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Papers:

M Talk is based on arXiv:1011.2463 (AL, MV).
Formalismn developed in CQG.27:175010,2010,
PRD78:044008,2008 .

B Thiemann: arXiv:1010.2426
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LG Dynamics:Status

S T

B Restrict aftention to canonical theory.

B Construction of )., involves infinitely many ad- hoc choices
so defn of quantum dynamics far from unigue.
- Cham () 1s local. Local field opertrs not defineable. Basic
opertrs nonlocal.
- Fix friangulation T'. Consfruct Cham . S.1.
limp_, o Cham,T = Cham.- Reploce Cham,T by éham,T-
- Problem: limy_. oo Cham.r depends on finite T' choices due to
discont polymer repn.

B Consistency of theory reqires anomaly free repn of constraint

—

algebra: {Crom|N|, Cham | M|} = CdiffA[ﬁ(N, M)]
Use this to fix ambiguities in defn of Cj,,,,,?

B Problem: Constr algebra trivialises for all choices of

lirnT—>oo Cham,T
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Can PFT help?

S T

B PFT does help:
- Detailed structure uncannily similar to LQG
- Know the right answers!

More in Detail:

W Constraints H,, H_ form Lie algebra. Can solve them in
polymer repn unambiguously by Grp Averaging.

mC,, = H+\;6H— , Cairs = H. + H_ form Dirac algebra

Isomorphic To that of gravity.
m Do as in LQG: first diff avg then construct Cl,um.

B Analysis yields suggestions for LQG.
- one should tailor repn of regulating holonomies to that of
states being acted upon
-look beyond “finite” smeared density weight one operators
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ﬁ Plan

B Review of Classical and Quantum (polymer) PFT
m Construction of Cy,,, following Thiemann in LQG

B Quantum Constraint Algebra
- Trivialises as for LQG w.r.to Thiemann URS tfopology as well as
on LM habitat
- Trivialization suggests use of higher density Ham constr.
- Nonftrivial repn of higher density consfraint algebra on new
habitat (Time permiffing!)

M Discussion
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4 Classical PFT
o]

B Free Scalar Field Action: So[f] = —1 [ d*Xn*P0afOBf

r Porome’rnze XA =(T,X) = XAx%) = (T(x,t), X(x,1)).
= So[f] = —2% [ d*x\/m*P 00 fOsf.
Napg = nAB(’)’ XA((?@XB.
B Vary this action w.r.to f and 2 new scalar fields X 4:
Sprr(f, X4 = —5 [ d?a\/n(X)n*?(X)0a fOs f
of: @a(\fﬁ“%ﬁf) =0=n"P040pf =0
§X4: no new equations, = X4 are undetermined functions
of z, ¢, so 2 functions worth of Gauge!

W, ¢ arbifrary = general covariance
B So Hamiltonian theory has 2 constraints.

B Remark:Free sclar field solnsare f = f.(T+ X))+ f_ (T — X)
Use split into “left movers + right movers” in Hamiltonian
theory.
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Hamilfonian descriptfion

BT (x), X(x) become canonical variables. Use light cone
variables T'(z) £ X (z) := X*(x).

B Phase space: (f,m¢), (X, I14), (X —,11-)
B Constraints:Hy (v) = [T4(z)X* (2) £ L(np £ f)?]

B Define: Y+ =7+ f/
(YT, Y~} =0, {Y*(x),Y*(y)}= derivative of delta function
Wm{H, H_}=0.PB. algebrabetween smeared H,'s
isomorphic to Lie algebra of diffeomorphisms of Cauchy

slice. Same for H_ algebra. H, generate evolution of +
filelds. "Evolution = 2 independent diffeomorphisms”!

B Gauge fix: X+ =t + 2 “deparameterize”.
get back standard flat spacetime free scalar field action.
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!

Caution:
B We set Spacetime Topology = St x R

B Not much known re;:Polymer repn when space is non-
compact. Hence choose space= circle.

