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Non-uniqueness of Hamiltonian con-
straint in LQG:

Classical Ham constr depends on local connection �eld A.
But in LQG , no local connection operator, only holonomy
operators. Cant construct Ham constr oprtr by A ! Â in
classical expression.

Follow Thiemann Strategy:
- Introduce triangulation T� of Cauchy slice � with T� ! 0 = � .
- De�ne approximants to (A; E ) in terms of holonomy -�uxes
of small loops, surfaces associated with T� .
-Substitute in expression for Ham constr to get approximant
H � so that Ham constraint = H � ! 0.
- Replace classical holonomy-�ux in H � by quantum oprtrs,
get Ĥ � .
- De�ne Ham constr oprtr as `continuum limit' Ĥ � ! 0.

Remarkably, limit operator can be de�ned. Problem is it
depends on choice of hol-�ux approximants at �nite T� .
In�nitely Non-Unique! .
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Cut down on non-uniqueness by imposing further
requirements E.g. Require operator be de�ned on Hilbert
space (Jurek,Hanno,Assanioussi.... ).Require non-trivial
anomaly free repn of constraint algebra( Laddha,Tomlin,.. ).

In this talk: try to address Smolin's propagation requirement.

Smolin: Requires that the quantum dynamics be such that it
propagates perturbations from one part of quantum
geometry to another (this propagation thought of as
nonpert seed of graviton propagation in semiclassical LQG).

Argues that requirement not met in LQG due to ultralocality
of Ham constr action.
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Ultralocality of LQG Dynamics:
Ham constraint acts on vertices of a spin net. Action only
depends on vertex structure in in�nitesmal nbrhood of vertex.

Repeated actions of Ham constr builds a nest of structure
localised at each vertex. So vertices `far apart' in graph
never talk to each other thru Ham constr.

Smolin argued that it was unlikely that such quantization
could describe propagating degrees of freedom between
macroscopically seperated regions of quantum geometry.
Arguments intuitive since not enough known about physical
interpretation of states. But compelling.
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In this talk..

I shall examine this issue in LQG type `polymer' quantization
of 2d Parameterised Field Theory.

PFT is gen cov reformultn of free scalar �eld propagation on
�xed �at spacetime. All steps of LQG program including
ambiguity free defn of quantum dynamics can be
completed (Laddha,MV).

Ultralocality problem exists. Can see clearly that repeated
action of Ham constr does not give long range propagation.

But nevertheless physical states describe scalar �eld
propagation.

How can this be?
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Plan

Classical PFT

Quantum Kinematics

Unitary implementation of Finite Gauge transformations

Physical States via Grp Avging

Action of Quantum Hamiltonian Constraint

Quantum states and discrete spacetime

The ultralocality problem

Propagation
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Classical PFT

Free Scalar Field Action: S0[f ] = � 1
2

R
d2X� AB @A f@B f

Parametrize X A = ( T; X ) ! X A (x � ) = ( T(x; t ); X (x; t )) .
) S0[f ] = � 1

2

R
d2x

p
�� �� @� f@� f ,

� �� = � AB @� X A @� X B .

Vary this action w.r.to f and 2 new scalar �elds X A :
SP F T [f; X A ] = � 1

2

R
d2x

p
� (X )� �� (X )@� f@� f

�f : @� (
p

�� �� @� f ) = 0 � � AB @A @B f = 0
�X A : no new equations, ) X A are undetermined functions
of x; t , so 2 functions worth of Gauge !

x; t arbitrary � general covariance

So Hamiltonian theory has 2 constraints.

Remark: Free sclar �eld solns are f = f + (T + X ) + f � (T � X )
Use split into “left movers + right movers” in Hamiltonian
theory.
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Hamiltonian description

T(x); X (x) become canonical variables. Use light cone
variables T(x) � X (x) := X � (x).

Phase space: (f; � f ); (X + ; � + ); (X � ; � � )

Constraints: H � (x) = [ � � (x)X � 0
(x) � 1

4 (� f � f 0)2 ]

Gauge �x: X � = t � x “deparameterize”.
get back standard �at spacetime free scalar �eld action.

