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Cosmologists are interested to study modified gravity theories in the IR
In the hopes of understanding dark energy and, perhaps, dark matter.

But most candidates require new fields and new parameters.
These reduce their testability and explanatory power.

Is there a principle which modifies gravity in a way that gives
dynamics to the dark energy, but has no new parameters or fields?

Meanwhile, LQG theorists have learned that GR and quantum
gravity are in important senses close to TQFTOs.There are senses In

which the low energy limit of QG is dominated by a TOQFT. A plays
an important role in these insights.

This suggests that any IR modification of gravity should be closely tied to
topological field theories. Here is one way to do that:

Quasi topological principle: Introduce only new terms in A that are

topological when A Is constant. ie A gets its dynamics from disrupting
a topological symmetry.



Quasi topological principle: Introduce only new terms in A that are

topological when A Is constant. ie A gets its dynamics from disrupting
a topological symmetry.

There are two topological invariants in 4d we might disrupt:
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They are both interesting. But is there a principle that fixes
the functions f[A]?

There Is a particular choice of f[A] that enhances what we

might consider to be a symmetry on Oground states,O ie
solutions of maximal symmetry.
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In fact, each option leads to several theories.

We start with the simplest.



Theory one



The first step:

Recall the chiral Plebanski theory:
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EqOs of motion:
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The Plebanski equations of motion (+c.c. equations):

|
O: S | ||(AB n "CD):O
'l ABCD
Implies there exists a frame field e AA9 such that: | AB — gA'A eE!
1S ! CD . . ~
0= | Rag = =! A + #acD | The Einstein egOs
Il AR 3
1S

=0! S" = DI =0

| AaB

B _ T B) = So there Is no torsion for pure GR



Self-dual solutions and a partial duality symmetry

) 1 " 1 ..
S =6  _—— 1A I Rpg " 1A 11 ag " SHagep P11 P
v 8! G 6 2
+ Smatter .
. ) | !
OSelf-dualO solutions:  Weyl=matter=0 | R,z = §-- AR

Suggests a duality symmetry:

!_I AB |

3 RaB

This partial symmetry is enhanced if we add one new term:
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There Is just one change to the Plebanski EoM:

0= —— 1| D" Y # 3% -1 _~_ g " RAB

So now there Is torsion proportional to dA:

SAB = DI AB _— TAAOI B — !SGB — n 3 dll | RAB "
. . . eA! IAAB 2"2 . ( )

When we evaluate it on self-dual solutions:

S = 2|—32d! | R%= Z—Td! 1 e=2TR 1 €



|
This torsion is exactly what is needed Rag = =" aB
to make the Einstein eqOs with 3
Weyl=matter=0 consistent for variable

: |
A. These are the generalized self-dual T2 = d_l |
solutions. 2!
Consistency of generalized self-dual solutions:
d! ' 3d! d |
O0=DRpag = =" aB ! "RA (1) = —[z" a8 ! Rag]=0

3 3172 3
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Detalls of torsion (IF NEEDED)
T% = De* = dé® + A% | €°
The connection is a 1-form: AP = | 3g) 4 KD

Kab is the contortion 1-form, related to the torsion 2-form: T2 = K2, ! €°

We also introduced the 3-form: D! & = sa =oTla| gl

Which we found was: sab = 2|_32d! | Fab = Z—Td! | el e2=2T1 ¢
Thus, for self-dual solutions: T2 = lid! | g?

To compute the contortion trade for all Lorentz indices:
Tapc = 65316;'3T!9 lcd, Kape = BZK! bc

1
Use: Kabc - Z (Tbac + Tacb I cha,)

1

to find that on self-dual solutions: KPe=1 z—le![be‘:]" |
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More on SD solutions
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Self-dual solutions A =constant (CDJ)
Pick an SU(2) connection, AAB, such that FAB satisfies DFEAB =0
FAB 1 FCP) =0
Pick next a constant, A and define:

!AB | 3I:AB

This satisfies: | (AB | | CD) —g and DI A'B' =

le Torsion vanishes.

so there exists a frame field e A0 such that:

!AB:eA!A!eE!

