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TOC:
Q@ Interplay: Hypers. Def. Alg., Qum Non-Deg., Anomalies, Dens. Weights
@ Successful model: U(1)® QG — g’'um non-deg, anomaly free, q'um integrable

@ Constructive g’'um non-degeneracy — Hamiltonian renormalisation:
Generalities, wavelets and PFT
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Hypers. Def. Alg., Qum Non-Deg., Anomalies, Dens. Weights

persurface Deformation Algebra

9O Let Q:= y/det(q), D dens. w. one spat. diff. const., Cw dens. w. w Ham. const.
@ Classical hypersurface algebra b (Hojman, Kuchar, Teitelboim]

{Cw[M], Cw[N]} = —D[Q?¥=") g~ (M dN — N dM)]

@ Observations:

o lll-defined for degenerate metrics (Q = 0) unless w > 2
o Trivial (Abelian) if integrand of D has Lebesgue measure zero support
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Hypers. Def. Alg., Qum Non-Deg., Anomalies, Dens. Weights

tions and density weights

Every single term in Cy (vacuum, cosm. const., matter) couples to Ej"”
LQG: in order that Cw[N] be densely defined, pick vacuum s.t. E/.a Q=0
= quantum degenerate vacuum Q Q = 0

Proposition: This already fixes a rep. of Narnhofer-Thirring type (e.g. AL rep.)
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Proposition: If Cy dep. quadratically on A, and vol. op. (needed for Lorentzian
Ham. constr., cosm. const., matter terms) densely defined then a simplicial
regularisation (Riemann sum over tetrahedral cells of coordinate volume ¢?) of
Cw is densely defined on H iff

o w=1
o A, E smearedin 1,d — 1 dimensions respectively
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Hypers. Def. Alg., Qum Non-Deg., Anomalies, Dens. Weights

For w = 1: classical hypersurf. alg. h well-defined iff Q > 0

LQG rep.: SNWF excitations D on graphs with finite number of vertices

all SNWF quantum degenerate (zero volume Lebesgue a.e.)

e — 0 limit: delicate as naive ¢ — 0 limit divergent (naively Q' = co)
inverse Q powers must annhilate SNWF a.e. (Tychonov def., P.B. id. (rm, ...)
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Proposals:

o A:rep.ofhonD:
conv. in operator topology eploiting diffeo inv. Roveti, smolin, TT]
o B: rep. of I’) on SUbSp. of distrib. dual D* (“habitat”) [Gambini, Lewandowski, Marolf, Pullin]

@ Anomalies:

o A: closes with non-trivial but wrong g’'um structure functions (volume Kills
new vertices)
o B: closes with trivial i.e. wrong q’'um structure functions
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Hypers. Def. Alg., Qum Non-Deg., Anomalies, Dens. Weights

@ Technical reason: D[@2W=1) q="(M dN — N dM)] is

o Classically: Riemann sum of N. = ¢~ terms (compact spat. top.) of size ¢
@ Q'um: sum of N, =const. terms (no. of vertices) of size e due to discrete
derivative M(v) N(v +€) — M(v + €) N(v)
0 @ xe 95 0O(1)bute x Ny — 0
@ Perspectives:

o |: non-deg. LQG vacuum Qg with condensate < Qq, Q Qy >= @ >0
[Koslowski, Sahimann]

o lI: non-standard dens. w. 2 > w > 1 : match s.t. in reg. comutator on
habitat, e~! multiplies discrete der. (varadarajan et. al]

@ Reservations:
o |: Qp not in domain of reg. Ham. constr.; excitations still suffer from
N., =const. while N — co needed.

o |l: w # 1, “electric shift” strategy [ashtekar, varadarajan] presently geared to
Euclidian vacuum QG (Lorentzian vacuum: Wick transform? (rT; varadarajani)
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Hypers. Def. Alg., Qum Non-Deg., Anomalies, Dens. Weights

The natural density weight is w = 1

For w = 1 classical h requires non-degenracy

LQG SNWF g’'um degenerate a.e.

Reason why g’'um representation of h meets severe difficulties

g’'um rep. violates necessary assumption about very definition of h
Strategy: Find new rep. which is g'um non-degenerate

make g’'um non-degeneracy part of of definition of anomaly freeness
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Further plan of talk:

o Proof of principle: exact, anomaly-free, g'um non.deg. g’ion of Smolin’s
U(1)® model g’'um integrability
o Renormalisation: systematic construction of g’'um non-deg. rep.
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U )3 Quantum Gravity

classical U(1)2 model

@ Hamiltonian definition smolin):
Take Euclid. vac. GR in Ashtekar-Barbero variables, drop A? terms from C;[M]

©

Lagrangian definition [sakhoda, TT]:
Take Euclid. vac. GR in self-dual variables, drop A® terms from L

Almost Euclidian vacuum GR, but Abelian structure group
Classical hypersurf. def. alg. h unchanged
in particular: still non-trivial, non-polynomial struct. fns.
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ideal test laboratory for many technical/conceptual issues of QG (varadarajan et aij both
canonical and covariant
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U )3 Quantum Gravity

g'um non-deg. U(1)® QG

@ Narnhofer-Thirring type of rep.
< QWIFIQ >= 8r.0, WIF] = exp(—i F[A]), E[fI2 =0, FIA] := / o x FA A,

@ F : form factor, generalised “holonomies” w[F] discont., “fluxes” E[f] cont.

