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Cosmologists are interested to study modified gravity theories in the IR 
in the hopes of understanding dark energy and, perhaps, dark matter. 

But most candidates require new fields and new parameters.  
These reduce their testability and explanatory power. 

Is there a principle which modifies gravity in a way that gives 
dynamics to the dark energy, but has no new parameters or fields? 

Meanwhile, LQG theorists have learned that GR and quantum 
gravity are in important senses close to TQFT’s.There are senses in 
which the low energy limit of QG is dominated by a TQFT.  L plays 
an important role in these insights. 

This suggests that  any IR modification of gravity should be closely tied to  
topological field theories.  Here is one way to do that: 

Quasi topological principle:  Introduce only new terms in L that are 
topological when L is constant.  ie L gets its dynamics from disrupting 
a topological symmetry.
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Quasi topological principle:  introduce only new terms in L that are 
topological when L is constant.  ie L gets its dynamics from disrupting 
a topological symmetry.

There are two topological invariants in 4d we might disrupt:

IG�B =

Z

M
✏abcdR

ab ^Rcd !
Z

M
f [⇤]✏abcdR

ab ^Rcd

!
Z

M
f [⇤]Rab ^RabIPontryagin =

Z

M
Rab ^Rab

They are both interesting.  But is there a principle that fixes 
the functions f[L]?

There is a particular choice of  f[L] that enhances what we 
might consider to be a symmetry on “ground states,” ie 
solutions of maximal symmetry.
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Quasi topological principle:  introduce only new terms in L that are 
topological when L is constant.  ie L gets its dynamics from disrupting 
a topological symmetry.

There are two topological invariants in 4d we might disrupt:

IG�B =

Z

M
✏abcdR

ab ^Rcd !
Z

M
f [⇤]✏abcdR

ab ^Rcd

!
Z

M
f [⇤]Rab ^RabIPontryagin =

Z

M
Rab ^Rab

In fact, each option leads to several theories. 

We start with the simplest.
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Theory one



The first step:

Recall the chiral Plebanski theory:

Eq’s of motion:

SPleb = ı

Z

M

1

8⇡G

✓
⌃AB ^RAB � ⇤

6
⌃AB ^ ⌃AB � 1

2
�ABCD⌃AB ^ ⌃CD

◆

+ Smatter .
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0 =
�SPleb

��ABCD
! ⌃(AB ^ ⌃CD) = 0 ;

0 =
�SPleb

�⌃AB
! RAB =

⇤

3
⌃AB + �ABCD⌃CD + 8⇡GTAB ;

0 =
�SPleb

�AAB
! SAB =: D⌃AB = 0



The Plebanski equations of motion (+c.c.  equations):                                                                                                                                                                                    

0 =
�S

��ABCD
! ⌃(AB ^ ⌃CD) = 0

⌃AB = eA
0A ^ eBA0Implies there exists a frame field e AA’, such that:                                                                                                                                                                                    

0 =
�S

�⌃AB
! RAB =

⇤

3
⌃AB + �ABCD⌃CD

So there is no torsion for pure GR                                                                                                                                 

The Einstein  eq’s
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SAB = T (AA0
^ eB)

A0 = 0

�S

�AAB
= 0 ! SAB =: D⌃AB = 0



Self-dual solutions and a partial duality symmetry

SPleb = ı

Z

M

1

8⇡G

✓
⌃AB ^RAB � ⇤

6
⌃AB ^ ⌃AB � 1

2
�ABCD⌃AB ^ ⌃CD � 3

2⇤
RAB ^RAB

◆

+ Smatter .

This partial symmetry is enhanced if we add one new term:

SPleb = ı

Z

M

1

8⇡G

✓
⌃AB ^RAB � ⇤

6
⌃AB ^ ⌃AB � 1

2
�ABCD⌃AB ^ ⌃CD

◆

+ Smatter .

“Self-dual” solutions:    Weyl=matter=0 RAB =
⇤

3
⌃AB

Suggests a duality symmetry:

⌃AB $ RAB
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⇤

3



There is just one change to the Plebanski EoM:

0 =
�S

�AAB
! D ^ ⌃AB ⌘ SAB = � 3

2⇤2
d⇤ ^RAB

So now there is torsion proportional to dL:                                                                                                                                  
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=
1

2⇤
d⇤ ^ ea ^ eb = 2T [a ^ eb]

SAB =: D⌃AB = TAA” ^ e B
A0 =

�SGB

�AAB
= � 3

2⇤2
d⇤ ^RAB(!) .

When we evaluate it on self-dual solutions:                                                                                                                                 

T a =
d⇤

2⇤
^ ea

Sab =
3

2⇤2
d⇤ ^Rab



This torsion is exactly what is needed 
to make the Einstein eq’s with 
Weyl=matter=0 consistent for variable 
L.  These are the generalized self-dual 
solutions.