Example: de Sitter or AdS
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FtoR Self-dual solutions A = variable

Pick an SU(2) connection, AAB, such that FAB satisfies DFEAB =0
FUAB 1 FCPI) =0

Pick next a variable, A and define:
| AB ) ?FAB (SD)

This satisfies: | (a8 | | cD) —

But now there is torsion: and using (SD) it is what we need
to let A be variable:

3
" ()

3
.

D! A8 1 S8 = D FABY=" Zd" #F"® =" %d" #1 A5

there still exists a frame field e A0 such that; ! A8 = e A1 &8

still, solves the Einstein eqwith: | sgcp =0
|

Fag = 3 " &P

"aB Tt #aBCD



A also has eqs of motion:

SPleb = (3/ —8|1G (! AB 1 Rpg " —' AB 1 " %#ABCD | AB o CB %RAB ' Rap
M H

EqOs of motion:

6 2

+ Smatter .

)

! SPIeb
0= | N(AB » v2CD) =
' ®aBcD
! SPIeb A
0= ! Rag = =Xag + ®Pagcp B°° +8"GTpp ;
DIN:! 3
| SPIeb AB AB 3 AB
0= - ! S™ =D = #—dA" R #) .
| Apg 207 )
Plus one more:
| gPleb | 2
O : I I ! 3" AB 1 1 AB : RAB 1 RAB .

Solved identically on the generalized self-dual solutions!

| AB | EFAB
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Quasi topological dynamics of A

Integrate the new term by parts:

65 3, .. Aal 63
5G . (R Rag ! R Rarg:) = ! dl m(Yes)

S“° = |

=1 — 2—|| mYCS + % 2_|| mYCS Reproduces the
. : | - Im part of the
Chern-Simons
invariant of the
~ . 3 Ashtekar connection

_ on initial and final
| d( )I mYCS surfaces

| 1
Yes = Tr Al dA + §A3
' Yes
' AaB

— RAB
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Quasi topological dynamics of A

Integrate the new term by parts:

0o 3 .y o 3
CS — ~ AB n | A'B' n Y = ~
3 o) 3
2—|| mYCS + % 2_|| mYCS Reproduces the
| final . - I initial . Im part of the
Chern-Simons
invariant of the
6 : 3 Ashtekar connection
| e on initial and final
| 16! G \ d(| )I mYCS surfaces

Note that Sz Is the right Hamilton-Jacobi function to enforce that, on
the initial or final surface, the spacetime is deSitter.
s 3
S = G ! TleCS(A)
But, could the initial and final AOs be different, as they appear to be in our

universe? Does the new term suffice to make A variable, or even dynamical?
7



Quasi topological dynamics of A

Integrate the new term by parts:

6 3 5! 6 3
S©° =1 “(R®® " Rpag ! R*® " Rag:) = =dI m(Y
16!GM!( AB A'B!) 166G , | (Ycs)
0 3 0 3
= o= 51 MYes + o— 5| MYcs  Rreproduces th
8l G final 2! 8! G initial 2! |f§%§rtgﬁﬁe )

Chern-Simons
invariant of the

6 ) 3 Ashtekar connection
| . on initial and final
| 16! G M d(I )I mYCS surfaces

The third term suggests A is a dynamical variable, conjugateto !cg = ZmYog(A)

' 2
(100 les () = o #(x,Y)

Recall tcs was proposed as a measure of intrinsic time  (Smolin, Soo, 1994)
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We consider the same theory in Palatini variables:

— 1 nabcd " " 3
S = %/M {ea!eb!Rcd(#) 2l eg! e! e ! ey jRab!Rcd}
We see the new term Is the Gauss-Bonnet invariant. Sy
I, ! e
Sab | -I-[a " eb] = H 3 dr " Rab
| | 2' 2 ll.
. | "
labcd€® " RY# —efm" el = —
abcd 3 3#a

| abcd Rab ! RCd

|
3 et
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Consistency in Palatini variables:

1 3
S= nabed {ea! &! Roa(#)" 2l ea! &! e! &" S—Rap! Rcd}
b dn ! d - . .
labcd € ! F=r setl e = 2t
3

3 ' d!
D7a = —€apca T°! FO" ITPL 1 el" =1 &1 €l ¢

K

3 | !
Dla= r#hpaT"! F" §e"! ef

240




New non-linearities in the eqOs of motion.

