                                                                                                         

!
3
=

!
16! 2

3

" 1
2

#
! µ J µ

5"
# g

Dµ J µ =
3

16! 2 Rab ! Rab

So, the L Eom ties L to an anomaly, and hence to the L-R  
matter creation rates.  Might this explain why L is presently small?                                                                                                                                                                      

Note:             G! ! (" m! )4

! m! ! 3 " 10! 3
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S =
1

8! G

!

M
"abcd "

ea ! eb ! Rcd(A) " 2! ea ! eb ! ec ! ed#
+

3
2!

Rab ! Rab

+ !
!

" gg!" gµ#Ta
! µ Tb

"# " ab

FRW reduction

Theory four: 

We use the Pontryagin invariant and give L 
a kinetic energy                                                                                                                                                                                                                                                                                                                                                    
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(a) E! ective potential for the Þeld " with bR ÷R = M 4
p .

(b) E ! ective potential for Þeld ! with various ÷b values. For
÷b = a(" )! n for positive n (as we expect), propagating time

forward results in smaller ÷b, thus the minima for V (! )
becomes more negative.

I. " EQUATIONS

The e! ective Lagrangian for the Þeld" is given by

L ! = " +
b
"

R ÷R +
c

" 2 gµ ! ! µ " ! ! " . (1)

We will assume" is a spatially homogeneous Þeld, in a perfect deSitter background. By assuming a perfect deSitter
metric, we assume the energy density of the Þeld" does not signiÞcantly contribute to the energy density of the
universe. Using the conformal time coordinate,a(" ) = ! (H " )! 1, the equation of motion can be written as
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where dots represent conformal time derivatives. The Þeld" has an additional drag term of the form ú" / " , which
manifests from the non-canonical kinetic term for" . The e! ective ÒpotentialÓ for" can be written as

V (" ) =
"
6c

#
" 2 ! 3bR÷R

$
, (3)

which is shown in Fig. 1a.

II. ! EQUATIONS

Alternatively, starting " > 0 conÞnes the Þeld to be positive at all times forc, b > 0. Thus, making the Þeld
redeÞnition # = log

%
" /M 2

p

&
, the Þeld # will have canonical kinetic term, and equation of motion given by
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where ÷c = 2c(H/M p)2 and ÷b(x) = bR÷R/M 4
p . In this form, the potential for the Þeld $ can be expressed as

V(#) =
1
÷c

#
e" + ÷be! "

$
, (5)

which is shown in Fig. 1b. We note, for÷b decreasing (redshifting) as a function of time, the minima of the potential
occurs at decreasing#. Thus, at late times, if ÷b " 0+ , we expect the Þeld will roll towards # " !# and the Þeld
" $ exp(#) " 0+ .
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Effective dynamics for L

Potential for L         

change to f=log L  to make kinetic energy canonical:       

To find potential for  f=log L    

!44

Se! = !
1

8! G

!
d4xe

"
! +

b
!

R ÷R +
c

! 2 gµ ! " µ ! " ! !
#

,



1

-! -" # " !
-"$#

-#$%

#$#

#$%

"$#

�� /Mp
!

c V (�� )
Mp

&

(a) E ! ective potential for the Þeld " with bR ÷R = M 4
p .

(b) E ! ective potential for Þeld ! with various ÷b values. For
÷b = a(" )! n for positive n (as we expect), propagating time

forward results in smaller ÷b, thus the minima for V (! )
becomes more negative.

I. " EQUATIONS

The e! ective Lagrangian for the Þeld" is given by

L ! = " +
b
"

R ÷R +
c

" 2 gµ ! ! µ " ! ! " . (1)

We will assume" is a spatially homogeneous Þeld, in a perfect deSitter background. By assuming a perfect deSitter
metric, we assume the energy density of the Þeld" does not signiÞcantly contribute to the energy density of the
universe. Using the conformal time coordinate,a(" ) = ! (H " )! 1, the equation of motion can be written as

¬" !

!
2
"

+
ú"
"

"

ú" +
1

2cH 2" 2

#
" 2 ! bR÷R

$
= 0 , (2)

where dots represent conformal time derivatives. The Þeld" has an additional drag term of the form ú" / " , which
manifests from the non-canonical kinetic term for" . The e! ective ÒpotentialÓ for" can be written as

V (" ) =
"
6c

#
" 2 ! 3bR÷R

$
, (3)

which is shown in Fig. 1a.