RAB =
⇤

3
⌃AB

Consistency of generalized self-dual solutions:
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0 = DRAB =
d⇤

3
⌃AB � ⇤

3

3d⇤

⇤2
^RAB(!) =

d⇤

⇤
[
⇤

3
⌃AB �RAB ] = 0

T a =
d⇤

2⇤
^ ea



Details of torsion  (IF NEEDED)

Aab = !ab(e) +KabThe connection is a 1-form:                                                                                                                                                                                   

Kab is the contortion 1-form, related to the torsion 2-form:                                                                                                                                                                                   

T a = Dea = dea +Aa
b ^ eb

T a = Ka
b ^ eb

We also introduced the 3-form:                                                                                                                                                                      D⌃ab = Sab = 2T [a ^ eb]

Which we found was:                                                                                                                                                                                   Sab =
3

2⇤2
d⇤ ^ F ab =

1

2⇤
d⇤ ^ ea ^ eb = 2T [a ^ eb]

Thus, for self-dual solutions:                                                                                                                                                                                   T a =
1

⇤
d⇤ ^ ea

To compute the contortion trade for all Lorentz indices:                                                                                                                                                                                   

Tabc = e↵ae
�
b T

d
↵�⌘cd,Kabc = e↵aK↵bc

Use: 

to find that on self-dual solutions:                                                                                                                                                                                  

Kabc =
1

4
(Tbac + Tacb � Tcba)

Kbc
↵ = � 1

2⇤
e[b↵e

c]�@�⇤
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More on SD solutions



Self-dual solutions L = constant      (CDJ)                                                                                                                                                              

Pick an SU(2) connection, AAB, such that  FAB satisfies                                                                                                                                                                                   

F (AB ^ FCD) = 0

DFAB = 0

Pick next a constant, L  and define:                                                                                                                                                                

⌃AB ⌘ 3

⇤
FAB

This satisfies:                                    and                                                                                                                        

⌃AB = eA
0A ^ eBA0

so there exists a frame field e AA’, such that:                                                                                                                                                                                    

D⌃A0B0
= 0⌃(AB ^ ⌃CD) = 0

ie Torsion vanishes.                                                                    

Example:  de Sitter or AdS                                                                   
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Self-dual solutions L = variable                                                                                                                                                                   

Pick an SU(2) connection, AAB, such that  FAB satisfies                                                                                                                                                                                   

F (AB ^ FCD) = 0

DFAB = 0

Pick next a variable, L  and define:                                                                                                                                                                

⌃AB ⌘ 3

⇤
FAB

This satisfies:                                                                                                                                                           

⌃AB = eA
0A ^ eBA0there still exists a frame field e AA’, such that:                                                                                                                                                                                    

⌃(AB ^ ⌃CD) = 0

D⌃AB ⌘ SAB = D(
3

⇤(x)
FAB) = � 3

⇤2
d⇤ ^ FAB = � 1

⇤
d⇤ ^ ⌃AB

still, solves the Einstein eq with:                                                                                                                      �ABCD = 0

FAB =
⇤

3
⌃AB + �ABCD⌃CD

But now there is torsion:   and using (SD) it is what we need 
to let L be variable:                                                                                                                                                          
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(SD)

FtoR



SPleb = ı

Z

M

1

8⇡G

✓
⌃AB ^RAB � ⇤

6
⌃AB ^ ⌃AB � 1

2
�ABCD⌃AB ^ ⌃CD � 3

2⇤
RAB ^RAB

◆

+ Smatter .

L also has eqs of motion:

Eq’s of motion:

Plus one more:

0 =
�SPleb

�⇤
! ⇤2

9
⌃AB ^ ⌃AB = RAB ^RAB .
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Solved identically on the generalized self-dual solutions!

⌃AB ⌘ 3

⇤
FAB

0 =
�SPleb

��ABCD
! ⌃(AB ^ ⌃CD) = 0 ;

0 =
�SPleb

�⌃AB
! RAB =

⇤

3
⌃AB + �ABCD⌃CD + 8⇡GTAB ;

0 =
�SPleb

�AAB
! SAB =: D⌃AB = � 3

2⇤2
d⇤ ^RAB(!) .



Quasi topological dynamics of L                                                                                                                                                                                    

Integrate the new term by parts:                                                                                                                                                                                    

SCS = � ı

16⇡G

Z

M

3

⇤
(RAB ^RAB �RA0B0

^RA0B0) = � ı

16⇡G

Z

M

3

⇤
dIm(YCS)

Reproduces the  
Im part of the   
Chern-Simons 
invariant of the 
Ashtekar connection 
on initial and final 
surfaces

= � ı

8⇡G

Z

⌃final

3

2⇤
ImYCS +

ı

8⇡G

Z

⌃initial

3

2⇤
ImYCS

+
ı

16⇡G

Z

M
d(

3

⇤
)ImYCS
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YCS = Tr

✓
A ^ dA+

1

3
A3

◆

�YCS

�AAB
= RAB



Quasi topological dynamics of L                                                                                                                                                                                    

Integrate the new term by parts:                                                                                                                                                                                     

SCS = � ı

16⇡G

Z

M

3

⇤
(RAB ^RAB �RA0B0

^RA0B0) = � ı

16⇡G

Z

M

3

⇤
dIm(YCS)

Reproduces the  
Im part of the   
Chern-Simons 
invariant of the 
Ashtekar connection 
on initial and final 
surfaces

= � ı

8⇡G

Z

⌃final

3

2⇤
ImYCS +

ı

8⇡G

Z

⌃initial

3

2⇤
ImYCS

+
ı

16⇡G

Z

M
d(

3

⇤
)ImYCS

Note that SS is the right Hamilton-Jacobi function to enforce that, on 
the initial or final surface, the spacetime is deSitter.                                                                                                                                                        

