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Cosmologists are interested to study modified gravity theories in the IR
In the hopes of understanding dark energy and, perhaps, dark matter.

But most candidates require new fields and new parameters.
These reduce their testability and explanatory power.

Is there a principle which modifies gravity in a way that gives
dynamics to the dark energy, but has no new parameters or fields?

Meanwhile, LQG theorists have learned that GR and quantum
gravity are in important senses close to TQF T's.There are senses in

which the low energy limit of QG is dominated by a TQFT. A plays
an important role in these insights.

This suggests that any IR modification of gravity should be closely tied to
topological field theories. Here is one way to do that:

Quasi topological principle: Introduce only new terms in A that are

topological when A is constant. ie A gets its dynamics from disrupting
a topological symmetry.



Quasi topological principle: introduce only new terms in A that are

topological when A is constant. ie A gets its dynamics from disrupting
a topological symmetry.

There are two topological invariants in 4d we might disrupt:

JG—B — / GabcdRab A\ RCd — / f[A]GadeRab A\ RCd
M M

IPontryagin :/ Rab A Rab N / f[A]Rab A Rab
M M

They are both interesting. But is there a principle that fixes
the functions f[A]?

There is a particular choice of f[A] that enhances what we

might consider to be a symmetry on “ground states,” ie
solutions of maximal symmetry.
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Quasi topological principle: introduce only new terms in A that are

topological when A is constant. ie A gets its dynamics from disrupting
a topological symmetry.

There are two topological invariants in 4d we might disrupt:
J6—B — / €apea R N R — / fIA]€apea R™ N R
M M
IPontryagin :/ Rab A Rab N / f[A]Rab A Rab
M M

In fact, each option leads to several theories.

We start with the simplest.



Theory one



The first step:

Recall the chiral Plebanski theory:

1 A 1
Spleb:Z/ — EAB/\RAB——ZAB/\ZAB——(I)ABCDEAB/\ECD

_|_ Smatter .

Eq’s of motion:

55Pleb
0=~ \ NAB A RED) — .
ABCD
55Pleb A
0= 55 5 Rain = gZAB + P apcpEP + 871G Tap:;
Pleb
0= 05 ) S4B —. py4B —

- 0AuB



The Plebanski equations of motion (+c.c. equations):

0= 2% 5B AEOD) _ g
0PaBCD
Implies there exists a frame field e A%, such that: 248 = 44 A ef’;,
0S5 A
0= >y Rap = =2ap + @ABCDZCD The Einstein eq’s
02 AR 3
0.5

=0— 4% = Dx* =0

0A AR

GAB _ p(AA” 6,@ 0 So there is no torsion for pure GR



Self-dual solutions and a partial duality symmetry

1 A 1
SPleb:Z/ — EAB/\RAB——ZAB/\EAB——(I)ABCDEAB/\ZCD

‘I— Smatter .

“Self-dual” solutions: Weyl=matter=0 Rip = éEAB

3

Suggests a duality symmetry:

ézAB

3 HRAB

This partial symmetry is enhanced if we add one new term:

1 A 1
SPleb:Z/ — ZAB/\RAB— —EAB/\EAB— —(I)ABCDZAB/\ECD

‘|‘ Smatter



There is just one change to the Plebanski EoM:

)
0= S s DASAB = gAB _

AB
A1 2A2olA/\R

So now there is torsion proportional to dA:

5 GB
p_ 0077 3 dA N RAB ().

GAB _. pyAB _ TAA” \ o B _
N = A T oA

When we evaluate it on self-dual solutions:

3
Sab — WdA A R*— ﬁdA Ae? Ael =oTle A el

A
T —ﬁ/\e
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This torsion is exactly what is needed Rap = éZAB
to make the Einstein eq’s with 3
Weyl=matter=0 consistent for variable