II. ! EQUATIONS

Alternatively, starting " > 0 conÞnes the Þeld to be positive at all times forc, b > 0. Thus, making the Þeld
redeÞnition # = log

%
" /M 2

p

&
, the Þeld # will have canonical kinetic term, and equation of motion given by

¬# !
2
"

ú# +
1

÷c" 2

#
e" ! ÷be! "

$
= 0 , (4)

where ÷c = 2c(H/M p)2 and ÷b(x) = bR÷R/M 4
p . In this form, the potential for the Þeld $ can be expressed as

V(#) =
1
÷c

#
e" + ÷be! "

$
, (5)

which is shown in Fig. 1b. We note, for÷b decreasing (redshifting) as a function of time, the minima of the potential
occurs at decreasing#. Thus, at late times, if ÷b " 0+ , we expect the Þeld will roll towards # " !# and the Þeld
" $ exp(#) " 0+ .

1

(a) E! ective potential for the Þeld " with bR ÷R = M 4
p .

b
��

! !

b
��

! "#$

b
��

! "

" % " ! " ! %
"

!

%

$

&

'

(

��

c�� ) #��$

(b) E ! ective potential for Þeld ! with various ÷b values. For
÷b = a(" )! n for positive n (as we expect), propagating time

forward results in smaller ÷b, thus the minima for V (! )
becomes more negative.

I. " EQUATIONS

The e! ective Lagrangian for the Þeld" is given by

L ! = " +
b
"

R ÷R +
c

" 2 gµ ! ! µ " ! ! " . (1)

We will assume" is a spatially homogeneous Þeld, in a perfect deSitter background. By assuming a perfect deSitter
metric, we assume the energy density of the Þeld" does not signiÞcantly contribute to the energy density of the
universe. Using the conformal time coordinate,a(" ) = ! (H " )! 1, the equation of motion can be written as

¬" !

!
2
"

+
ú"
"

"

ú" +
1

2cH 2" 2

#
" 2 ! bR÷R

$
= 0 , (2)

where dots represent conformal time derivatives. The Þeld" has an additional drag term of the form ú" / " , which
manifests from the non-canonical kinetic term for" . The e! ective ÒpotentialÓ for" can be written as

V (" ) =
"
6c

#
" 2 ! 3bR÷R

$
, (3)

which is shown in Fig. 1a.

II. ! EQUATIONS

Alternatively, starting " > 0 conÞnes the Þeld to be positive at all times forc, b > 0. Thus, making the Þeld
redeÞnition # = log

%
" /M 2

p

&
, the Þeld # will have canonical kinetic term, and equation of motion given by

¬# !
2
"

ú# +
1

÷c" 2

#
e" ! ÷be! "

$
= 0 , (4)

where ÷c = 2c(H/M p)2 and ÷b(x) = bR÷R/M 4
p . In this form, the potential for the Þeld $ can be expressed as

V(#) =
1
÷c

#
e" + ÷be! "

$
, (5)

which is shown in Fig. 1b. We note, for÷b decreasing (redshifting) as a function of time, the minima of the potential
occurs at decreasing#. Thus, at late times, if ÷b " 0+ , we expect the Þeld will roll towards # " !# and the Þeld
" $ exp(#) " 0+ .

Effective Potential For Lambda

Robert Sims et al:   work in progress.
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potential for  f=log L    
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Typical behaviours seen, depending on initial conditions: 

¥ Sign  of L never changes. 

¥ L goes to time dependent fixed point, which takes it into 0. 

¥ L first shows damped oscillations  around fixed point. 

¥ Or L freezes out, leading to L domination.                                                  
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Tentative conclusions: 

Two new extensions of GR which are diffeo invariant, have one less parameter than GR,  
which each allow L to vary or evolve dynamically. 

dS spacetime is enhanced to a space of generalized-self-dual spacetimes, with variable L, which are 
consistent because a torsion arises from the eqÕs of motion, proportional to dL. 

With Weyl=matter=0, L is free to vary, because its field eq is redundant.  Enlarged self dual 
sector.   When matter is turned on, L tracks its density. 

Theory one (q=1, vacuum, no L-self-energy), appears to have no propagating modes. 

Terms in torsion-squared, may be induced by going away from q=1 or  introduced by hand; these  
yield a L kinetic energy when examined near a self-dual spacetime. 

FRW reductions have been  studied.   Without the L kinetic energy these are highly constrained to  
have L stuck in fixed points where it follows the matter density; when the L gains an independent 
kinetic energy, it becomes free to oscillate around or travel between fixed points. 

The Pontryagin inv based theory predicts a relation between L and the gravitational 
chiral anomaly, possibly explaining the small 
value of L. 
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Much to do: 

¥ Study theory away from q=1 and or with L kinetic energy. 

¥ L appears to clump around matter:  Dark matter?  

¥ Black holes? 

¥ Linearization?   with L K.E. are there scalar waves? Coupled to what? 

¥ Perturbation theory in dL/L? 

¥ Better understanding of new non-linearities from solving A and L eqs. 
   