B There are complications coming from using “single angular
coordinafte chart” x on embedded circle. Also from using
single spatial angular inerfial coordinate X on the flat
spacetime. Identifications of x and X "mod 27" are needed.
These can be taken care of. Will mention subtelities as and
when dictated by pedagogy.

LG Dynamics: Insights from PFT —p. 10



Quantum Kinematics: Embedding Sector

B Holonomies:
"Graph”: set of edges which cover the circle.
"Spins”: a label k. for each edge e.

“Holonomies”:¢’ 2= ¥« J. T+
B "Electric Field”: X (x)

B Poisson Brkfs: { X+ (z), e’ 2e Fe J 0y — i, o' 2o ke T
( for z inside e)
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B Charge Networks: |v, k)

7 4
k"e' k1 % (g1

X+ (@), k) = hkt|y, k), zinside e.

SN ot S I
SODNAN IS B) = [r.E+F)
Inner Product: (v, k'|v, k) = 6 405 7,
B Range of k.: hk. € Za, a is A Barbero- Immirzi parameter with

dimensions of length.

B Similarly for — sector.
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Quantum Kinematics: Matter Sector and
Hkin

B Can define holonomies and repn on matter charge
networks.

—

B Charge network: |v,1).

W 7,,;, obtained as product of +, — embedding and matter
charge nets.
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Physical Hilbert Space by Group
Averaging

B Can consfruct physical states via grp avging w.r.to gge

tfransformations just as we do for spatial diffeos in LQG.

B Grp Avg of a chrge net [y, kt, M) h k—,17)isthe
distribution, >=(v., k;;,l;;] ® (V,- ’l‘% 1,—|. where the sum is
over all distinct gge related chrge nets.

B There is a nice geometrical interpretation for grp avge of a
chrge net.
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POLYMER STATES AND DisceeTe SPT|ME .
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4 PFT dynamics a la LQG
il

H \We follow Thiemann’s seminal work:
- Construct solufions o Cy; s := H4 + H_ by group averaging
w.r.to spatial diffeos.
- Cham 1= f);—X define Ch.m af finite friangulation.
- Find its confinuum limit on diffeomorphism invariant states

- Evaluate its commutator and check for anomalies.

m Diffeo Averaging:
- Cdz’ff =H, +H_.
- Finite diffeo ¢ corresponds to the gauge transformations
o = ¢t = o . (= Physical states are diffeo invariant!)
- Diff avg of a charge net is The sum over all its distinct diffeo
images: Y- (v;, k* lﬂ R (g k ¢ l¢ |
- Diff related sTcJTes define same discrete slice, data.
Diff avg = single discrete slice.
(= Physical states NOT normalizable in Hg; ¢ ¢!
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4 Hamiltonian constraint

Question:Can we construct Ch,.m S.1. it kills physical states we
have just consfructed?

B Define CA’ham,T((;) sTs™).(sT =7, kE %),
Define state dep T s.t. every vertex of state is vertex of T'. Let
coordinate length of every edge (i.e. 1 cell) of T be §.

] Cham,T — (H—I- T H_)‘T\/|Xj’X—’|T

] \/lXj/X_l| from PB. of holonomies with spatial volume

function V/(R) = [ dz+/| X+ X~'|. Can construct V(R) and
replace PB by |, ].

B The resulting operator acts nontrivially only at vertices of the
: 1 +o—\ +a—
state: \/|X+’(U)X_/(’U)|T|S s7) =0A(v)[sTsT)

Overall factor of § similar to LQG undensitized triad operator.

B Care needed to ensure that operator doesnft kill zero volume
states else kernel of éham foo Iorge! LQG Dynamics: Insights from PFT - p. 18



H., —H |p

WH =—H —H_ =1I,.X"-TII_X"'4+ matter.
H generates gge transf with ¢ = gb__l. Unitary repn of finite
gge fransf not weakly cont. How can we define H ?

B Key |dea: Try to write Hy proportional to
(finite gge transf. —1). lllustrate with IT, X+’ term.