AB _. | AB _— AAO| B _— !SGB — 3 "o AB /n
S =: DI =T .eA!—IAAB— and I R ()

But RAB () Is a function of Ta: | AB = 1 ()AB 4 K AB

Where K, the contorsion, is a linear function of . T2 = K& 1 ¢°

So the curvature 2-form is a quadratic function of T:
R®(1) = R®(H(e)+ K) = R®(k(e)) + DK™ + KK ®

So we have to Invert a quadratic equation for T:

, 3d!
21 2

st = Tlay ¢l = | R(k(e)+ DK™+ KA1 K

P1



T8 =Kq! €

|AB — 'l-(e)AB + KAB
So we have to Invert a quadratic equation for T:

 ad!
212

gab = Tla| bl =

| R®(E(e)+ DK+ Ka 1 K

Expand around a self-dual solution:

|
gab _ Tla) @bl — g—lle'e+

I

P2



New non-linearities in the A eq of motion. 1 A8 =+ ()" + KA

! _ !abcd Rab I RCd

3 et

But the curvature two form is itself a function of dA/A :
R%(1) = R¥®(&(e) + K[—])

This time we have to Iinvert an equation for A and dA/A

Again, we can expand around a self-dual solution.

P3



What we know of solutions to first theory:

1) Torsion absorbs and protects derivatives of Lambda.
2) Generalized self-dual solutions.

3) Cosmological solutions: generalized FRW.

P4



Are there consistent vacuum solutions with varying A and
nonzero Weyl curvature?

— o n CD These together
= — +
Ras 3 AB # ABCD imply that Weyl
curvature vanishes
o lapedR™! RS (Eulidean??)
3 et KK
DRAB =0
11 d! 1 3d! 11 ]|
L [D" 2—]" aBco #CD = % ABCD CPEF #er

Does this imply that dA=07

P5



It seems theory one is unphysical. What are the options?

-Add or induce a kinetic energy for A.

-Go away from the special value for the coefficient
of the Gauss-Bonet term.

-Consider the theory based on the Pontryagin invariant.

P6



Theory two:

Induce or add a A kinetic energy

Frees A and Weyl to both propagate independently.

Loosens constraints, cosmological and otherwise.

p7



A Kkinetic energy from torsion-squared

Diffeomorphism invariance allows us to add the dimension two term:

2 o

This might be induced by quantum corrections or a fermion condensate,
or might simply be added, in which case we have a new parameter, c.

Expanding round a self dual solution, in powers of dA/A:

T4 = %d! | g2

This gives a standard kinetic energy term for A = Ln A,
near a self-dual solution.

3!

S
32"G

v/—ag # $# $

P8



Theory two: include a A kinetic energy from torsion squared

1
87TG M

3
gwo — eabed {ea Nep A Reg(w) —2! ea ANey A€ N € — 2—,Rab A Rcd}

fUTGg GUTETE

P9



This gives an effective dynamics for A,
near a self-dual solution.

Effective dynamics for A

3,F"B | Fag

El' = " AB I AB 1" (I_)2|| AB |

AB

Where

1 1
e I S

There are fixed points at

FAB 1 Fup
3_ IIAB!II

t—
]
L
|

|

AB

BO



Option two: go away from the special value.

1 | 11 11 11 3$ i
S= & abed o 1 gl Reg(#)" 20 ey! &! e ! eq o Rab ! Ree
H M -

" apegR2P ! R

|
3 et

Weyl now propagates.
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A Kkinetic energy from torsion hidden in curvature

On self-dual solutions to the Aab equations of motion,

1 .
A0 — | ab(e)_|_ K ab !bc = | jeEbeC] |

R3®(A) = Rl (¢)]+ DK+ Ka_1 KP°

The effective action has a new term in (dA)2 from

S = 8 G . ' ee'de't',R. DbA)
1 3
new —_ " n n a b
—8!— MI_Zeg II"!+#Me!e!Kab

B2



A Kkinetic energy from torsion hidden in curvature-2

In fact, there are, in the neighbourhood of a de Sitter background,
contributions to a A kinetic energy, coming from both the Einstein
and the Gauss-Bonet term. The result is

1 | 2

. 2
Se (e,1) = M S(1! !)?—Qeg' ST

B3



Cosmological solutions of theory one:
generalized FRW.