S⌃ =
ı

8⇡G

Z

⌃

3

2⇤
ImYCS(A)

But, could the initial and final L’s be different, as they appear to be in our 
universe?  Does the new term suffice to make L variable, or even dynamical?                                                                                                                              
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Quasi topological dynamics of L                                                                                                                                                                                    

Integrate the new term by parts:                                                                                                                                                                                    

SCS = � ı

16⇡G

Z

M

3

⇤
(RAB ^RAB �RA0B0

^RA0B0) = � ı

16⇡G

Z

M

3

⇤
dIm(YCS)

Reproduces the  
Im part of the   
Chern-Simons 
invariant of the 
Ashtekar connection 
on initial and final 
surfaces

= � ı

8⇡G

Z

⌃final

3

2⇤
ImYCS +

ı

8⇡G

Z

⌃initial

3

2⇤
ImYCS

+
ı

16⇡G

Z

M
d(

3

⇤
)ImYCS

The third term suggests L is a dynamical variable, conjugate to                                                                                                                                                                                     ⌧CS = ImYCS(A)

Recall tCS was proposed as a measure of intrinsic time    (Smolin, Soo, 1994)                                                                                                                                                                                     
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{⇤(x), ⌧CS(y)} =
16⇡G⇤2

3
�3(x, y)



We consider the same theory in Palatini variables:                                                                                                                                                                                    

⌧a / �SM

�ea

We see the new term is the Gauss-Bonnet invariant.                                                                                                                                                                                  

S =
1

8⇡G

Z

M
✏abcd

⇢
ea ^ eb ^Rcd(!)� 2⇤ea ^ eb ^ ec ^ ed �

3

2⇤
Rab ^Rcd

�

!19

⇤

3
=

r
✏abcdRab ^Rcd

e4

Sab ⌘ T [a ^ eb] = � 3

2⇤2
d⇤ ^Rab

✏abcde
b ^

✓
Rcd � ⇤

3
ec ^ ed

◆
=



3
⌧a



Consistency in Palatini variables:                                                                                                                                                                                    

⌧a / �SM

�ea✏abcd eb ^
✓
F cd � ⇤

3
ec ^ ed

◆
=



3
⌧a

D⌧a =
3


✏abcd

✓
T b ^ F cd � ⇤T b ^ ec ^ ed � d⇤

3
^ eb ^ ec ^ ed

◆
.

D⌧a =
3


✏abcdT

b ^
✓
F cd � ⇤

3
ec ^ ed

◆
.

S =
1

8⇡G

Z

M
✏abcd

⇢
ea ^ eb ^Rcd(!)� 2⇤ea ^ eb ^ ec ^ ed �

3

2⇤
Rab ^Rcd

�

!20



New non-linearities in the eq’s of motion.

But RAB (w) is a function of Ta:

Where K, the contorsion, is a linear function of T:

!AB = !̃(e)AB +KAB

T a = Ka
b ^ eb

Rab(!) = Rab(!̃(e) +K) = R̃ab(!̃(e)) + D̃Kab +Ka
cK

cb

So we have to  invert a quadratic  equation for T:

So the curvature 2-form is a quadratic function of T:

!21

SAB =: D⌃AB = TAA” ^ e B
A0 =

�SGB

�AAB
= � 3

2⇤2
d⇤ ^RAB(!) .

Sab = T [a ^ eb] = �3d⇤

2⇤2
^
⇣
R̃ab(!̃(e)) + D̃Kab +Ka

c ^Kcb
⌘



!AB = !̃(e)AB +KAB

T a = Ka
b ^ eb

So we have to  invert a quadratic  equation for T:

Expand around a self-dual solution:

T a = �d⇤

2⇤
^ ea + . . .
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Sab = T [a ^ eb] = �3d⇤

2⇤2
^
⇣
R̃ab(!̃(e)) + D̃Kab +Ka

c ^Kcb
⌘

Sab = T [a ^ eb] = �d⇤

2⇤
^ ea ^ eb + . . .



New non-linearities in the L eq of motion. !AB = !̃(e)AB +KAB

This time we have to  invert an  equation for L and dL/L

Again, we can expand around a self-dual solution.

Rab(!) = Rab(!̃(e) +K[
d⇤

⇤
])

But the curvature two form is itself a function of  dL/L :

!23

⇤

3
=

r
✏abcdRab ^Rcd

e4



What we know of solutions to first theory: 

1)  Torsion absorbs and protects derivatives of Lambda. 

2) Generalized self-dual solutions. 

3) Cosmological solutions: generalized FRW. 
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Are there consistent vacuum solutions with varying L and  
nonzero Weyl curvature?

RAB =
⇤

3
⌃AB + �ABCD⌃CD

DRAB = 0

! [D � 2
d⇤

⇤
]�ABCD⌃CD =

3d⇤

⇤2
�ABCD�CDEF⌃EF

!25

⇤

3
=

r
✏abcdRab ^Rcd

e4

These together 
imply that Weyl 
curvature vanishes  
(Eulidean??) 
KK

Does this imply that dL=0?



It seems theory one is unphysical.  What are the options? 

-Add or induce a kinetic energy for L. 