A. These are the generalized self-dual T = dA A e
solutions. 27

Consistency of generalized self-dual solutions:

dA\ A 3dA
0 Rap 5 ZAB T 35

dA A
AB _
NRAR(w) = [

Yap — Rap] =0
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Details of torsion (IF NEEDED)
T = De® = de® + A%, N e®
The connection is a 1-form: A = () 4+ K

Kab is the contortion 1-form, related to the torsion 2-form: 7% = K%, A e®

We also introduced the 3-form: DX — gab _ 9pla A bl

Which we found was: gab — idA A Feb = id/\ Ae® Aeb =27 A el

2A? 2\

Thus, for self-dual solutions: 7o _ %dA A e

To compute the contortion trade for all Lorentz indices:

o Bmd  «
Tabc — €, 6[3 Taﬁncda Kabc — €, Kabc

1
Use: Kabc — Z (Tbac + Tacb — cha,)
1
to find that on self-dual solutions: | K.° = —ﬁegﬁedﬁ O A
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More on SD solutions



Self-dual solutions A = constant  (CDJ)
Pick an SU(2) connection, AAB, such that FAB satisfies DFAB —
FUAB A FCP) —
Pick next a constant, A and define:

ZAB 3 FAB

A
This satisfies: w(AB A 2CD) _ g and  pyA'B’ _

/e Torsion vanishes.

so there exists a frame field e AA, such that:

$AB _ pA'A £ B

Example: de Sitter or AdS
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FtoR Self-dual solutions A = variable

Pick an SU(2) connection, AAB, such that FAB satisfies DEFAB —
FUAB A FCP) —
Pick next a variable, A and define:

ZAB - %FAB (SD)

This satisfies: $(AB 5 y2CD) _

But now there is torsion: and using (SD) it is what we need
to let A be variable:

5 FABY = _ S A A FAB = _ L gp A nan
A(x)

AB _ QAB _
DYAP = 4B = p( " X

ZAB A A

there still exists a frame field e A7, such that: A el

still, solves the Einstein eq with: & s5-p =0

A
Fap = gZAB + O popnP
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A also has eqs of motion:

1 A 1 3
GPleb — / — [ SAB ARy — =SB AT g — - SABAYCD _ —_RAB AR
l 871G AB 6 AB = 5FABCD 9A AB

e Smatter .
Eq’s of motion:

55Pleb
V=53 > BB ASCP) = 0;
ABCD
5 SPleb A
0 = 3 fiugz-—ZAB‘F@ABCDzﬁEL+8WGqAB;
02 AR 3
65«Pleb AR AB 3 AB
0= 5AAB ? S =: D>, — _WdA AR (w) '
Plus one more:
55Pleb A2
U= SA QZAB/\ZAB:RAB/\RAB°

Solved identically on the generalized self-dual solutions!

ZAB _ 3 FAB
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Quasi topological dynamics of A

Integrate the new term by parts:

CS l 3 L AB A’ B’ l 3
_ _ y ) = — —dIm(Y
S ——16 G/j\/l (R ANRip — R /\RAB) T G/j\/l m( CS)

[/

3 ( 3
= —ImYes A —-TImY,
e /E A5 T’ /E QNS Reproduces fhe

final

tmitial
Chern-Simons
invariant of the
Ashtekar connection

3 ex .
_ on initial and final
/J\/l d( A )ImYCS surfaces

(;

167G

Yo =1'r <A AN dA + %A:%)

(55/&75; AB
= R
0AARB
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Quasi topological dynamics of A

Integrate the new term by parts:

S l 3 AB A'B’ l 3
_ — ') = _d
S = — T / (R ANRip — R ANRag ) 16 e //\/l Zm()cs)

(}
e / ImYCS 7 (0 / ImYCS Reproduces the
n Efznal T znztzal Im part of the
Chern-Simons

invariant of the
2 Ashtekar connection

| nitial and final
167G / v d(A)I m¥cs sufaces

Note that Sz is the right Hamilton-Jacobi function to enforce that, on
the initial or final surface, the spacetime is deSitter.