De�ne: Y � = � f � f 0

f Y + ; Y � g = 0 , f Y � (x); Y � (y)g= derivative of delta function

f H+ ; H � g = 0 . P.B. algebra between smeared H+ 's
isomorphic to Lie algebra of diffeomorphisms of Cauchy
slice. Same for H � algebra.

H � generate spatial diffeomorphisms of � �elds.
Finite Evoltn � 2 independent diffeomorphisms (� + ; � � )!
� + moves only `+' �elds, � � moves only `-' �elds.

Propagation in Polymer PFT – p. 8



Spacetime interpretation of canonical
data:
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Note:

Not much known re:Polymer repn on non-compact space.
Hence set � = circle so that Spacetime Topology = S1 � R.

There are complications coming from using “single angular
coordinate chart” x on � and single spatial angular inertial
coordinate X on the �at spacetime. Identi�cations of x and
X “mod 2� ” are needed. These can be taken care of. Will
mention subtelities when necessary.
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Quantum Kinematics: Embedding Sector

Focus on `+' sector. Canonical coordinates:
(� + (x); X + (x)) � (A; E )LQG

Holonomies of � + :
Graph � set of edges which cover the circle.
Spins � an integer label ke for each edge e.

Holonomies � ei
P

e
ke

R
e

� +

Electric Field � X + (x)

Poisson Brkts: f X + (x); ei
P

e
ke

R
e

� + g = ik eei
P

e
ke

R
e

� +

( for x inside e)
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Charge Networks: j
; ~k+ i

X̂ + (x)j
; ~k+ i = �hk+
e j
; ~k+ i , x inside e.

d
ei

P
e

k 0+
e

R
e

� + j
; ~k+ i = j
; ~k+ + ~k0+ i
Inner Product: h
 0;~k0+ j
; ~k+ i = � 
 0;
 � ~k + ;~k 0+

Range of ke: �hke 2 Za, a is a Barbero- Immirzi parameter with
dimensions of length.
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Quantum Kinematics: Matter Sector and
H kin

Can de�ne holonomies and repn on matter charge
networks.

Charge network: j
; ~l i .

H kin obtained as product of + ; � embedding and matter
charge nets.
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Physical Hilbert Space by Grp Avging

Can construct physical states via grp avging w.r.to gge
transformations just as we do for spatial diffeos in LQG.

Grp Avg of a chrge net j
 + ;~k+ ;~l+ i 
 j 
 � ;~k� ;~l � i is the
distribution,

P
h
 +

� + ;~k+
� + ;~l+

� + jh
 �
� � ;~k�

� � ;~l �
� � j, where the sum is

over all distinct gge related chrge nets.

There is a nice geometrical interpretation for a chrge net
and for physical states obtained by grp avging.
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Geometrical picture:
First, go to �ne enough graph so as to write
j
 + ;~k+ ;~l+ i 
 j 
 � ;~k� ;~l � i � j 
; ~k+ ;~k� ;~l+ ;~l � i
so that each edge of 
 has pair of embedding chrge labels
k+ ; k� and pair of matter labels l+ ; l � .

k� are eigen values of X̂ � . So (k+ ; k� ) de�nes (X + ; X � )
coordinate of point in �at sptime! Associate matter chrge
pair (l+ ; l � ) with this point.
Doing this for all edges of chargenet, we get a discrete
Cauchy slice with quantum matter.

Ggge transf � � move `+', `-' edges independently. Gge
transformed chrgnet has different pairs of `+-' embeddning
and matter chrges. De�nes new slice with new matter data.
Thus quantum matter data propagates from 1 slice to
another. Turns out that a (grp avged) physical state then
de�nes discrete sptime with matter propagating on it. So
quantization by grp avging encodes propagation .
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Classical Diffeo, Ham constraints
Recall: H � (x) = [ � � (x)X � 0

(x) � 1
4 (� f � f 0)2 ]

Cdif f := H+ + H � = � + (x)X + 0
(x) + � � (x)X � 0

(x) + � f f 0.
Generates spatial diffeo i.e. “evoltn along slice”.
In terms of � � : Sptl diffeo = transf in which � + = � � .