B4



Cosmological solutions: generalized FRW.

FRW ansatz: €’ =dt € = a(t)dx

Definition of torsion 2-form: T2 De?=de?+ 13" €°
Symmetries require of torsion: T° =0 T'=1T(@)e" €
& . |
11, = g(t)e = e_1+T e !} =0,
Modified Hubble parameter: g= a + T
a

Curvature components:

F O 5%l(ag(t))'eol e = a%1(1§|+ Ta)e’! e

" 2 2
Foeid= BT i

F!



Cosmological solutions: generalized FRW pZ2.

Perfect fluid: o= "()#Hy €1 &1 &
i =" p(t) ik eVl &1 €

Field equations reduced to FRW:

3 | |
T = ng SA: torsion equation
| " . | + L
g% = S + = 3 FRW equation
92 + 2 % =1l !p+ ! Raychoudri equation
21 | 2

g°—(ag) = ? A equation of motion

B6
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Solve for the torsion to find:

a ! |
T=_- 1+°F
# - %2 ' W:p/!
, & - e 1+ kp )
TE Rt YT T3 ' =8"G
# $
, | " :
(ag 1 iu- Kp _ !k
a Ta Yadtty TgrglTen)
|
(1 +rp) 1! S(p*3p) =12

From which we deduce, by the usual way, the conservation eq:
2 T — U

!ﬂ+3§(! +p=-—-T( +3p+
Using the field equations, the RHS=0:
al
u+3—(! + p)=0.
U Sa( p) =0

So matter is conserved via the torsion free connection. The role
of torsion Is just to account for the non-conservation of the Lambda
energy-momentum. 57



We use this to simplify the FRW equations:

4T 2:'“' w = p/!
a 3 .
=5 1+ =1 /"
(+35("+ p)=0
# o, 2 3%
(1 +1") 1 'E("+3p) =12

We discover A just tracks matter.

= 1+ 3w 0 ¥ _ 1+ 3w
1! 3w - |+ 1 .
We can say this different ways.
|U q a] 1u ,
—:@:!3(1+W)—. T = - 1 :!31+W§l,
| p a 1+ 3w 1+3wa

B8



The effect of A is to renormalize NewtonOs constant:
‘ s L (1+3w)? w = p/!
2 1! 3w =87 G

!! =1/"

a - _ B
a 3

2
al t3@ w)

Pure radiation (w=1/3) plus A is forbidden:

!:!"1+3W O | I 1+ 3w
11 3w | L+ 1, 2

Two ways out: add A kinetic energy or go away from 6=1.

B9



With 6 away from one :

w = p/!

| " $ / -
kp 1. 1! 3w 11 3w 72
= +

= +
| 2 1+3w 1+ 3w (1 +3w)

Now we consider pure radiation (w=1/3) and any 6,
and find a renormalized NewtonOs constant.

1+ 1

The usual BBN constraint on AG gives a constraint on 6

| G
1 0.1< 5 < 014 ==  183< 1 < 1.97

40
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Theory three:

We use the Pontryagin invariant instead of the Gauss-
Bonnet invariant.

41



Theory three:

We use the Pontryagin invariant instead of the Gauss-Bonnet invariant.

1 " # 3
S= oa nabcd o 1 gyl Reg(A)" 20 ey ! e ! efl e + 2—|Rab! Rab
. M .

The Pontryagin density Is parity odd and vanishes on FRW spacetimes.

It couples to matter fields through an anomaly, in the conservation of
the chiral current. 3

h —
Dud = 16! 2

So, the A Eom ties A to an anomaly, and hence to the L-R
matter creation rates. Might this explain why A is presently small?