-Go away from the  special value for the coefficient 
of the Gauss-Bonet term. 

-Consider the theory based on the  Pontryagin invariant.
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Theory two: 

Induce or add a L kinetic energy                                                                                                                                                                    

 Frees L and Weyl to both propagate independently.                                     

Loosens constraints, cosmological and otherwise.                                                                                         



 L kinetic energy from torsion-squared                                                                                                                                                                    

Diffeomorphism invariance allows us to add the dimension two term:                                                                                                                                                                             

ST 2

=
↵

8⇡G

Z

M

p
�gg↵�gµ⌫T a

↵µT
b
�⌫⌘ab

T a =
1

⇤
d⇤ ^ ea

This might be induced by quantum corrections or a fermion condensate, 
or might simply be added, in which case we have a new parameter, a.                                                                                                                                                                             

This gives a standard kinetic energy term for l = Ln L,  
near a self-dual solution.                                                                                                                                                                            

ST 2

=
3↵

32⇡G

Z

M

p
�gg↵�@↵�@��

Expanding round a self dual solution, in powers of dL/L:                                                                  
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 Theory two: include  a L kinetic energy from torsion squared                                                                                                                                                                   
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Stwo =
1

8⇡G

Z

M
✏abcd

⇢
ea ^ eb ^Rcd(!)� 2⇤ea ^ eb ^ ec ^ ed �

3

2⇤
Rab ^Rcd

�

+↵
p
�gg↵�gµ⌫T a

↵µT
b
�⌫⌘ab



This gives an effective dynamics for L, 
near a self-dual solution.

⇤̃⇤ = ⌃AB ^ ⌃AB


1� (

3

⇤
)2
FAB ^ FAB

⌃AB ^ ⌃AB

�

Effective dynamics for L                                                                                                                        

⇤̃ =
1

⇤
@µ

✓p
�ggµ⌫

1

⇤
@⌫

◆Where           

There are fixed points at           

@µ⇤ = 0;
⇤

3
=

s
FAB ^ FAB

⌃AB ^ ⌃AB

!30
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S =
1

8⇡G

Z

M
✏abcd

⇢
ea ^ eb ^Rcd(!)� 2⇤ea ^ eb ^ ec ^ ed �

3✓

2⇤
Rab ^Rcd

�

⇤

3
=

r
✓✏abcdRab ^Rcd

e4

Option two: go  away from the special value.

Weyl now propagates.



 L kinetic energy from torsion hidden in curvature                                                                                                                                                                    

On self-dual solutions to the Aab  equations of motion,                                                                                                                                                                               

Rab(A) = R̃ab[!(e)] +DKab +Ka
c ^Kbc

Aab = !ab(e) +Kab Kbc
↵ = � 1

2⇤
e[b↵e

c]�@�⇤

The effective action has a new term in (dL)2 from                                                                                                                                                                          

S =
1

8⇡G

Z

M
�ee↵ae

�
bR

ab
↵� (A)

Snew =
1

8⇡G

✓Z

M

3

⇤2
eg↵�@↵⇤@�⇤+

Z

@M
ea ^ eb ^Kab

◆
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 L kinetic energy from torsion hidden in curvature-2                                                                                                                                                                    

In fact, there are, in the neighbourhood of a de Sitter background, 
contributions to a L kinetic energy, coming from both the Einstein 
and the Gauss-Bonet term.  The result is 

!33

Seff (e,⇤) =

Z

M

1

2
(1� ✓)

3✓2

⇤2
eg↵�@↵⇤@�⇤+ . . .
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Cosmological solutions of theory one:  
generalized FRW.



Cosmological solutions: generalized FRW.

FRW ansatz:

Symmetries require of torsion:

e0 = dt ei = a(t)dxi

T 0 = 0 T i = �T (t)e0 ^ ei

Definition of torsion 2-form: T a ⌘ Dea = dea + !a
b ^ eb

!i
0 = g(t)ei =

✓
ȧ

a
+ T

◆
ei !i

j = 0,

Modified Hubble parameter: g =
ȧ

a
+ T

Curvature components:

F 0i =
1

a
(ag(t)).e0 ^ ei =

1

a
(ȧ+ Ta).e0 ^ ei

F ij = g2(t)ei ^ ej =

✓
ȧ

a
+ T

◆2

ei ^ ej
!35



Cosmological solutions: generalized FRW p2.

Perfect fluid:

Field equations reduced to FRW:

⌧0 = ⇢(t)✏ijke
i ^ ej ^ ek

⌧i = �p(t)✏ijke
0 ^ ej ^ ek

w = p/⇢

T =
3⇤̇

2⇤2
g2

g2 =

✓
ȧ

a
+ T

◆2

=
⇤+ ⇢

3

g2 + 2
(ag).

a
= �p+ ⇤

g2
1

a
(ag). =

⇤2

9

!36

dA:  torsion equation

FRW equation

L equation of motion

Raychoudri equation



Solve for the torsion to find:

w = p/⇢
T =

⇤̇

2⇤

⇣
1 +

⇢

⇤

⌘

g2 =

 
ȧ

a
+

⇤̇

2⇤

⇣
1 +

⇢

⇤

⌘!2

=
⇤+ ⇢

3

(ag).

a
=

1

a

 
ȧ+

⇤̇

2⇤
a
⇣
1 +

⇢

⇤

⌘!.