WX (z)|p|sTs™) = Bebl|gtgm),

-g—! h:,_ )kq} h}' { s,h"
* X
AXk: k|-ll|=—o Axk: kl"kl
“ non - Hrivial
vey tex
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IL |7

/7
_“ Edge holonomy—1
I |r= . B

B \What does a small, finite, gauge tranformation do?

Ry h’r
- G‘-—A v \}/
—_—
s
ka - ka
g \;+8
k!=kz‘l'(k\—'k1_)
o
LRy ~ka) [TTF _y vd . L Ra
(E. s Ry R ) : ( v s )
. R —i(Ayk) fA I
B \We define: 1L |r(v)[s*s™) = “——x 75— Is™s7)
. . —1Apk H+_ B U_|_ y 1 B
= [ [r X+ |rlsts™) = S——m—sts™) = 252 s s ™)

LQG Dynamics: Insights from PFT - p. 20



Cham

T

Recall that H =11 X' —II_X '+ matter,
Cham = H(\/|[XTX~/])~!

o
us ®UL

. 1
B Get: Hyp(v)|sts™) = 22 —= sts™)

e Wl = 0Av) [ dr > Yacrd

B Chrom o) IN)lsTs™) = 52, NWA@)(U, , @ Uy, 1ls*s™)
Finite operator as in LQG. Kills correct solutions at all 7°(6)!

B Continuum limit ala Thiemann: Let ¥ be spatially diffeo inv
state. Can show
lims—0 U(Cham.7(s)[N]|sTs™)) exists exactly as in LQG.
(Technically: Cont limit exists on H;;,, in URS topology.)

B Can also show that commutator between 2 Ham constraint
vanishes in this continuum limit.

B For RHS, need to construct spatial diffeo operator.
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Cliry

mCy =11, XT+II_ X'+ matter. Similar fechnigues yield
Ur U, -1 RIS |

Caigslr(v)sts™) = eimmi—|sts™) = uf—|sts)

. N U;“fg 1,
W Caifp[N]|r(v)|sTs™) = >0, N¥(v) —=55—I[s"s™)
NOT A FINITE OPERATOR.

m RHS has shift 3% = ¢**(NM' — MN'), ¢** = (| X+ X~/|)"!
05" (v) = (b (0)1)? — B*(A(0))?

B Cifr[Bllr(v)|sts™) =i6 3, X(NM' = MN')(0)(Ug ) —1)|s*s™)
Thiemnann Cont Limit of this operator vanishes “doubly”!
-due 1o overal factor of §
-because diffeo inv states killed by U di{;f 1

exactly same structure in LQG!.
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4 LM Habitat
T

B C),....[N] is not diff inv due to lapse. C,qm[N] does not map
diff inv states to diff inv states hence need to interpret cont
limit thru URST.

B Note that but for N (v) factors, Cham[N] “almost” maps diff inv
states to diff inv states. L-M construct a space of "almost” diff
inv distributions on which cont limit of C*ham,T((;) can be taken
directly so that the space is mapped into itself by Chum.

B[ M Habitat "V
-Let non trivial vertices of [s*,s7) be vy, ..., vy,.
-Let f: (SY)™ — C. Let diffeo class of state be [sT,s7].

-Let \ij,[s+,s_] = Z<S;7 qu|f(¢’l)1, = ¢Un)
Ve s finite span of distriotns of form W4 o+ .

B f are cadlled vertex smooth’ functions. (Nofe:lf f = const, get
diffeo inv states.)
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Cham|N] and its commutator on Vy

B Can show that V|s™'s™)

lims_,0 \ij,[sJF,s—](éham,T((S) [N]|S+,S_l>> Z le J[stis, (‘S+/S_/>)'
l.e. continuum limit of constraint maps Vi, mTo |Tself.

B Can show that commutator of 2 smeared ham constraints
vanishes.