©

Geometrical ops. diagonal, e.g. volume
V(R) wiF] Q = [/ @x /[det(F)]] w[F] @
R

g’'um non-deg dense domain: det(F) # 0

solution of Gauss constraint: 8aFja =0

spatial diffeo D[u], Ham. constr. Cy[M)]: ill-defined as A A

No rep. of f on H. But: can exponentiate $) := exp(h) on H

U"(u, M) w[F] Q := exp(D[u] + Cw[M]) w[F] Q = w[(eXKM -K)(0,F)]1 Q
X m: HVF of D[u] + Cw[M], K(G, F) := F momentum coordinate fn.
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U )3 Quantum Gravity

to best of knowledge: first q’'um realisation of Bergann-Komar “group”

derived using standard simplicial reg. of LQG, polymerisation

works for any w, in part. natural weight w = 1

U"(u, M) densely defined, in fact unitary, reduces to spatial diffeo {_; for M =0
implemented w/o regulator directly on #, no habitats necessary
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anomaly freeness realised: q'um algebra encoded by Hamiltonian flow of
classical constraints on non-deg. form factors

©

g’'um non-degeneracy crucial: HVF otherwise ill-defined
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U )3 Quantum Gravity

@ implementation of electric shift/gauge covariant diffeo perspective [iesel, TT 0s;
Ashtekar, Varadarajan 21] {0 all orders in Abelian context

@ Ham. flow [eX"(:M) . K](0, F) computable at N-th order wrt u, M: while linear in
F for M = 0, e.g. for w = 2 nested polynomial of order N + 1 in F depending on
spat. der. of order N

@ Ham. constr. action: Mollify CNW-FF Fl.a(x) =3, Js dy? 8(x,y), then:

1. action along whole graph (not only vertices), no abrupt loop attachment,
2. action on charges non-polynomial

@ Using habitats anyway, access to h rather than $): anomaly free by construction

©

perfect match: group averaging vs. red. phase sp. g'ion (relational observables)

@ Physical HS and Hamiltonian: non-linear, self-interacting electrodynamics:
N-point Wightman fns. not determined by 2-pt fn.

@ non-relational weak Dirac observables of CDJ type [capovila, Dell, Jacobson]

@ Spin foam derivation: Discrete/Bohr measures rather than formal Lebesgue,
simplicity constraint from first principles, Abelian SFM, much simpler!
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U )3 Quantum Gravity

U(1)® QG (almost) g’'um integrable in Narnhofer-Thirring type of rep.
Convergence of ideas: canonical, covariant, relational observables, ...

can be considered paradigm model or “harmonic oscillator” of (L)QG
highlights the importance to implement g’'um non-degeneracy

LQG technigues otherwise work, density weight unity, no habitats

Reason for success: HVFs preserve momentum polarisation of phase space
full (Euclidan) QG: no longer polarisation preserving, more complicated
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New perspective: pert. theory around integrable model = consistent deformation
of Euclidian GR [Barbero]

©

Non-pert., constructive approach: Hamiltonian Renormalisation
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Hamiltonian Renormalisation

of Hamiltonian Renormalisation

@ Framework motivated by constructive QFT (Baaban, Giimm, Frshiich, Jaffe, Osterwalder, Rivasseau,
Schrader, Simon, Thirring, ...], in a nutshell:

@ M: set of “resolution scales”: part. ordered, directed
@ family of OS-triples Ty := (Hm, Qm, Hu), M € M

Q@ given isometric injections: Jyyr : Hy — Hpprs M < M ie. JLM, Jur = 1m st
Ivymy I, = Iy YV My < Mo < M
@ family of OS-triples called consistent iff
iy Hr Jur = Hu Y M < M

@ Then continuum theory (#, €2, H) obtained by inductive limit of HS:
Ju : Hy — H and Hamiltonian H s.t.

Jur = Jby I, Hu = Jfy H Ju

@ Question 1: how to get these structures from given classical theory?
@ Question 2: How does it help to find g'um non-degenerate reps.?
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Hamiltonian Renormalisation

ution-Analysis (MRA) and Wavelets

MRA of wavelet theory = organisational principle of renormalisation

@ (Generalised) Multi-Resolution-Analysis (MRA):
Nested family of sub-HS Vi, M € M of “1-particle” HS V = L, (o) of “smearing
functions” on spat. slice o s.t.
. VuC Vi, M< M
ii. UyLpy isdensein L
ii. NyLy = C (resp. {0}) for (non-)comp. o
iv. if M < M’ 3 scale factor s(M, M) > 0 s.t. V f € V), dilatations:
DS(M,M’)f (- VM’
@ (Generalised) scaling function x:
3 dimension no. d(M) and fixed, finite set of fns x € V whose rescaled translates
XM := Dy(m) 777 g(myX form ONB of Vi (m € Zy (Z) if o (non)comp.)

