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Classical Hypersurface Deformation Algebra

Let Q :=
√

det(q), D dens. w. one spat. diff. const., Cw dens. w. w Ham. const.

Classical hypersurface algebra h [Hojman, Kuchar, Teitelboim]

{Cw [M], Cw [N]} = −D[Q2(w−1) q−1 (M dN − N dM)]

Observations:

Ill-defined for degenerate metrics (Q = 0) unless w ≥ 2
Trivial (Abelian) if integrand of D has Lebesgue measure zero support
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Representations and density weights

Every single term in Cw (vacuum, cosm. const., matter) couples to Ea
j

LQG: in order that Cw [N] be densely defined, pick vacuum s.t. Ea
j Ω = 0

⇒ quantum degenerate vacuum Q Ω = 0

Proposition: This already fixes a rep. of Narnhofer-Thirring type (e.g. AL rep.)

Proposition: If Cw dep. quadratically on Aj
a and vol. op. (needed for Lorentzian

Ham. constr., cosm. const., matter terms) densely defined then a simplicial
regularisation (Riemann sum over tetrahedral cells of coordinate volume εd ) of
Cw is densely defined on H iff

w = 1
A,E smeared in 1, d − 1 dimensions respectively
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The Tension

For w = 1: classical hypersurf. alg. h well-defined iff Q > 0

LQG rep.: SNWF excitations D on graphs with finite number of vertices

all SNWF quantum degenerate (zero volume Lebesgue a.e.)

ε→ 0 limit: delicate as naive ε→ 0 limit divergent (naively Q−1 ≡ ∞)

inverse Q powers must annhilate SNWF a.e. (Tychonov def., P.B. id. [TT], ...)

Proposals:

A: rep.of h on D:
conv. in operator topology eploiting diffeo inv. [Rovelli, Smolin, TT]

B: rep. of h on subsp. of distrib. dual D∗ (“habitat”) [Gambini, Lewandowski, Marolf, Pullin]

Anomalies:

A: closes with non-trivial but wrong q’um structure functions (volume kills
new vertices)
B: closes with trivial i.e. wrong q’um structure functions
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Origin of the Tension

Technical reason: D[Q2(w−1) q−1(M dN − N dM)] is

Classically: Riemann sum of Nε = ε−d terms (compact spat. top.) of size εd
Q’um: sum of Nγ =const. terms (no. of vertices) of size ε due to discrete
derivative M(v) N(v + ε)−M(v + ε) N(v)
εd × ε−d → O(1) but ε1 × Nγ → 0

Perspectives:

I: non-deg. LQG vacuum Ω0 with condensate < Ω0, Q Ω0 >= Q0 > 0
[Koslowski, Sahlmann]

II: non-standard dens. w. 2 > w > 1 : match s.t. in reg. comutator on
habitat, ε−1 multiplies discrete der. [Varadarajan et. al.]

Reservations:

I: Ω0 not in domain of reg. Ham. constr.; excitations still suffer from
Nγ =const. while Nε →∞ needed.
II: w 6= 1, “electric shift” strategy [Ashtekar, Varadarajan] presently geared to
Euclidian vacuum QG (Lorentzian vacuum: Wick transform? [TT; Varadarajan])
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Summary

The natural density weight is w = 1

For w = 1 classical h requires non-degenracy

LQG SNWF q’um degenerate a.e.

Reason why q’um representation of h meets severe difficulties

q’um rep. violates necessary assumption about very definition of h

Strategy: Find new rep. which is q’um non-degenerate

make q’um non-degeneracy part of of definition of anomaly freeness

Further plan of talk:

Proof of principle: exact, anomaly-free, q’um non.deg. q’ion of Smolin’s
U(1)3 model q’um integrability
Renormalisation: systematic construction of q’um non-deg. rep.
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Definition of classical U(1)3 model

Hamiltonian definition [Smolin]:
Take Euclid. vac. GR in Ashtekar-Barbero variables, drop A2 terms from C1[M]

Lagrangian definition [Bakhoda, TT]:
Take Euclid. vac. GR in self-dual variables, drop A2 terms from L

Almost Euclidian vacuum GR, but Abelian structure group

Classical hypersurf. def. alg. h unchanged

in particular: still non-trivial, non-polynomial struct. fns.

ideal test laboratory for many technical/conceptual issues of QG [Varadarajan et al] both
canonical and covariant
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Definition of q’um non-deg. U(1)3 QG

Narnhofer-Thirring type of rep.

< Ω,w [F ]Ω >= δF ,0, w [F ] = exp(−i F [A]), E [f ]Ω = 0, F [A] :=

∫
d3x F a

j Aj
a

F : form factor, generalised “holonomies” w [F ] discont., “fluxes” E [f ] cont.