B Can show RHS also vansishes i.e.
lims—o ¥ st 51 (Caisr.res)(B)sT's™)) =0 . Again, “doubly”:
-due to overall factor of §
- due to “U%/ — 1", one obtains difference of evaluations of

qu
f at points which are seperated by 9.

B Could one get nontrivial action of RHS with extra factor of
5727
-one 6! to cancel overall §
- one 5! to convert difference of functions into derivative.

B Answer is YES! To see what happens, consider Cy; 7rIN].
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4 édiff[ﬁ] on Vi
* frdiff_q

B Recall Cyifr.rs [N =3, No—2ud
limgs_,q Cd,,;ff’T((g) [N] \Iff7[s+’s—] = \Ifg7[s+’s—] with
g = “Lyf’ =3, N"(v;) 2 Higs=ted,

B This acftion yields a faithful repn on V5, of PB algelbra of
diffeo constraints.

Lesson for LQG: Should be open to consideration of
operators which do not have finite action on Hg;.,.

B How can we get the 2 extra factors of 6! in commutator of
2 Ham constraints in PFT?
Answer: By using density 2 Ham constraint H = /qCham
instead of density 1 Cum.-
{H(N),H(M)} = Cyaizs(LgM), N,M = N, M.

B Due to extra 6=, cont lim of Hy(;y on Vi blows up. Its
commuftator is also ill defined. = "Anomaly” on LM habitat.
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H,Cy;r on New Habitat v,

(Slick, quick argument for anomaly free density 2 constr algebra
on V_|__.)

B Recall H. generate action of ¢* on phase space. ¢+ are
basically diffeos.

H Define V, as LM type habitat for "+ sector
sl (@t ., o) (v are vertices of [sT)).
H.[N*] acts as “Lie derivative” wrto N+,

B GCetrepn of {H.[NT|,H [M™T]} on V.. Similarly for *-’

B DefineV, =V, ®V_. Since +,- sectors commute and
H=H, -H_,Cys = Hy + H_, get anomaly free repn of
their constr algelbora as well.
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4 Discussion:PFT ideas to consider for LQG
o]

B Consider pbility of allowing repns of holonomies at finite T' o
e state dependent.

B The lack of weak continuity of operators on Hy;,, are not
necessarily a hindrance to the defn of their generators on an
appropriate space of distributions thru mechanisms of finite
T and continuum limit of dual action.

B The choice of density one constraints hides the underlying
non- triviality of the constraint algebra; choice of more
“singular” operators of higher density weight may be
necessary to probe the constraint algebra.

B Key issue: Can we handle algebra of higher density constr in
LQG"?
Call the commutator of 2 Ham constraints the "LHS'.
Call the oprir correspondent of PB brkt between them, the
"RHS’.
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& RS

* B In PFT, for density 1 case, RHS vanishes in Thiemann URST as
well as on LM habitat. In LQG density one results are same as
for PFT (T-L-M-G-P). In PFT, density 2 constraints yield diffeo

smeared by c- number vector field; not kinematically finite
but well defined on LM,

B Question: Can we define the diffeo constraint smeared with
c- number shift in LQG? Can check opertr at finite T is NOT
finite (exactly by one power of §—! as in PFT). Is it definable on
LM habitat? More precisely, does there exist a defn of £, | ¢
s.t. in continuum limit, Cy; ¢ +[N] is defined on LM habitat and
its commutator algbera isomorphic o Lie algebra of v.f.s?
Looks like answer may be YES! (Work in progress, AL-MV).
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i. LHs

B Question: For RHS to have net factor of 6= as in (Z*d,éff,T((;) [N ]
how should we rescale Ham constfraint in LQG?
Answer: Can check that we need to rescale it by g5 ~ 61 .

B But:Rescaled constraints not well defined on LM habitat.
How do we look for new habitat? Is there analog of Zero
Volume habitat of PFT?

B GLMP rescale ham constraints by hand and show that cant
get diffeo from commutator unless Haom constr moves
vertices around. AL-MV diffeo consfraint work should feed
into this.
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