@ (Generalised) wavelet 1):
fixed finite set of fns. ¢ € V s.t. its rescaled translates ™ form an ONB of
Wiy = Vi with V) = Vi @ Vi and given x(M) > M
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Hamiltonian Renormalisation

@ MRA:
1. Nested system Vi C Vyyr C V = La(o), M < M’ of “1-particle” HS (smearing
fuctions, form factors,...),
2. “mother scaling function” x: rescalings/translates x™ provide ONB of V.

@ Renormalisation wrt MRA (Federbush et. al., TT]:
Let Ly C ¢» with isometric (bi)injection and projection

s Ly =V C Vi =D fu(m)xh = pu=Iuly: Ve Vy
m

@ Coarse grainig map Iy = IL, Iy automatically satisfies consistency due to
MRA structure
I e = s Ity Iy vy = Iy g
@ Additional desired features of x: position and momentum locality, smoothness

[Cohen, Daubechies, Haar, Meyer, Shannon, ...]
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Hamiltonian Renormalisation

renormalisation of Hamiltonian system

@ Step 1: Pick MRA structure = coarse graining tool /
@ Step 2: Discretisation of phase space (UV cut-off):

=ho, Ny:= N
@ Step 3: Initial Hamiltonian on discretised phase sp. (for differentiable MRA)
H (O, Ml == Hlu®w, M)

@ Step 4: Pick initial (HSS ,Q(O ): For o compact, (IR cut-off) HSS) typically unique
(Stone — v. Neumann), H( ) Q(O) 0 (vacuum), Weyl elements:
wy[fu] = exp(i < fu, ®y >,,), span of wM[fM]QES) dense

@ Step 5: Renormalisation flow: lteratively construct

HD, Q) HMY, Me M, neNst forgiven s : M — M; M = (M) > M
get |sometr|es Hamﬂtoman

(n+1) | n) . H(n+1)

JMM' WM[fM] Q = WM’[IMM’ fM] QSVI”’ M JLM’ I(Vr;’) JMM’

@ Step 6: Fixed points = continuum theory candidates
@ Note: Weyl states exited everywhere = q'um non-degeneracy
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Hamiltonian Renormalisation

renormalisation of constrained systems

Q@ Idea: Simply copy ren. programme for each constraint D[u] “as if it were a
Hamitonian”

@ Questions:

@ common vacuum 3? Necessary?
o should one also discretise (lapse, shift) test fn u, how?
o how does constraint algebra/anomalies react to renormalisation flow?

@ Study those questions for solvable PFT [kuchar], [zwicknagel, TT]
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Hamiltonian Renormalisation

renormalisation of PFT on the cylinder

o =[0,1) = S' compact, periodic bdry cond.

Lesson 1: Some degree of smoothness of scaling fn. x mandatory
Lesson 2: rapid decrease of Fourier trafo ¥ mandatory

Violated for Haar MRA (classic block spin coarse graining)

E.g. Dirichlet MRA works: M: odd integers, M < M’ < MV, €N, k(M) :=3M
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sin(tMx—xM) 4 m

M(yy — _m. _
Xm(X) = P M= _—-me{0,1,.,M—-1}

M

Lesson 3: Ren. flow indeed has known cont. theory as fixed pt.
Lesson 4: Common vacuum unimportant, Ain PFT (Virasoro central extension)
Lesson 5: natural test fn. discretis. uy, := pyu possible if MRA diff. but not nec.
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Lesson 6: Finite resolution continuum constraints (“blocked from continuum”)

@ must never close
o physically correct: finite resolution “artefacts” Ay: Let Py := Jy J,L

Du[u] := Py Dlu] Py, [Du[u], Du[V]] = —i Du[[u, vI]+C(u, v) Put+Am(u, v)

o Finite res. anomaly freeness check: w-limy;_, o, Ay =0
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Take home lessons

lessons

@ Anomaly freeness of h and g'um non-degeneracy are strongly correlated

@ natural density weight one: not necessarily obstacle to algebra closure in g'um
non-deg. representations

@ closure directly on H not excluded (no habitats)

@ eponentiated Ham. constr.: presumably very different action from what was
“guessed” so far

(]

Beautifully demonstrated in Smolin’s U(1)® QG model

©

(Hamiltonian) renormalisation:

o systematises search for g’'um non-deg reps.
o disentangles mere discretisation artefacts from true anomalies
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