=
⇤

3
� 

6
(⇢+ 3p)

(⇤+ ⇢)
⇣
⇤� 

2
(⇢+ 3p)

⌘
= ⇤2.

From which we deduce, by the usual way, the conservation eq:

⇢̇+ 3
ȧ

a
(⇢+ p) = �T (⇢+ 3p) +

2⇤T � ⇤̇


.

 = 8⇡G

Using the field equations, the RHS=0:

⇢̇+ 3
ȧ

a
(⇢+ p) = 0.

So matter is conserved via the torsion free connection.  The role 
of torsion is just to account for the non-conservation of the Lambda 
energy-momentum. !37



We use this to simplify the FRW equations:

w = p/⇢

 = 8⇡G

We discover L just tracks matter. 

✓
ȧ

a
+ T

◆2

=
⇤+ ⇢

3

T =
⇤̇

2⇤

⇣
1 +

⇢

⇤

⌘

⇢̇+ 3
ȧ

a
(⇢+ p) = 0

(⇤+ ⇢)
⇣
⇤� 

2
(⇢+ 3p)

⌘
= ⇤2.

⇤ = ⇢
1 + 3w

1� 3w ⌦⇤ ⌘ ⇢⇤
⇢+ ⇢⇤

=
1 + 3w

2

⇢⇤ = ⇤/

We can say this different ways. 
⇤̇

⇤
=

⇢̇

⇢
= �3(1 + w)

ȧ

a
. T =

⇤̇

⇤

1

1 + 3w
= �3

1 + w

1 + 3w

ȧ

a
,

!38



The effect of L is to renormalize Newton’s constant:

w = p/⇢

 = 8⇡G

⇢⇤ = ⇤/

✓
ȧ

a

◆2

=
̄⇢

3
̄ =



2

(1 + 3w)2

1� 3w
.

a / t
2

3(1+w) ,

!39

Pure radiation (w=1/3) plus L is forbidden:

⇤ = ⇢
1 + 3w

1� 3w
⌦⇤ ⌘ ⇢⇤

⇢+ ⇢⇤
=

1 + 3w

2

Two ways out: add L kinetic energy or go away from q=1.



With q away from one :

w = p/⇢

 = 8⇡G

⇢⇤ = ⇤/

!40

The usual BBN constraint on DG gives a constraint on q

⇢

⇤
=

1

2

2

41� 3w

1 + 3w
+

s✓
1� 3w

1 + 3w

◆2

+
8(✓ � 1)

✓(1 + 3w)

3

5 .

Now we consider pure radiation (w=1/3) and any q, 
and find a renormalized Newton’s constant.

̄ = 
1 +

q
✓

✓�1
✓
1� 2✓

q
✓�1
✓

◆2 .

�0.1 <
�G

G
< 0.14 1.83 < ✓ < 1.92
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Theory three: 

We use the Pontryagin invariant instead of the Gauss-
Bonnet invariant.                                                                                                                                                                                                                                                                                                                                                     



Theory three:  

S =
1

8⇡G

Z

M
✏abcd

�
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+

3

2⇤
Rab ^Rab

We use the Pontryagin invariant instead of the Gauss-Bonnet invariant.                                                                                                                                                                                  
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The Pontryagin density is parity odd and vanishes on FRW spacetimes. 

It couples to matter fields through an anomaly, in the conservation of 
the chiral current.                                                                                                                                                                         

⇤

3
=

✓
16⇡2

3

◆ 1
2

s
rµJ

µ
5p

�g

DµJ µ =
3

16⇡2
Rab ^Rab

So, the L Eom ties L to an anomaly, and hence to the L-R  
matter creation rates.  Might this explain why L is presently small?                                                                                                                                                                      

Note:             G⇤ ⇡ (�m⌫)
4

�m⌫ ⇡ 3⇥ 10�3
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S =
1

8⇡G

Z

M
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�
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+

3

2⇤
Rab ^Rab

+↵
p
�gg↵�gµ⌫T a

↵µT
b
�⌫⌘ab

FRW reduction

Theory four: 

We use the Pontryagin invariant and give L 
a kinetic energy                                                                                                                                                                                                                                                                                                                                                    
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(b) E↵ective potential for field � with various b̃ values. For
b̃ = a(⌘)�n for positive n (as we expect), propagating time

forward results in smaller b̃, thus the minima for V (�)
becomes more negative.
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We will assume ⇤ is a spatially homogeneous field, in a perfect deSitter background. By assuming a perfect deSitter
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where dots represent conformal time derivatives. The field ⇤ has an additional drag term of the form ⇤̇/⇤, which

manifests from the non-canonical kinetic term for ⇤. The e↵ective “potential” for ⇤ can be written as
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which is shown in Fig. 1a.

II. � EQUATIONS

Alternatively, starting ⇤ > 0 confines the field to be positive at all times for c, b > 0. Thus, making the field

redefinition � = log
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p . In this form, the potential for the field ' can be expressed as
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, (5)

which is shown in Fig. 1b. We note, for b̃ decreasing (redshifting) as a function of time, the minima of the potential

occurs at decreasing �. Thus, at late times, if b̃ ! 0
+
, we expect the field will roll towards � ! �1 and the field

⇤ / exp(�) ! 0
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Effective dynamics for L

Potential for L         

change to f=log L  to make kinetic energy canonical:       

To find potential for  f=log L    
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Effective Potential For Lambda

Robert Sims et al:   work in progress.
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potential for  f=log L    



Numeric Solutions

	

Dimensionless	
Variables

Set	mass	scale

	

Ansatz	for	Pontryagin	
density

Robert  Sims



Numeric Solutions

i

Robert  Sims



Typical behaviours seen, depending on initial conditions: 

• Sign  of L never changes. 