Geometrical ops. diagonal, e.g. volume

V (R) w [F ] Ω = `3P [

∫
R

d3x
√
| det(F )|] w [F ] Ω

q’um non-deg dense domain: det(F ) 6= 0

solution of Gauss constraint: ∂aF a
j = 0

spatial diffeo D[u], Ham. constr. Cw [M]: ill-defined as A 6 ∃
No rep. of h on H. But: can exponentiate H := exp(h) on H

Uw (u,M) w [F ] Ω := exp(D[u] + Cw [M]) w [F ] Ω = w [(eXw
u,M · K )(0,F )] Ω

X w
u,m: HVF of D[u] + Cw [M], K (G,F ) := F momentum coordinate fn.
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Properties of U(1)3 QG

to best of knowledge: first q’um realisation of Bergann-Komar “group”

derived using standard simplicial reg. of LQG, polymerisation

works for any w , in part. natural weight w = 1

Uw (u,M) densely defined, in fact unitary, reduces to spatial diffeo ϕu
t=1 for M = 0

implemented w/o regulator directly on H, no habitats necessary

anomaly freeness realised: q’um algebra encoded by Hamiltonian flow of
classical constraints on non-deg. form factors

q’um non-degeneracy crucial: HVF otherwise ill-defined
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Properties of U(1)3 QG

implementation of electric shift/gauge covariant diffeo perspective [Giesel, TT 06;

Ashtekar, Varadarajan 21] to all orders in Abelian context

Ham. flow [eXw (u,M) · K ](0,F ) computable at N-th order wrt u,M: while linear in
F for M = 0, e.g. for w = 2 nested polynomial of order N + 1 in F depending on
spat. der. of order N

Ham. constr. action: Mollify CNW-FF F a
j (x) =

∑
e nj

e
∫

e dya δ(x , y), then:
1. action along whole graph (not only vertices), no abrupt loop attachment,
2. action on charges non-polynomial

Using habitats anyway, access to h rather than H: anomaly free by construction

perfect match: group averaging vs. red. phase sp. q’ion (relational observables)

Physical HS and Hamiltonian: non-linear, self-interacting electrodynamics:
N-point Wightman fns. not determined by 2-pt fn.

non-relational weak Dirac observables of CDJ type [Capovilla, Dell, Jacobson]

Spin foam derivation: Discrete/Bohr measures rather than formal Lebesgue,
simplicity constraint from first principles, Abelian SFM, much simpler!
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Summary of U(1)3 QG

U(1)3 QG (almost) q’um integrable in Narnhofer-Thirring type of rep.

Convergence of ideas: canonical, covariant, relational observables, ...

can be considered paradigm model or “harmonic oscillator” of (L)QG

highlights the importance to implement q’um non-degeneracy

LQG techniques otherwise work, density weight unity, no habitats

Reason for success: HVFs preserve momentum polarisation of phase space

full (Euclidan) QG: no longer polarisation preserving, more complicated

New perspective: pert. theory around integrable model = consistent deformation
of Euclidian GR [Barbero]

Non-pert., constructive approach: Hamiltonian Renormalisation
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Generalities of Hamiltonian Renormalisation

Framework motivated by constructive QFT [Balaban, Glimm, Fröhlich, Jaffe, Osterwalder, Rivasseau,

Schrader, Simon, Thirring, ...], in a nutshell:

M: set of “resolution scales”: part. ordered, directed

family of OS-triples TM := (HM ,ΩM ,HM ), M ∈M

given isometric injections: JMM′ : HM →HM′ ; M ≤ M′ i.e. J†MM′ JMM′ = 1M s.t.
JM2M3 JM1M2 = JM1M3 ∀ M1 ≤ M2 ≤ M3

family of OS-triples called consistent iff

J†MM′ HM′ JMM′ = HM ∀ M ≤ M′

Then continuum theory (H,Ω,H) obtained by inductive limit of HS:
JM : HM →H and Hamiltonian H s.t.

JMM′ = J†M′ JM , HM = J†M H JM

Question 1: how to get these structures from given classical theory?

Question 2: How does it help to find q’um non-degenerate reps.?
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Multi-Resolution-Analysis (MRA) and Wavelets

MRA of wavelet theory = organisational principle of renormalisation

(Generalised) Multi-Resolution-Analysis (MRA):
Nested family of sub-HS VM , M ∈M of “1-particle” HS V = L2(σ) of “smearing
functions” on spat. slice σ s.t.
i. VM ⊂ VM′ , M ≤ M′
ii. ∪M LM is dense in L
iii. ∩M LM = C (resp. {0}) for (non-)comp. σ
iv. if M ≤ M′ ∃ scale factor s(M,M′) > 0 s.t. ∀ f ∈ VM dilatations:
Ds(M,M′)f ∈ VM′

(Generalised) scaling function χ:
∃ dimension no. d(M) and fixed, finite set of fns χ ∈ V whose rescaled translates
χM

m := Dd(M)T m
1/d(M)

χ form ONB of VM (m ∈ ZM (Z) if σ (non)comp.)