R® 1 R,

. " 4 |
Note: G! ! (" m;) - | ! 16! 2 |£
l'm, ! 3" 10 ° S :

N~

(@)




Theory four:

We use the Pontryagin invariant and give A
a kinetic energy

—_ 1 | nabcd ) n C d# 3 ab

FRW reduction
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Effective dynamics for

To find potential for ¢=log A

V(#) = - e + be

44
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Effective Potential For Lambda

Robert Sims et al: work in progress.

potential for ¢=log A

! o

(b) E! ective potential for beld ! with various b values. For
b= a(")' " for positive n (as we expect), propagating time
forward results in smaller B, thus the minima for V(!)
becomes more negative.

l|$#‘
#$%
cV(Q)
e S
_#$C;/0
R _ # g !
My’

(a) E! ective potential for the beld " with bRR = M.

45



"HB%&' ()*+", &*-

(a’ ) © A+ ZEN/A)
;b 13

a’ - '5 p(l+3w) = A—¢(N/X\)

(L 32 {M?2
0 p()a,—J': l+w) !{Conserved independently from A)
' Intial CTond tions:

Mg 2t twice Tiked point values
.‘-c},‘/‘r. =1 04 .WwWithca = Q

"#P%&'#(&)%"!
*+ #+-)%'
A= A/M?
p = p/M,

b= bRR/M

c = 2c(m/M,)?
%/1$+"1'0+)%

m = H;

1&'+/213(,14(&/,5+6#&!
7%&'#/5

—

b(t) = (l()_ﬁ[)ﬁ) ,’t*

Robert Sims
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Typical behaviours seen, depending on initial conditions:
¥ Sign of A never changes.

¥ A goes to time dependent fixed point, which takes it into O.
¥ A first shows damped oscillations around fixed point.

¥ Or A freezes out, leading to A domination.
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Tentative conclusions:

Two new extensions of GR which are diffeo invariant, have one less parameter than GR,
which each allow A to vary or evolve dynamically.

dS spacetime is enhanced to a space of generalized-self-dual spacetimes, with variable A, which are
consistent because a torsion arises from the eqOs of motion, proportional to d.

With Weyl=matter=0, A is free to vary, because its field eq is redundant. Enlarged self dual
sector. When matter is turned on, A tracks its density.

Theory one (6=1, vacuum, no A-self-energy), appears to have no propagating modes.

Terms in torsion-squared, may be induced by going away from 6=1 or introduced by hand; these
yield a A kinetic energy when examined near a self-dual spacetime.

FRW reductions have been studied. Without the A kinetic energy these are highly constrained to

have A stuck in fixed points where it follows the matter density; when the A gains an independent
Kinetic energy, it becomes free to oscillate around or travel between fixed points.

The Pontryagin inv based theory predicts a relation between A and the gravitational
chiral anomaly, possibly explaining the small
value of A. I

! 16! 2
3 3

1
2 M
!" P—JS

Q
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Much to do:

¥ Study theory away from 6=1 and or with A kinetic energy.

¥ A appears to clump around matter: Dark matter?
¥ Black holes?

¥ Linearization? with A K.E. are there scalar waves? Coupled to what?
¥ Perturbation theory in dA/A?

¥ Better understanding of new non-linearities from solving A and A egs.

¥ A afunction only of time in a preferred splicing?

50



Thank you
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Slides for discussion:
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Coupled numerical evolution

Robert Sims, In progress.

.m(

¢ 2
dal

a

34,
a

iu

1

3M 2

G+ 3 21 (1 + "
a

. 2C

(121 bRR) =0

(1 +1)

Yl
M 210,

Initial condition Ao Is at twice the fixed point.

b4
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Coupled numerical evolution

, lj )
ne (3% !U+i(!2! bRR):O
! 2C

Q

A oscillates around and tracks bPxed point (black line)

#HolH#

= H%H

HooH# .
~Initial condition Ao

is at the fixed point.

!#!$;, :
f " !# "# !## "HHE
&
%
-
4%
| UU PA /Pmatter
#$% e ‘ e ‘ o
! I# "H# 14 "H#t
&

Robert Sims, In progress.