• L goes to time dependent fixed point, which takes it into 0. 

• L first shows damped oscillations  around fixed point. 

• Or L freezes out, leading to L domination.                                                  
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Tentative conclusions: 

Two new extensions of GR which are diffeo invariant, have one less parameter than GR,  
which each allow L to vary or evolve dynamically. 

dS spacetime is enhanced to a space of generalized-self-dual spacetimes, with variable L, which are 
consistent because a torsion arises from the eq’s of motion, proportional to dL. 

With Weyl=matter=0, L is free to vary, because its field eq is redundant.  Enlarged self dual 
sector.   When matter is turned on, L tracks its density. 

Theory one (q=1, vacuum, no L-self-energy), appears to have no propagating modes. 

Terms in torsion-squared, may be induced by going away from q=1 or  introduced by hand; these  
yield a L kinetic energy when examined near a self-dual spacetime. 

FRW reductions have been  studied.   Without the L kinetic energy these are highly constrained to  
have L stuck in fixed points where it follows the matter density; when the L gains an independent 
kinetic energy, it becomes free to oscillate around or travel between fixed points. 

The Pontryagin inv based theory predicts a relation between L and the gravitational 
chiral anomaly, possibly explaining the small 
value of L. 

              
⇤

3
=

✓
16⇡2

3

◆ 1
2

s
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�g



Much to do: 

• Study theory away from q=1 and or with L kinetic energy. 

• L appears to clump around matter:  Dark matter?  

• Black holes? 

• Linearization?   with L K.E. are there scalar waves? Coupled to what? 

• Perturbation theory in dL/L? 

• Better understanding of new non-linearities from solving A and L eqs. 
   
• L  a function only of time in a preferred splicing?                        
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Thank you
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Slides for discussion:



Coupled numerical evolution  Robert Sims, in progress.                                                                                                                        
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ȧ

a
� ⇤̇

⇤

!
⇤̇+

1

2c

⇣
⇤2 � bRR̃

⌘
= 0

⇢̇+ 3
ȧ
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Initial condition L0 is at twice the fixed point.
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Coupled numerical evolution  Robert Sims, in progress.                                                                                                                        
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Ra �
1

2
eaR = �⇤ea

Check  of L-variable solutions in Palatini                                                                                                                 

Einstein eq’s in 
terms of 3-forms:

Ra =
1

6
✏abcde

b ^Rcd

ea =
1

6
✏abcde

b ^ ec ^ ed

Dea ⌘ T a =
1

2⇤
d⇤ ^ ea

This is solved by, 
with variable L: Rab =

⇤

3
ea ^ eb

When the torsion 
is defined by:

To show this, take covariant curl of both sides of  (SD): 

D LHS =0,  D RHS =0 using the definition of torsion (T) 

To show consistency, take curl again and use (T) again. 

(T)

(SD)

(E)
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MORE	ON	CHERN-SIMONS	TIME



Thermality	of	the	exact	quantum	theory	on	Σ=S3

Recall:	
•	The	KMS	condition.	Thermal	states	are	periodic	in	imaginary	time.	
•	The	natural	time	coordinate	is:	

•	The	Euclidean	continuation	has	Aa	real	
Hence	the	natural	Euclidean	time	coordinate	is		
But	this	is	a	periodic	coordinate	on	the	configuration	space.	
	 Under	large	gauge	transformations:	

Hence	there	is	a	dimensionless	temperature.	

Hence,	the	whole	quantum	theory	of	gravity	with	Σ=S3	is	thermal!	

!59



To connect this with the deSitter temperature we scale on a trajectory 
corresponding to an S3 slicing of dS:   

The relation between the two time coordinates is given by 

This leads to the dimensional Gibbons-Hawking temperature: 

Note:	this	does	not		
just	say	that	QFT	on	dS	
is	thermal.		It	says		
quantum	gravity	with		
a	positive	CC	is	
intrinsically	thermal.!60



The	Lorentzian	Chern-Simons	time	in	the	homogeneous	case:

Aai = ı�aiȧ = ı�aiHa

TCS =

Z

S3

ImTrA
3 = H

3
a
3

This	is	the	number	of	co-moving	volumes	in	an	Horizon	volume.	

TCS	<1		“comoving	volume	is	within	the	horizon”	

TCS	>1		“	comoving	volume	is	outside	the	horizon”
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Basics of ashtekar variables and de Sitter                                                           
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The Ashtekar variables are complex coordinates 
for real, Lorentzian spacetimes:

Aai = 3d spin connectionai +
ı
p
q
KabE

b
i

Kab ⇡ q̇ab

{Ai
a(x), E

b
j (y)} = ıG�ba�

i
j�

3(y, x)

I
GR =

Z
dt

Z

⌃
ıE

ai
Ȧai �NH�N

a
Ha � wiG

i

qqab = EaiEb
i
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Constraints	generate	gauge	transformations:	

Equations	of	motion:

Self-dual	solutions:

All	constraints	
are	cubic!