¥ L  a function only of time in a preferred splicing?                        
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Slides for discussion:



Coupled numerical evolution  Robert Sims, in progress.                                                                                                                        
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Coupled numerical evolution  Robert Sims, in progress.                                                                                                                        
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Ra � 1
2

eaR = �! ea

Check  of L-variable solutions in Palatini                                                                                                                 

Einstein eqÕs in 
terms of 3-forms:

Ra =
1
6

! abcdeb ! Rcd

ea =
1
6

! abcdeb ! ec ! ed

Dea ! Ta =
1

2!
d! " ea

This is solved by, 
with variable L: Rab =

!
3

ea ! eb

When the torsion 
is defined by:

To show this, take covariant curl of both sides of  (SD): 

D LHS =0,  D RHS =0 using the definition of torsion (T) 

To show consistency, take curl again and use (T) again. 

(T)

(SD)

(E)
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To connect this with the deSitter temperature we scale on a trajectory 
corresponding to an S3 slicing of dS:   

The relation between the two time coordinates is given by 

This leads to the dimensional Gibbons-Hawking temperature: 

F(/%9!/<#'!7(%'!&(/!!
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Basics of ashtekar variables and de Sitter                                                           
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The Ashtekar variables are complex coordinates 
for real, Lorentzian spacetimes:

Aai = 3d spin connectionai +
õ

!
q

K abE b
i

K ab ! úqab

{ Ai
a(x), E b

j (y)} = õG!ba! i
j ! 3(y, x)

I GR =
!

dt
!

!
õEai úAai ! N H ! N aHa ! wi Gi

qqab = E ai E b
i
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A new uncertainty relation.

Another approach is to define a preferred slicing, and 
define L and the Chern-Simons time as a function of the slices.         

Then the new term in the action is         

This implies a new Poisson bracket and uncertainty relation.         

TCS = I m
!

!
YCS (A)

Snew =
3

16! ! G

!
dt

ú!
! 2 I m

!

!
YCS (A)

!"! ! CS !
8" ! G

3
" ö" 2#.

{ ! ,
!

!
I mYCS (A)} =

16! G! 2

3
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Waiting/storage fOR formulas

Sab = T[a ! eb] = "
3d!
2! 2 !

!
÷Rab(÷! (e)) + ÷DK ab + K a

c ! K cb
"

Sab = T[a ! eb] = "
d!
2!

! ea ! eb + . . .



Effective dynamics for L
Effective equation of motion for L                                                                                                                        

Se! = !
1

8! G

!
d4xe

"
! +

b
!

R ÷R +
c

! 2 gµ ! " µ ! " ! !
#

,

ds2 = a2(⌘)
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deSitter solutions                                                                                                                         

time dependent potential                                                                                                                         

÷b(x) = bR÷R/M 4
p

! = ! /M 2
p = " exp[#]

V (�) =
�

3÷c

!
�2 ! 3÷b(x)

"
.
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FIG. 1: Example of numeric solution for ! (left) and ! (right) given ÷c = 10! 4 and ÷b = ( ! x/ 110)3. The orange line
in the left plot displays the trajectory of the minima for ! .

where primes denote derivatives with respect tox, ÷c = 2c(H/M p)2, and ÷b(x) = bR÷R/M 4
p . The function ÷b is generally

a functions of x due to the Pontryagin density. The time dependent potential has the form

V(" ) =
"
3÷c

!
" 2 ! 3÷b(x)

"
. (8)

Due to the cubic nature of the potential, the Hamiltonian for the Þeld must be unbounded from below. We note,
the minima for the potential is given by " = ÷b1/ 2. For ÷b " 0, the potential monotonically increases, resulting in
unstable solutions for" . Instead, for stable solutions we require positive÷b, thus R ÷R must have preferential sign. This
requirement can be somewhat relaxed, allowing÷b to brießy become negative at su" ciently early times (large x). This
possibility will be discussed in greater detail in Section III. For now, we will consider÷b to be strictly positive.

Further, due to the addition ÒdampingÓ term of the form" "/ " , one must be careful evolving a system where the
cosmological constant switches sign. We will focus on the scenario where the cosmological constant begins with a
Þnite positive value. As " # 0+ , the modiÞcation to the Hubble drag term, " "/ " " 0, hence the drag increases and
quickly slows the Þeld" (" " # 0). Additionally, ÷b $ 0, then " "" $ 0. Thus, the Þeld will ÒbounceÓ o# of the point
" = 0, remaining positive for the entire evolution. Therefore, in this regime, we may rewrite the Þeld" = #exp[! ],
where ! is the dynamic Þeld and# is a (dimensionless) constant that sets the sign of! . For our considerations, we
can set# = 1. Under this redeÞnition, the equation of motion for ! can be written as

! "" !
2
x

! " +
1

÷cx2

!
e! ! ÷b(x)e! !