Cham = H+ � H � (density weight 2).
Generates motion along timelike normal to slice (normal
de�ned wrto �at spacetime metric).
Finite transf corresponds to choice � + = (� � ) � 1.
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Quantum Constraints a la LQG:
Since for diffeos, � + = � � � �
Ûdif f (�) = Û+ (� + = �) Û� (� � = �) . Can solve by grp avging.
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Theimann type Ham Constr:
Can construct �nite triangulation constraint which acts as
in�nitesmal version of ` � + = (� � ) � 1 '.
Let � �;v be diffeo which is identity outside small nbrhood of v
and which `pulls' point v to right.

Ĉ( � )
ham pulls `+' edges at v to right by � �;v ,

pulls `-' edges at v to left by � � 1
�;v .

Ĉ( � )
ham j	 i �

P
v N (v)

�
Û+ ( � �;v ) Û � ( � � 1

�;v ) � 1
�

� j	 i

Û+ (� �;v )Û� (� � 1
�;v ) � Ûham;�;v .

Equally possible to make choices in which oprtr pulls `+' left ,
`-' right i.e. in which we replace Ûham;�;v by its adjoint.

We impose constraint and its kinematic adjoint in quantum
theory.
NOTE:We are interested in action of Ûham;� for suff small � .
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Action of Ûham;�;v
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Summary:

Ĉham;� acts nontrivially only in in�nitesmal vicinity of vertices
dragging `+' one way and `-' the other. Including matter
labels, charge net describes data on a lattice version of
Cauchy slice. Repeated action of Ĉham;� can only generate
single time step to past and future and then evolution gets
stuck. Only immediate null related lattice point is generat ed
with matter data. No large scale propagation

This happens due to ultralocal action of Ûham;� ....
Propagation in Polymer PFT – p. 23



Ultralocality problem
Recall: Finite gge transf U� (� � ) can drag `+', `-' edges past
each other and get beyond single time step as follows:

Problem: Above, necessary intermediate step is
disappearance of (k+

1 ; k�
1 ) edge i.e. k�

1 is dragged past k+
1 .
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Due to ultralocal action of Ûham;� we always have some (k+
1 ; k�

1 )
edge, cant drag k�

1 past k+
1 .
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Propagation: Change of Perspective

Rather than asking if repeated actions of Ûham;� (or Ĉham;� )
give propagation, we should ask if joint kernel of diffeo
constraint and Ĉham describes propagation.

Element 	 of kernel is (distribtnl) sum of chargenet (bra)
states. 	 describes propagation if following statement holds:
If the bra corresponding to some discrete Cauchy slice with
matter data is in sum then the bra corresponding to any �nite
evolution of this slice and data must also be in the sum.

By �nite evolution we mean action of any �nite gge transf � �

so this statement is equiv to showing elements of kernel same
as physical states obtained by grp avging wrto �nite transf
generated by H � .

The key to showing statement holds for joint kernel of diffeo
constr and Ham constraint Ĉham is to show that if bra with
(k+

1 ; k�
1 ) edge is in 	 so is bra without this edge (previous
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Proof:

We use language “ jci is in 	 ” to mean that hcj is a summand
in the sum representing distribution 	 .

Let 	 be in kernel of diffeo, Ham constr. Then it follows that jci
is in 	 if and only if
- all sptl diffeo images of jci are in 	 .
- Ûham;� jci are in 	 for suff small �
(so that 	( Ûham;� � 1)jci ) = 0 in � ! 0 limit)
- Similarly Ûy

ham;� jci are in 	 for suff small � .

We shall show that the desired chargenets (with and without
the (k+

1 ; k�
1 ) edge) are in 	 by relating them thru the action

of Ûham;� ; Ûy
ham;� .
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Proof (Contd):

Propagation in Polymer PFT – p. 28



Conclusions
Ultralocal action of Ham constraint does not preclude
propagation.

Propagation is to be seen as a pattern written on the entire
set of kinematic bras which comprise a given physical state
rather than as the repeated action of the Ham constraint on
a �xed kinematic ket.

Seen in this way propagation is a result of:
- Particular “ Û � 1” structure of the (�nite triangulation) Ham
constraint.
- The imposition of the kinematic adjoint “ Ûy � 1” also as a
Ham constraint.
General structural lessons are robust and should be used in
LQG to �nd phys correct Ham constraint.Seem to �nd
v.interesting preliminry results for “ U(1)3” model.
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