All	eom	are	
quadratic!
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Explicit	deSitter	solution:

deSitter	spacetime	is	(was)	the	unique	lorentzian	self-dual	solution:

We	make	the	spatially	
flat	ansatz:

The	self-dual	condition	implies:

To	fix	the	solution	fix	the	lapse	N

The	equations	of	motion	give:

This	gives	the	dS	metric:
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Hamilton-Jacobi,	deSitter	and	Chern-Simons	theory

Let	us	solve	the	constraints	with	a	Hamilton-Jacobi	function		S(A).

The	momenta	are	given	by	

To	get	deSitter	we	impose	the	self-dual	condition:

This	has	the	unique	solution:

Chern-Simons	invariant:
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The	Kodama	State

Hence	the	H-J	function	for	dS	is:	

This	suggests	as	an	ansatz	the	state:

Here	we	are	using	the	connection	representation:

In	fact,	with	a	certain	choice	of	operator	ordering,	
	this	is	an	exact	solution	to	the	quantum	constraints:
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The	Kodama	State

Its	transform	to	the	spin	network	representation	is	exact:

 [�] =

Z
dA T [�, A]e


4⇡SCS(A)

for	A	Euclidean,	this	is	the	Kauffman	bracket	or	Jone’s	polynomial	of	the	network.

—>	Requires	framed	spin		networks	labeled	with	SUq	(2)	reps.

—>	The	level,	k,	is	related	to	L:

k =
6⇡

~G⇤
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A new uncertainty relation.

Another approach is to define a preferred slicing, and 
define L and the Chern-Simons time as a function of the slices.         

Then the new term in the action is         

This implies a new Poisson bracket and uncertainty relation.         

TCS = Im
Z

⌃
YCS(A)

Snew =
3

16⇡~G

Z
dt

⇤̇

⇤2
Im

Z

⌃
YCS(A)

�⇤�⌧CS � 8⇡~G
3

h⇤̂2i.

{⇤,
Z

⌃
ImYCS(A)} =

16⇡G⇤2

3
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Waiting/storage fOR formulas

Sab = T [a ^ eb] = �3d⇤

2⇤2
^
⇣
R̃ab(!̃(e)) + D̃Kab +Ka

c ^Kcb
⌘

Sab = T [a ^ eb] = �d⇤

2⇤
^ ea ^ eb + . . .



Effective dynamics for L
Effective equation of motion for L                                                                                                                        

Se↵ = � 1

8⇡G

Z
d4xe

✓
⇤+

b

⇤
RR̃+

c

⇤2
gµ⌫@µ⇤@⌫⇤

◆
,

ds2 = a2(⌘)
⇥
�d⌘2 + (�ij + hij)dx

idxj
⇤FRW solutions                                                                                                                        

⇤̈+

 
2H�

⇤̇

⇤

!
⇤̇�

�
�ij + hij

�✓
@i@j⇤�

1

⇤
@i⇤@j⇤

◆
= �

a2

2c

⇣
⇤2

� bRR̃
⌘

⇤̈�
 
2

⌘
+

⇤̇

⇤

!
⇤̇+

1

2cH2⌘2

⇣
⇤2 � bRR̃

⌘
= 0.

deSitter solutions                                                                                                                        

time dependent potential                                                                                                                        

b̃(x) = bRR̃/M4
p

� = ⇤/M2
p = ⇢ exp[']

V (�) =
�

3c̃

⇣
�2 � 3b̃(x)

⌘
.
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FIG. 1: Example of numeric solution for ' (left) and ⇤ (right) given c̃ = 10�4 and b̃ = (�x/110)3. The orange line
in the left plot displays the trajectory of the minima for '.

where primes denote derivatives with respect to x, c̃ = 2c(H/Mp)2, and b̃(x) = bRR̃/M
4
p . The function b̃ is generally

a functions of x due to the Pontryagin density. The time dependent potential has the form

V (�) =
�

3c̃

⇣
�
2 � 3b̃(x)

⌘
. (8)

Due to the cubic nature of the potential, the Hamiltonian for the field must be unbounded from below. We note,
the minima for the potential is given by � = b̃

1/2. For b̃  0, the potential monotonically increases, resulting in
unstable solutions for �. Instead, for stable solutions we require positive b̃, thus RR̃ must have preferential sign. This
requirement can be somewhat relaxed, allowing b̃ to briefly become negative at su�ciently early times (large x). This
possibility will be discussed in greater detail in Section III. For now, we will consider b̃ to be strictly positive.