( 3
SE — 87TG/ ﬁleCS(A)

But, could the initial and final A’s be different, as they appear to be in our

universe? Does the new term suffice to make A variable, or even dynamical?
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Quasi topological dynamics of A

Integrate the new term by parts:

3 oY () 3
gCs — /—RAB/\R —RAB ARAR) = — /—dI Y,
167G MA( AB AB) 167G MA m( CS)
) 3 1 3
— —TImYcogs - —TImY,
e /Ef 2N T 8nG /E QAT O Rebroducss e

Chern-Simons
invariant of the

) 3 Ashtekar connection
| . _’Z' Y on initial and final
| 167TG /M d(A) mrcs surfaces

The third term suggests A is a dynamical variable, conjugate to 7¢g = ImYCS(A)

B 16mGA?

{A(2), Tes(v)} = — 0% (x, y)

Recall tcs was proposed as a measure of intrinsic time  (Smolin, Soo, 1994)
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We consider the same theory in Palatini variables:

1 3
S = 357G /., gabed {ea Aep N\ Reg(w) —2Aheq, ANep ANee Neg — ﬂRab N Rcd}

We see the new term is the Gauss-Bonnet invariant. 55/
3 Ta X 660’

Gab = la A bl — dA A R

2A2
A K
Gabcdeb A\ (RCd — gec A\ ed — §Ta

é B \/ea,bcdRab A Red
5 —

e
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Consistency in Palatini variables:

1

S=
87TG M

3
g@bed {ea Aep N\ Reg(w) —2Aheq, ANep ANee Neg — ﬂRab A Rcd}

0SS\
b g A d K Ta % ea
Eabcd 6 /\ FC - gec /\ 6 — gTa €

3 dA
D1, = Z€,pa (Tb/\FCd—ATb/\ec/\ed— ?/\eb/\ec/\ed> .
K

3 A
Dt, = —Eabchb /N\ (FCd — §€C /N\ €d> :
Y
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New non-linearities in the eq’s of motion.

SAB —. DZAB _ TAA”

But RAB (w) is a function of Ta: JAB

/\QABi

P 3
— — A A RYB (W),
A A3 dA N R77 (w)

CIJ(G)AB + KAB

Where K, the contorsion, is a linear function of T: 7% = K9 A ¢

So the curvature 2-form is a quadratic function of T:

R®(w) = R®(@(e) + K) = R®(@(e)) + DK + K% K<

S0 we have to invert a quadratic equation for T:

S = Tl A el =

3dA

onz

(fzab(@(e)) + DK 4 K% A ch)
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Ta: ab/\eb

LUAB CI)( )AB _I_KAB
So we have to invert a quadratic equation for T:

3dA (- -
g =l p el = —Z2 A (R (@(e)) + DK™ + K% A K*)

Expand around a self-dual solution:

dA
Sab:T[a/\eb]:—ﬂ/\ea’/\eb—l—...

dA\
T = — —
2A/\e + .
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New non-linearities in the A eq of motion. w7 = H(e)48 + KAP

é B \/EadeRab A Red
3 e

But the curvature two form is itself a function of dA/A :

R(w) = R*(@(e) + K[2)

This time we have to invert an equation for A and dA/A

Again, we can expand around a self-dual solution.
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What we know of solutions to first theory:

1) Torsion absorbs and protects derivatives of Lambda.
2) Generalized self-dual solutions.

3) Cosmological solutions: generalized FRW.
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Are there consistent vacuum solutions with varying A and
nonzero Weyl curvature?

A cD  These together
AB = 5248 + 24BCD imply that Weyl
ab d curvature vanishes
A \/eadeR - A (Eulidean??)
) : KK
DRap =0
d\ 3dA
— [D o ZT](I)ABCDZCD — A2 (I)ABCD(I)CDEFZEF

Does this imply that dA=07?

25



It seems theory one is unphysical. What are the options?

-Add or induce a kinetic energy for A.

-Go away from the special value for the coefficient
of the Gauss-Bonet term.