(Generalised) wavelet ψ:
fixed finite set of fns. ψ ∈ V s.t. its rescaled translates ψM

m form an ONB of
WM = V⊥M with Vκ(M) = VM ⊕ V⊥M and given κ(M) > M
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MRA:
1. Nested system VM ⊂ VM′ ⊂ V = L2(σ), M ≤ M′ of “1-particle” HS (smearing
fuctions, form factors,...),
2. “mother scaling function” χ: rescalings/translates χM

m provide ONB of VM .

Renormalisation wrt MRA [Federbush et. al., TT]:
Let LM ⊂ `2 with isometric (bi)injection and projection

IM : LM → VM ⊂ V ; fM 7→
∑

m
fM (m) χM

m ⇒ pM = IM I†M : V 7→ VM

Coarse grainig map IMM′ = I†M′ IM automatically satisfies consistency due to
MRA structure

IM′ IMM′ = IM , IM2M3 IM1M2 = IM1M3

Additional desired features of χ: position and momentum locality, smoothness
[Cohen, Daubechies, Haar, Meyer, Shannon, ...]
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Hamiltonian renormalisation of Hamiltonian system

Step 1: Pick MRA structure = coarse graining tool IM
Step 2: Discretisation of phase space (UV cut-off):

ΦM := I†M Φ, ΠM := I†M Π

Step 3: Initial Hamiltonian on discretised phase sp. (for differentiable MRA)

H(0)
M [ΦM ,ΠM ] := H[IM ΦM , IM ΠM ]

Step 4: Pick initial (H(0)
M ,Ω

(0)
M ): For σ compact, (IR cut-off) H(0)

M typically unique

(Stone – v. Neumann), H(0)
M Ω

(0)
M := 0 (vacuum), Weyl elements:

wM [fM ] := exp(i < fM ,ΦM >LM ), span of wM [fM ]Ω
(0)
M dense

Step 5: Renormalisation flow: Iteratively construct
(H(n)

M , Ω
(n)
M , H(n)

M ); M ∈M, n ∈ N s.t. for given κ : M→M; M′ = κ(M) > M
get isometries, Hamiltonian

JMM′ wM [fM ] Ω
(n+1)
M := wM′ [IMM′ fM ] Ω

(n)
M′ , ; H(n+1)

M := J†MM′ H(n)
M′ JMM′

Step 6: Fixed points = continuum theory candidates

Note: Weyl states exited everywhere⇒ q’um non-degeneracy
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Hamiltonian renormalisation of constrained systems

Idea: Simply copy ren. programme for each constraint D[u] “as if it were a
Hamitonian”

Questions:

common vacuum ∃? Necessary?
should one also discretise (lapse, shift) test fn u, how?
how does constraint algebra/anomalies react to renormalisation flow?

Study those questions for solvable PFT [Kuchar], [Zwicknagel, TT]
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Hamiltonian renormalisation of PFT on the cylinder

σ = [0, 1) = S1 compact, periodic bdry cond.

Lesson 1: Some degree of smoothness of scaling fn. χ mandatory

Lesson 2: rapid decrease of Fourier trafo χ̂ mandatory

Violated for Haar MRA (classic block spin coarse graining)

E.g. Dirichlet MRA works: M: odd integers, M ≤ M′ ⇔ M′

M ∈ N, κ(M) := 3M

χM
m (x) =

sin(π M [x − xM
m ])

sin(π [x − xM
m ])

, xM
m =

m
M

; m ∈ {0, 1, ..,M − 1}

Lesson 3: Ren. flow indeed has known cont. theory as fixed pt.

Lesson 4: Common vacuum unimportant, 6 ∃ in PFT (Virasoro central extension)

Lesson 5: natural test fn. discretis. uM := pM u possible if MRA diff. but not nec.

Lesson 6: Finite resolution continuum constraints (“blocked from continuum”)

must never close
physically correct: finite resolution “artefacts” AM : Let PM := JM J†M
DM [u] := PM D[u] PM , [DM [u],DM [v ]] = −i DM [[u, v ]]+ζ(u, v) PM +AM (u, v)

Finite res. anomaly freeness check: w-limM→∞ AM = 0

Thomas Thiemann Quantum Dynamics in LQG:



Hypers. Def. Alg., Q’um Non-Deg., Anomalies, Dens. Weights
U(1)3 Quantum Gravity

Hamiltonian Renormalisation
Take home lessons

Take home lessons

Anomaly freeness of h and q’um non-degeneracy are strongly correlated

natural density weight one: not necessarily obstacle to algebra closure in q’um
non-deg. representations

closure directly on H not excluded (no habitats)

eponentiated Ham. constr.: presumably very different action from what was
“guessed” so far

Beautifully demonstrated in Smolin’s U(1)3 QG model

(Hamiltonian) renormalisation:

systematises search for q’um non-deg reps.
disentangles mere discretisation artefacts from true anomalies
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