Further, due to the addition “damping” term of the form �
0
/�, one must be careful evolving a system where the

cosmological constant switches sign. We will focus on the scenario where the cosmological constant begins with a
finite positive value. As � ! 0+, the modification to the Hubble drag term, �0

/�  0, hence the drag increases and
quickly slows the field � (�0 ! 0). Additionally, b̃ � 0, then �

00 � 0. Thus, the field will “bounce” o↵ of the point
� = 0, remaining positive for the entire evolution. Therefore, in this regime, we may rewrite the field � = ⇢ exp['],
where ' is the dynamic field and ⇢ is a (dimensionless) constant that sets the sign of ⇤. For our considerations, we
can set ⇢ = 1. Under this redefinition, the equation of motion for ' can be written as

'
00 � 2

x
'
0 +

1

c̃x2

⇣
e
' � b̃(x)e�'

⌘
= 0, (9)

V (') = c̃
�1
⇣
e
' + b̃(x)e�'

⌘
. (10)

In this form, we see the classical barrier that appears as ' ! �1 (i.e. ⇤ ! 0+), given by V (') ⇡ b̃
c̃ (⇢e

')�1. Figure 1

provides an numeric solution to the ' evolution equation, where b̃(x) / (�x)3.
Due to the canonical kinetic term for the field ', the equation of motion is simply a scalar field evolving with Hubble

drag, in a nonlinear, lower-bounded potential. As shown in Fig. 1, Hubble drag will act to decay oscillations of the
field around the minima ' = 1

2 log b̃, induced by initial conditions. One can expand for the field near its minima,

' ! '+ 1
2 log b̃, to find the equation of motion as

'
00 � 2

x
'
0 +

2(b̃(x))1/2

c̃x2
'

✓
1 +

'
2

6
+O('4)

◆
= 0, (11)

finding the e↵ective “mass” of the ' field as 2
p

b̃/c̃. Qualitatively, the field ' acts as a massive test field during
inflation, where the field will freeze when the condition

2b̃1/2

c̃
=

 p
b

c

! 
RR̃

M4
p

!1/2✓
Mp

H

◆2

 9

4
. (12)

3

FIG. 2: Numeric solutions for ' given multiple di↵erent initial conditions, with c̃ = 10�3 and b̃ = (�x/110)3. The
vertical dashed line displays the freeze-out time xfreeze ⇡ �1.2.

If the Pontryagin density continues to be sourced (RR̃ / a
n = (�x)�n for n > 0), the field will not freeze at late

times, tracking the minima ' = 1
2 log b̃. However, this minima will continue to increase, resulting in a divergent

cosmological constant at late times.

Alternatively, if the Pontryagin density reshifts (RR̃ / a
�n = (�x)n for n > 0), the field will (approximately)

freeze at at late times. In this scenario, while the minima of the potential 1
2 log b̃ ! �1 at late times, the field ' will

asymptote to a finite value. Eventually, the nonlinear terms in the expansion around the minima given in Eq. (11)
dominate, and this description cannot encompass the full dynamics. However, the solution will give an upper bound
for the asymptotic form of ', and thus an upper bound on the cosmological constant.

Taking b̃ = b0(�x)n for n > 0, we can find the time of freeze-out as

b̃(xfreeze) =
81c̃2

64
, xfreeze =

✓
81c̃2

64b0

◆1/n

. (13)

Ignoring the nonlinear terms in Eq. (11), one can solve the di↵erential equation as

' = (�x)3/2

8
<

:AJ 6
n

0

@
"
256b̃(x)

c̃2n2

#1/4
1

A+BY 6
n

0

@
"
256b̃(x)

c̃2n2

#1/4
1

A

9
=

; , (14)

where J↵(z),Y↵(z) are the Bessel functions of the first and second kind, respectively. The coe�cients A,B will be set
by initial conditions of the field ' as it enters the linear regime we have considered. In this regime, we have '

0  0,
which requires B � 0. Expanding these solutions as x ! 0�, we see

' ! �
B�

�
6
n

�

⇡

✓
c̃
2
n
2

16b0

◆3/2n

, M
�2
p ⇤ . 9c̃

8
exp

"
�
B�

�
6
n

�

⇡

✓
c̃
2
n
2

16b0

◆3/2n
#
, (15)

thus the cosmological constant is exponentially suppressed. Taking RR̃ = �/a
3, we generally expect the cosmological

constant to have value

⇤ . H
2 exp


�O(10�1)H2

✓
Bp
�

◆�
, (16)

where B, � are ultimately related to some initial conditions of the cosmological constant and Pontryagin density. As
shown in Fig. 2, the value of B is relatively unchanged for di↵erent initial conditions of the field, depending primarily
on the other physical quantities to the problem (such as c̃). Furthermore, small (compared to H

2) initial asymmetry
in the gravitational waves, �, will result in a large suppression of the ⇤.

RR̃ / a�nAssume falloff:                                                                                                                        

Note: L does not change sign                                                                                                                      
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Varying the initial H0  Robert Sims, in progress.                                                                                                                        

c̃ = 2c/9 (Mp/H0)
2

�00 +

✓
3
a0

a
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◆
�0 +

1
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�2 � b̃

⇢̃20

!
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� = ⇤/M2
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⇢̃0 + 3
a0

a
⇢̃(1 + !) = ��0

Switch to Planck units:

x = mt

⇢̃ = ⇢/M4
p

b̃(x) = bRR̃/M4
p

Initial conditions:   

L0 =twice fixed point 
H0 fixed by fixing c-tilde 
r0 is then found by solving the Friemann eq.

✓
a0

a

◆2

=
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Varying the initial H0  Robert Sims, in progress.                                                                                                                        

c̃ = 2c/9 (Mp/H0)
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Switch to Planck units:
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p
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Varying the initial H0  Robert Sims, in progress.                                                                                                                        Switch to Planck units:
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