-Consider the theory based on the Pontryagin invariant.

20



Theory two:

Induce or add a A kinetic energy

Frees A and Weyl to both propagate independently.

Loosens constraints, cosmological and otherwise.

27



A kinetic energy from torsion-squared

Diffeomorphism invariance allows us to add the dimension two term:

2 84 @7 14 a
ST = —SWG/ V=99 g"" T2, T§,Nab
M

This might be induced by quantum corrections or a fermion condensate,
or might simply be added, in which case we have a new parameter, .

Expanding round a self dual solution, in powers of dA/A:
1

Ta — KdA A\ Ba
This gives a standard kinetic energy term for A = Ln A,

near a self-dual solution.

3

T2
5= 321G

/ \/ —ggo‘ﬁaa)\é’g)\
M
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Theory two: include a A kinetic energy from torsion squared

1 3
Stwo _ e 6abcd {ea A ep N\ Rcd(w) — 2A6a NepN\e.N\eqg— ﬂRab A Rcd}
M

+ay/=gg*’ " T2 T, Nay
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This gives an effective dynamics for A,
near a self-dual solution.

Effective dynamics for A

A=X2B A5 |1 - (=
AB{ (N S4B Ay,

Where

1 1
= — A/ — py __
There are fixed points at

A FABAF
9, A = 0; 3\/ e

YAB A DIARB
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Option two: go away from the special value.

1 30
S = e N g@bed {ea Aep N Reg(w) —2Aeg, Nepy Aee N eg — ﬁRab A Rcd}

4

é B \/QeabcdR“b A Red
5 =

Weyl now propagates.
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A kinetic energy from torsion hidden in curvature

On self-dual solutions to the Aab equations of motion,

1

Aab _ wab(e) + Kab Kgc — ¢

dBH. A
oA ve”0g

R®(A) = R®[w(e)] + DK% + K* A K%
The effective action has a new term in (dA)2 from

1

o —
87TG M

—eeey R, 5" (A)

1 3
S = — €9 0o, A A “Ne’ AN K,
—e </MA269 0o N3 —I—/(?Me A e’ N b)
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A Kinetic energy from torsion hidden in curvature-2

In fact, there are, in the neighbourhood of a de Sitter background,
contributions to a A kinetic energy, coming from both the Einstein
and the Gauss-Bonet term. The result is

Y 1 36 .5
ST (e, N) = S(1—=0)—5eg"" 0, NI\ + ...
M 2 A
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Cosmological solutions of theory one:
generalized FRW.
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Cosmological solutions: generalized FRW.
FRW ansatz:  ¢%=dt ¢’ = a(t)da’

Definition of torsion 2-form: T =De” =de” +wG Ne

Symmetries require of torsion: T =0 T

w'y = g(t)e' = (ﬁ + T> e’ wij =0,

a

Modified Hubble parameter: g — g T

Curvature components:

-1 1 .
FP = “(ag(t)) e’ Ne = =(a+Ta)e’ A e
a a

. 2
FY = g*(t)e' N e = (g +T> e’ A e
35

|
|
~
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i
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D
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>
™D
.



Cosmological solutions: generalized FRW p2.

PerfeCt ﬂU|d To = p(t)ewkez A\ Gj A\ €k

T; — —p(t)EijkBO A €j /\ ek

Field equations reduced to FRW:

3A
T = —¢° SA: torsion equation
. 2
g2 — (ﬁ 4+ T) — A+ kp FRW equation
a 3
g* 2(0“9). = —Kkp+ A Raychoudri equation
a
51 . A?
g a(ag) — 9 A equation of motion

36
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Solve for the torsion to find:

w=p/p
k= 8m(G

From which we deduce, by the usual way, the conservation eq:

pt3- @+p) —T'(p+ 3p) -

Using the fleld equations, the RHS=0:
pt+3- “(p+p) = 0.