5 2
. - = (r+1)
bRR = t' 3 a 3
, o d .
0+3=1(1+")=1 Mzl
a
145,
| a(t) |
- ]
S ]
] — ]
!##; ';
1 T
T T Bz
%

0.100-

"t#H3$
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Check of A-variable solutions in Palatini 1

Ra = %

b cd

Einstein eqOs in 1
. Ra — s€aR = —! € (E) 1
terms of 3-forms: 2 e, = =l qeP1 1 g

6

This Is solved by,

|
with variable A: R 3¢ e (SD)

When the torsion a, Ta- L o u.a
is defined by: De™r 17 = Td' e (M

To show this, take covariant curl of both sides of (SD):
D LHS =0, D RHS =0 using the definition of torsion (T)

To show consistency, take curl again and use (T) again.
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-.1012345%67%4-.%.8194%:;1<4,;0%4-.6/5%6<%

8960+))9!
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: 1:<%!BAO)#7%+&!0(&/A#&A+/#(& &I
C%80%!/<%!&+/A,+)IBAO)#T%+81#$%10((.7#&8Trcs = [ Yeos(A)
DA/N<#1#1+1@%,#(7#010((, 7#&+/%!(&!/<%!0(&37#0A, +IF(&! (@ +UY0 ¢!

I E&7%,)+,6%!6+A6%!/,+&'3(,$+/#(&'9!

/YCS(A) —>/ cs(A) + 8n°n

C%&O%!/<%,%!#'!+!7#$%&'#(&)%"!/%$@%:+/;7—‘1 MR
(LATNLCESS

— 8n2

(.<9.?2%4-.%@-62.%:;1<4;0%4-.6/5%6 7 %A/1BB45B@84-%0 12D
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7:1-1'.1711(333

1
871-2

To connect this with the deSitter temperature we scale on a trajectory
corresponding to an S3slicing of dS:

The relation between the two time coordinates Is given by

IMMes

ot

L

= | N{Tes(A), H} = ar, /4

This leads to the dimensional Gibbons-Hawking temperature:

Tas

1
27

A

3

60
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"H#IU&H()*+,($-"#'(/+0&(1$)+0#D+ (D) "#$"&0&2#(#&31%4,
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Basics of ashtekar variables and de Sitter
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The Ashtekar variables are complex coordinates
for real, Lorentzian spacetimes:

Aa = 3d spin connection,; + ‘-%KabEib

qf® = E¥EY Kab ! Gy
{AL(X), Ejb(Y)} = 5G!g!ji 13(y, X)

ICR = dt GBE¥AL I NH! N2H,! wG
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N(&'/,+#8/16%&%, +/%!6+A6%!/,+&'3(,$+/#(&'9!

Gauss's law for SU(2): ¢* = D,E*

. . , e D)I0(&) HHES!
Diffeomorphism constraint Ha = EJF}; 1 op10A-#0P

Hamiltonian constraint: H = ;B EY (Fh 4% € E%)
BKA+/#(&'(3IS(/#(&9

Aa,»{, p— {A(M:’\/ NH} pm— N’ZGeijkEbj(QF(ﬁ) + AeabcECk)

B = {E™, [ NH} = 1G*Dy(NESEy)

0 - - ' - 1))!%($!+,%!
9%)307AH)!")A/#(&'9 F(;b T % €0 J0C CALT 4 JHOP

DA

| 0Ly
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7%.#11%," @+0%/H#$%1# 1QM+RI/<YI AGHKAY!) (,%&/2#+8&%)307A+) ' VAI#(&9

SYIS+TIY<%! @+/#+))S! A, = 3d spin connection,; + 2é,;
3)+/1+&'+/29 |

AN
Agi = 1 N3f(t)0si v Fopi = —f Q(t)géaw

<WIW)IOTANIOETHHAEHS@H%N  F% = F25%  y o = 5.

(137U <%!")AH#(&!13#U!/<%!)+@'%!F N = det(e)_l — f_3

- <Ob10bKA+HH(&'(3IS(1#(&16#L %9 f — \/ N/3N f a— VAN/3f
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Scs = Ye
¢S 3/\/ 'S

N<%,80 #$(& 1H#&L+ #+&/9

Yos = Tr(AAdA 4 £A3) 5 [ Yes
O A

—. Eabc FI;(
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-.%0J6F101%*414.