"
= 0 , (9)

V (! ) = ÷c! 1
!

e! + ÷b(x)e! !
"

. (10)

In this form, we see the classical barrier that appears as! # !% (i.e. ! # 0+ ), given by V(! ) &
÷b
÷c (#e! )! 1. Figure 1

provides an numeric solution to the ! evolution equation, where÷b(x) ' (! x)3.
Due to the canonical kinetic term for the Þeld! , the equation of motion is simply a scalar Þeld evolving with Hubble

drag, in a nonlinear, lower-bounded potential. As shown in Fig. 1, Hubble drag will act to decay oscillations of the
Þeld around the minima ! = 1

2 log÷b, induced by initial conditions. One can expand for the Þeld near its minima,
! # ! + 1

2 log÷b, to Þnd the equation of motion as

! "" !
2
x

! " +
2(÷b(x))1/ 2

÷cx2 !
#

1 +
! 2

6
+ O(! 4)

$
= 0 , (11)

Þnding the e#ective ÒmassÓ of the! Þeld as 2
%

÷b/÷c. Qualitatively, the Þeld ! acts as a massive test Þeld during
inßation, where the Þeld will freeze when the condition

2÷b1/ 2

÷c
=

& (
b

c

' &
R ÷R
M 4

p

' 1/ 2 #
M p

H

$ 2

"
9
4

. (12)

3

FIG. 2: Numeric solutions for ' given multiple di ! erent initial conditions, with ÷c = 10! 3 and ÷b = ( ! x/ 110)3. The
vertical dashed line displays the freeze-out timexfreeze " ! 1.2.

If the Pontryagin density continues to be sourced (R ÷R # an = ( ! x)! n for n > 0), the Þeld will not freeze at late
times, tracking the minima ' = 1

2 log÷b. However, this minima will continue to increase, resulting in a divergent
cosmological constant at late times.

Alternatively, if the Pontryagin density reshifts ( R ÷R # a! n = ( ! x)n for n > 0), the Þeld will (approximately)
freeze at at late times. In this scenario, while the minima of the potential 1

2 log÷b $ !% at late times, the Þeld' will
asymptote to a Þnite value. Eventually, the nonlinear terms in the expansion around the minima given in Eq. (11)
dominate, and this description cannot encompass the full dynamics. However, the solution will give an upper bound
for the asymptotic form of ', and thus an upper bound on the cosmological constant.

Taking ÷b = b0(! x)n for n > 0, we can Þnd the time of freeze-out as

÷b(xfreeze) =
81÷c2

64
, xfreeze =

!
81÷c2

64b0

" 1/n

. (13)

Ignoring the nonlinear terms in Eq. (11), one can solve the di! erential equation as

' = ( ! x)3/ 2

#
$

%
AJ 6

n

&

'

(
256÷b(x)

÷c2n2

) 1/ 4
*

+ + B Y 6
n

&

'

(
256÷b(x)

÷c2n2

) 1/ 4
*

+

,
-

.
, (14)

whereJ ! (z), Y! (z) are the Bessel functions of the Þrst and second kind, respectively. The coe" cients A, B will be set
by initial conditions of the Þeld ' as it enters the linear regime we have considered. In this regime, we have'" & 0,
which requires B ' 0. Expanding these solutions asx $ 0! , we see

' $ !
B #

/
6
n

0

⇡

!
÷c2n2

16b0

" 3/ 2n

, M ! 2
p $ !

9÷c
8

exp

(

!
B #

/
6
n

0

⇡

!
÷c2n2

16b0

" 3/ 2n
)

, (15)

thus the cosmological constant is exponentially suppressed. TakingR ÷R = �/a 3, we generally expect the cosmological
constant to have value

$ ! H 2 exp
1
! O(10! 1)H 2

!
B
(
�

"2
, (16)

where B, � are ultimately related to some initial conditions of the cosmological constant and Pontryagin density. As
shown in Fig. 2, the value ofB is relatively unchanged for di! erent initial conditions of the Þeld, depending primarily
on the other physical quantities to the problem (such as ÷c). Furthermore, small (compared to H 2) initial asymmetry
in the gravitational waves, �, will result in a large suppression of the$ .

R ÷R ! a! nAssume falloff:                                                                                                                         

Note: L does not change sign                                                                                                                       
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Varying the initial H 0  Robert Sims, in progress.                                                                                                                        

÷c = 2c/ 9 (M p/H 0)2
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Initial conditions:   
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r0 is then found by solving the Friemann eq.
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Varying the initial H 0  Robert Sims, in progress.                                                                                                                        

÷c = 2c/ 9 (M p/H 0)2
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Varying the initial H 0  Robert Sims, in progress.                                                                                                                        Switch to Planck units:
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