IAT — A

K

So matter is conserved via the torsion free connection. The role
of torsion is just to account for the non-conservation of the Lambda

energy-momentum. 3



We use this to simplify the FRW equations:

. 2 —
<2+T> :A;"p w=p/p
A k= 8nG
0
h= 2A(1+'A) or = Ak

pt3- “(p+p) =0

(A + kp) (A — §(p—|— 3p)) = AZ.

We discover A just tracks matter.

A:/{pl_l_gw QA: OA :1_|_3w
L =5 P+ pA 2
We can say this different ways.
A p G A1 14w a
—=—-=-31+w)-. T = = -3 —
A p ( )a A1+ 3w 1+3wa’
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The effect of A Is to renormalize Newton’s constant:

(d>2 Kp k(14 3w)? w = p/p
— | = — K = .

a 3 2 1—-3w . — 817
a o t3(1iw) 7 PA = A//ﬁ;

Pure radiation (w=1/3) plus A is forbidden:

1+ 3w PA 1 4+ 3w
A = kp Qp = —
1 — 3w p+ pa 2

Two ways out: add A kinetic energy or go away from 6=1.

39



With 6 away from one :

) ) w=Dp/p
A 2143w 1+ 3 01+ 3w) |
_ w w ( w)_ o = Nk

Now we consider pure radiation (w=1/3) and any 6,
and find a renormalized Newton’s constant.

The usual BBN constraint on AG gives a constraint on 6

AG

—0.1 < Nel < 0.14 — 1.83 < 6 < 1.92

40



Theory three:

We use the Pontryagin invariant instead of the Gauss-
Bonnet invariant.

41



Theory three:

We use the Pontryagin invariant instead of the Gauss-Bonnet invariant.

1 3
— g@bed {ea Aep N Reg(A) —2Me, Nep NeS A ed} + —R™ A R,
8’7TG M

5= A

The Pontryagin density is parity odd and vanishes on FRW spacetimes.

It couples to matter fields through an anomaly, in the conservation of

the chiral current. 9
D, JTH =
ud 1672

So, the A Eom ties A to an anomaly, and hence to the L-R
matter creation rates. Might this explain why A is presently small?

R*™ AR

Note: GA~ (Am,)' e [ A (167#)% v, Jt
Am, ~ 3 x 1077 3 3 I
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Theory four:

We use the Pontryagin invariant and give A
a kinetic energy

1

°= %G /.,

3
g@bed {ea Nep N Reg(A) —2heq Ney A e A ed} -+ ﬂRab A R,

+ay/=gg*? g" TS, Thy Mab

FRW reduction
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Effective dynamics for A

B 1 4 b - C
Seff = 877G/d xe <A—|—KRR—I— 229 (%A(?ﬂ\),

. 2 A\ . | 1 , 3
A(+)A T (A2~ bRE) =0

Potential for A V(A) = & (A2 — SbRR)

change to ¢=log A to make kinetic energy canonical:
¢ = A/M, = pexply]
To find potential for ¢=log A

Vi(p) = (éb + Ee_(b)

O] =

44



Effective Potential For Lambda

Robert Sims et al:  work in progress.

potential for ¢=log A

1 2

(b) Effective potential for field ¢ with various b values. For
b = a(n)~" for positive n (as we expect), propagating time
forward results in smaller b, thus the minima for V (¢)
becomes more negative.

10—
0.5
cV(AN)
M,°
-0.5
-1.0 ‘ ‘ ‘ ‘
-2 -1 0 1 2
AIM,?