2
C%&0%!/<%!COWI3A&O/H#(&!3(,!17.1#'9! —_—
b&O%I< (&3( SCS—_B/\ Yeos
<#'I'ABB6%'['1+'1+&!+&"+/21/<%!'[+/%9

Wic(A) = Nex ) ¥er

C%,%!M%!+ %I A'H&6!/<%6!0(88Y600/#(&! %@, %' Yo &/+/#(&9

<AV >=W(A) E%= kG5

J&I3+0/XIM#/<I+10%  [+#8I0<(#0%! (31 (@ %, +/(,)(, 7% #&6X!
| <#1#14+&1%U+0/!" ) A/#(& (<YK A+&IASIO(& ], +#&/'
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-.%0J6F101%*414.
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Z[1:<%!)%L%) X! TXI#1,%6)+£97!/(
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A new uncertainty relation.

Another approach is to define a preferred slicing, and
define A and the Chern-Simons time as a function of the slices.

Tcs=1m  Ycs(A)

Then the new term In the action Is

ev =3 g M vee(a
“1grc dyzlm  Yes(A)

This implies a new Poisson bracket and uncertainty relation.

[ | MYes (A)} = 16!5!2

381G, &
"l les ! 3 "R
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Waiting/storage fOR formulas

S =Tl €l =

.~ ad!
212

| RE(E(e) + DK+ K21 K

gab = Tla | &bl = g—:! e? |
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Effective dynamics for A
Effective equation of motion for A

1 b_ . C . .
Se = ! 55 d*xe !+!—RR+!—2g“! N

FRW solutions
ds’ = a (r]) N dr] + (05 + h; )dx dx’

70 L

IL,J . H - $ 1 a2 |

P+ 2H! B ur 1+ ptoo | !—"i!"j! = | o 1 21 bRR
deSitter solutions
2 0 1 P
R | 2 _
M !+! !+2cH2!2 <1 pbRR =0.
time dependent potential
: | | = 1M 2 =" expl#]
V()= o 61 3(x) p

B(x) = bRRM ]

73



Assume falloff: RR! a' "

“ /\ /\ A [\ f\ /\ i Mo i, g Evolution of A
!VVVVVVVVVUVVUVJVVVVwaﬁA :

: Evolution of ¢=log A \\ & U
o WU M M s

Ro

| #" | $" | %" | &" " 1 !IIII I #II ! $|| I %II I &Il

Note: A does not change sign

=L 4

$! H?%exp ! O(10 YH)H? (E_
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Varying the initial H o Robert Sims, In progress.

| | 2
Rt 3i!|_ |'+} '"'b =0
a | & 5
al 2 4 "
a K

!:—!+3%.L:(1+ Y= | #

Initial conditions:
Ao =twice fixed point

Ho fixed by fixing c-tilde
po IS then found by solving the Friemann eq.

75

Switch to Planck units:

— 2
= AM |
e=2¢/9(My/H ¢)°
C— 4
k=1 /M
X =mt

o,
B(x) = bRRM !



Varying the initial H o Robert Sims, in progress. Switeh 10 Planck unite

! | 2 ' — 2
oy BE!I— |!+} <1 B - 0 !—A/MIO
a ! € 5 ,
e=2¢/9(Mp/H o)
a| 2 1 MZ* ) L 4
X = mt

) |
E+3 —KH1+")=1# - -
a ) B(x) = bRRM

( #$%:
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Varying the initial H o Robert Sims, In progress.

e=2c/9(My/H ¢)°

Switch to Planck units:

1()14; mc=10" | I # |
B c=1072
L Hc=10° i
10+ Woc=102 1
| . c - 104 !nu i
< 108 T
! il
105 f
[ 1 n |||7 ]
100~ 1 &
1 10 100 1000  10*  10° e
H | !n !un !mm !u # !n "
t
0 H.'
.
!" “H#| Il&!llll 7
. &M
=
I "& (223 [
H :H: L
) ||&n||! 5
I "#;
!ll | ) F
! L |'\I L Im\' L ‘!"‘"‘I\" L ‘!‘"I\ m ‘ R \!\l\l o | !n !Illl !mm !n H# !II %
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