(a) Effective potential for the field A with bRR = M.
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Numeric Solutions

Dimensionless
Variables

' . /\ — [\ /.1?‘1'?
. ikl X" 1 . 23 Rt '
Y (31 _ _) N4 = (,\2 _ ;) = (), 5= p/M

(! A C / o 3
% a SRR e — A 4
@ ) 2 A+ LE(V/N) b=bRR/M, )
—— — - ‘H: r . ,'w_' —\(,~ ,7' .——
@ 3m2 M2 c = 2c(m/Mp)
@ = 2p(143w) =X —E(N/A) Set mass scale
@ 32 {M?2 \ m= H;
0 — /9()(14_3( l+w) {Conserved indepa2ndently from A) Ansatz for Pontryagin
density
Intial CTond tions: T 3T _ / —B ~2) 4
I)(f’ — '\]() )/J‘J) /t

a2t twice Tixed point valus
= 10* . withw =@

a "
¥

- /LJ

Robert Sims



Numeric Solutions Robert Sims

1071 e —

= apyed
= — e ——— W= 10
S, \“\ ““ m e
3 ! ~—— < 1C
4 - -
4 -
10 - 1 ~ W=t
“ - “
e ~ . .
TN . S We=10
S ~ Y 46
3, ~. s 1(*¢ .=t
e B~ b
> =
| o .
~ " ~
- s G S
7 =’3 e ~a
. 107 e o -
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| T 100 1000 T 1 10 100 1000 107
Hot

iz 10P / 0.100

1013

. ~

¢ =1F J —
x ‘DI / o
¢ =1
‘ . y v e
- -9 Ty ¥ e
= 107 = 0.010 = g 8
—— ~, - -
- / - o ~
= g o g~
— ~.
. 2o ol X
l (-"‘. - (‘. - l .' " “\:‘ -~ ““\
. R y
h | =0 R ™~
0.0( S
’ -
| =] \\\“s
- - N N
1000 - |-
JA C - =
e | R | \‘:\‘.
."J'i"‘-‘- l‘:)"q ! - 3 -
— ‘\
-

1000 T | 10 100 1000 10
Hit




Typical behaviours seen, depending on Iinitial conditions:
® Sign of A never changes.

® A goes fto time dependent fixed point, which takes it into 0.
® A first shows damped oscillations around fixed point.

® Or A freezes out, leading to A domination.
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Tentative conclusions:

Two new extensions of GR which are diffeo invariant, have one less parameter than GR,
which each allow A to vary or evolve dynamically.

dS spacetime is enhanced to a space of generalized-self-dual spacetimes, with variable A, which are
consistent because a torsion arises from the eq’s of motion, proportional to dA.

With Weyl=matter=0, A is free to vary, because its field eq is redundant. Enlarged self dual
sector. When matter is turned on, A tracks its density.

Theory one (6=1, vacuum, no A-self-energy), appears to have no propagating modes.

Terms in torsion-squared, may be induced by going away from 6=1 or introduced by hand; these
yield a A kinetic energy when examined near a self-dual spacetime.

FRW reductions have been studied. Without the A kinetic energy these are highly constrained to
have A stuck in fixed points where it follows the matter density; when the A gains an independent
Kinetic energy, it becomes free to oscillate around or travel between fixed points.

The Pontryagin inv based theory predicts a relation between A and the gravitational
chiral anomaly, possibly explaining the small
value of A.

A (1672\% [V,
3 3 vV —0
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Much to do:

Study theory away from 6=1 and or with A kinetic energy.

A appears to clump around matter: Dark matter?
Black holes?

Linearization? with A K.E. are there scalar waves? Coupled to what?
Perturbation theory in dA/A?

Better understanding of new non-linearities from solving A and A eqgs.

A a function only of time in a preferred splicing?
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Thank you
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Slides for discussion:
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Coupled numerical evolution Robert Sims, in progress.

A+ (3a
a

A

A

°)A+

1

2c

a\? 1
a _3M5

(p+ A)

(A2 _ bRR) — 0

.0 2 ;
P+ 35,0(1 +w)=—-MZA.

Initial condition Ao is at twice the fixed point.

54
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Coupled numerical evolution

) AN . 1
A4 (322 A+ —
a

A 2 (A2 B bRR) =0

A oscillates around and tracks fixed point (black line)

1%
0100%
§§(1010
0001 y
~Initial condition Ao
104 is at the fixed point.
I 510 50 100 500
t
of ‘
2,
QU
= 1
0.5
| UU PA /Pmatter
02" e o L
1 5 10 50 100 500

Robert Sims, in progress.

a\ > 1
~ 2) = LA
bRR =13 (a) 3M?2 (- 4)
. a 5 ;
P+ 35p(1 +w) = —MZ7A
10°
f a(t) |
1000
S : ]
100, 5
10 I
4 o 510 50 100 500




Check of A-variable solutions in Palatini 1
R, = Eeabcdeb A R
Einstein eq’s in 1

terms of 3-forms: Ra = 5¢alt = —Aea (B) . oL LN

6

A

This is solved by, R — Zea p b (SD)
-3

with variable A:

When the torsion | a
is defined by: Pet =17 = ﬁdA hew (1)

To show this, take covariant curl of both sides of (SD):
D LHS =0, D RHS =0 using the definition of torsion (T)

To show consistency, take curl again and use (T) again.
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MORE ON CHERN-SIMONS TIME



Thermality of the exact quantum theory on 2=53

Recall:
e The KMS condition. Thermal states are periodic in imaginary time.
e The natural time coordinate is: Tos = Im J YCS(A)

e The Euclidean continuation has A, real

Hence the natural Euclidean time coordinate is Trog = f Yos(A)
But this is a periodic coordinate on the configuration space.
Under large gauge transformations:

/YCS(A) —>/ cs(A) + 8n°n

Hence there is a dimensionless temperature. 7~I ; — 1
Almniess — 2

Hence, the whole quantum theory of gravity with >=S3is thermal!
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— 1
7:l-i1'l'd(3.ss — Sn2

To connect this with the deSitter temperature we scale on a trajectory
corresponding to an S3slicing of dS:

The relation between the two time coordinates is given by

IMes B Y
> = SgN{TCS(A)aH}—&/T\/;

This leads to the dimensional Gibbons-Hawking temperature:

Note: this does not

1 /A just say that QFT on dS
Tas = o7\ 3 is thermal. It says
guantum gravity with

a positive CC s
60 intrinsically thermal.



—d

"he Lorentzian Chern-Simons time in the homogeneous case:

Ayl = 104,06 = 1001Ha

TCS — / ImTTAS — H3a3
g3

This is the number of co-moving volumes in an Horizon volume.

—d

cs <1 “comoving volume is within the horizon”

{4

"cs >1

—d

comoving volume is outside the horizon”
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Basics of ashtekar variables and de Sitter
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The Ashtekar variables are complex coordinates
for real, Lorentzian spacetimes:

2
: : b
Ag,; = 3d spin connection,,; - Ko E,

V4

qqab — EaiEf? Kab ~ Cjab
{AL(2), Ej(y)} =1G5,650°(y, x)

JGE — / dt / WEYA . — NH — N°H, — w;G"
>
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Constraints generate gauge transformations:

Gauss's law for SU(2): ¢* = D,E*

. ) ] - All constraints
Diffeomorphism constraint H, = EJ/F’;,  S.e cubic)

Hamiltonian constraint: H = eij-kE"""E”f(Fa’j)-l-%ed,cE"")
Equations of motion:

Aa,»j, p— {Aaifaj NH} pm— N’ZGeijkEbj(QFé}) + AeabcECk)

frai — { Efmf, [ N’H} — zGeiﬂ"Db(N E_?EII:)

All eom are

Self-dual solutions: — _A ct. :
Fo, = —3¢€abeE quadratic!

3

Fa¥)
U5




L — A .
Explicit deSitter solution: Fpy = —5€apc B

deSitter spacetime is (was) the unique lorentzian self-dual solution:

We make the spatially A, &= 3d spin connection,; 4+ 2é,;

flat ansatz:

Aa;i — 1 \/ A/Bf(t)daz — E | — _fQ(t)geabf

The self-dual condition implies: Ea‘i‘ e fQ(Sm.' —> €ai — f5m',
To fix the solution fix the lapse N N =~ det(e)_l — f_3
The equations of motion give: R N 4
f = ABNS* = /AJ3S

This gives the dS metric: dé%Q - _dtQ + 621 //\/3t.(dxa,)2




Hamilton-Jacobi, deSitter and Chern-Simons theory

Let us solve the constraints with a Hamilton-Jacobi function S(A).

(. 35 (A)
The momenta are given by E e —
5Aa:i
To get deSitter we impose the self-dual condition:
— =€l - — € be
ab 3 a 3 a 5 Am',

This has the unique solution:

2
Scs = Ye
¢S 3/\/ 'S

Chern-Simons invariant:

Yos = Tr(AAdA 4 £A3) 5 [ Yes

544-.-:{
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The Kodama State

Hence the H-J function for dS is: SCS' p— %/ch

This suggests as an ansatz the state:

V() = e ¥

Here we are using the connection representation:

<AV >=W(A) E%= kG5

In fact, with a certain choice of operator ordering,
this is an exact solution to the quantum constraints:
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The Kodama State

2
3 S e —_ Y
Wi(A) = NeanJ Yoo | 7% 3/\/ “

Its transform to the spin network representation is exact:

Ul = /dA T[T, Aleircs(4)

for A Euclidean, this is the Kauffman bracket or Jone’s polynomial of the network.

—> Requires framed spin networks labeled with SU, (2) reps.

—> The level, k, is related to A:

o7

Y= han
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A new uncertainty relation.

Another approach is to define a preferred slicing, and
define A and the Chern-Simons time as a function of the slices.

TCS :Im/ ch(A)
>
Then the new term in the action is

3 A
new _ 2 Tm | Yos(A
> lﬁth/thQ m/E cs(4)

This implies a new Poisson bracket and uncertainty relation.

16mGA?
{A,/ImYCS(A)} — :
>

AAATOS Z 87T§G <AA2>
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Waiting/storage fOR formulas

3dA A\
2A?

5ot — e A bl — (Rab(az(e)) + DK + K% A ch)

dA

qab —la bl — 7 Ap@ Al

2\

(2



Effective dynamics for A
Effective equation of motion for A

_ 1 4 b [13%
Seff = e /d xe (A + ARR—I— AQg 8MAZ9,/A> :
FRW solutions

ds® = a*(n) |[—dn® + (6;5 + hsj)dz'da’ |

2

. A : . . 1 a ~
_ _ (§Y i AN — Z9:AO. — __ [ A2
K+ (2% A) A — (69 + h'9) (azajA A@AQ,A) — —— (A*—bRR)

deSitter solutions

time dependent potential

$
V() = 5= (¢* —3b()). S 2) — b

/3



(=)

Assume falloff:

RRoxa™"

WAAAAAAAAAAA/
ATV

AN
VYV \/A\/\/\\/\/\/\\//\\/\

Evolution of ¢=log A

-100

~80

60

40 20
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Evolution of A
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Varying the initial Ho Robert Sims, in progress.

8"+ (362 ¢f> o+

¢

2 -
(a_’> _ Pt
a P0

/

NN
P+ 3310(1 tw)=—¢

Initial conditions:

Ao =twice fixed point
Ho fixed by fixing c-tilde
po IS then found by solving the Friemann eq.

75

Switch to Planck units:

¢ =N/M;

¢ =2¢/9(M,/Hy)’
p=p/M,

xr = mt



Varying the initial Ho Robert Sims, in progress.

Switch to Planck units:

/ / 1 ¢2_B ¢:A/M2
/1 3a ¢ /ot _ D
? +< a ¢>¢ A
¢ =2¢/9(M,/Hy)’
a\° 1 (M?*\ ~ 4
(%) =5 () oeo o= Py
/ Tr = mt

~

b(x) = bRR/M,

1074 X
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AJ3H?
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Hyt
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a(t)

Varying the initial Ho Robert Sims, in progress.

¢ =2¢/9(M,/Hpy)”
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Switch to Planck units:
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