Covariant loop quantum gravity as a topological field theory with defects

Wolfgang Wieland
Perimeter Institute for Theoretical Physics, Waterloo (Ontario)

ILQGS

5 April 2016
There are hints that LQG can be understood as a topological field theory with defects. Which kind of defects: Curvature defects? Area defects? Defects that carry torsion as well?

Goal of this talk: Study a class of models for discretised gravity in terms of connection variables, where all gravitational degrees of freedom are carried by a finite number of topological defects.
Hints from Loop Quantum Gravity

LQG à la Aharonov Bohm [Bianchi], [Freidel, Geiller, Ziprick], [ww]
Three-manifold $\Sigma^*_\Gamma = \Sigma - \Gamma^*_1$ with defects on one-skeleton of cellular decomposition of Σ.

$$\int_{\mathcal{A}_\Sigma} d\mu_{\text{AL}}(A) \overline{\Psi_\Gamma[A]} \Phi_\Gamma[A] = \int_{\mathcal{A}_\Sigma^*} \prod_{\vec{x} \in \Sigma^*_\Gamma} \left[dA(\vec{x}) \right] \delta(F[A]) \cdot \delta(\Psi[A]) \Delta_{\text{FP}}^\Psi[A] \overline{\Psi_\Gamma[A]} \Phi_\Gamma[A].$$

Area defects in LQG
Electric field around a link γ dual to a face f

$$\tilde{E}^a_i(\vec{x}) = \beta \ell_P^2 \sqrt{j_f(j_f + 1)n_f^i} \int_{\gamma} dt \tilde{\delta}(\vec{x}, \tilde{X}(t)) \frac{\partial X^a(t)}{\partial t}.$$

DG BF distribution [Geiller, Dittrich]
Distributional states as excitations over $F = 0$.

Isolated Horizons
Spinnetwork functions create punctures on an isolated horizon, which is a null surface of topology $S^2 \times \mathbb{R}$. The spin network intertwiners are blown up and turn into punctured two-spheres.

LQG as a TFT with defects — which defects?

Roughly speaking, two different strategies in the literature

(i) covariant theory with spacetime defects

Start from cellular (simplicial) decomposition Δ of spacetime M (discretization), remove the two-dimensional faces (triangles) and define $M^* := M - \Delta_2$. The curvature vanishes in M^*, classical configuration space: moduli space $\text{Hom}(\pi_1(M^*: G))/G$ of flat connections.

Idea: Identify the non-contractible cycles in M^* with worldlines of LQG area defects. Write down the simplest action and study the coupled system: area defects (auxiliary particles) coupled to a topological field theory.

(ii) Canonical theory with defects on spatial slices [Dittrich’s program]

Similar idea, but one dimension lower. The Dittrich–Geiller BF distribution on a spatial slice Σ is seen as the unique ground state of a certain Hamiltonian. Excitations over this ground state are topological defects and carry curvature and torsion.

Challenge: Find the correct gapped Hamiltonian, which should have a vastly degenerate vacuum containing all physical states of quantum gravity.
Main message: BF action with simplicity constraints can be written as a wordline integral for area defects. These defects carry charges for curvature and torsion that can be naturally coupled to a topological field theory.

Table of contents

1. Worldline action for LQG area defects
2. Coupling to a three-dimensional field theory on the horizon
3. Integrability conditions and the value of the cosmological constant
4. Outlook and conclusion
Worldline action for LQG area defects
The BF action is topological, and determines the symplectic structure of the theory:

\[
S_{BF}[\Sigma, A] = \int_M \frac{1}{16\pi G} \left(*\Sigma_{\alpha\beta} - \frac{1}{\beta} \Sigma_{\alpha\beta} \right) \wedge F^{\alpha\beta}[A].
\] (1)

General relativity follows from the simplicity constraints added to the action:

\[
\Sigma^{\alpha\beta} \wedge \Sigma^{\mu\nu} \propto \epsilon^{\alpha\beta\mu\nu}.
\] (2)

With the solutions:

\[
\Sigma^{\alpha\beta} = \begin{cases}
\pm e_\alpha \wedge e_\beta, \\
\pm^* (e_\alpha \wedge e_\beta).
\end{cases}
\] (3)

Notation:

- \(\alpha, \beta, \gamma \ldots\) are internal Lorentz indices.
- \(\Sigma^{\alpha\beta}\) is an \(\mathfrak{so}(1, 3)\)-valued two-form.
- \(A^\alpha_\beta\) is an \(SO(1, 3)\) connection, with \(F^{\alpha\beta} = dA^\alpha_\beta + A^\alpha_\mu \wedge A^\mu_\beta\) denoting its curvature.
- \(e^\alpha\) is the tetrad, diagonalizing the four-dimensional metric \(g = \eta_{\alpha\beta} e^\alpha \otimes e^\beta\).
Simplicial discretization
Spinorial action for discretised BF theory

Discretise $S_{BF}[\Pi, A] = \int_M \Pi_{\alpha\beta} \wedge F^{\alpha\beta}$ as a sum over faces f.

Worldline action for discretised BF

$$S_{BF \text{ discrete}}[Z, A, a, b] = \sum_{f:\text{faces}} \left[\oint_{\partial f} \pi_A (D - a) \omega^A + \int_f b \, da \right] + \text{cc.}$$

(4)

Geometric interpretation:

- the spinors $Z = (\bar{\pi}_A, \omega^A)$ diagonalise the simplicial fluxes.
- $D \pi^A = d\pi^A + A^A_B \pi^B$ is the selfdual Ashtekar conection.
- a is a $\mathbb{C} - 0$ connection from the $(\bar{\pi}_A, \omega^A) \to (e^{-\bar{z}} \bar{\pi}_A, e^{z} \omega^A)$ gauge symmetry.
- the Lagrange multiplier b imposes that a is flat in f, $da = 0$

Geometric interpretation of the spinors

- **$SO(1, 3)$ BF-action**

 \[S_{BF}[\Pi, A] = \int_M \Pi_{\alpha\beta} \wedge F^{\alpha\beta} \quad (5) \]

- **$SO(1, 3)$ fluxes over triangles \triangle_f dual to the faces**

 \[[\Pi_f]^{\alpha\beta} = \int_{\triangle_f} [h_f [A]]^{\alpha}_\mu [h_f [A]]^{\beta}_\nu \Pi^{\mu\nu} \quad (6) \]

- **Spinors are eigenvectors of the selfdual component Π_{fAB}^A of $\Pi_f^{\alpha\beta}$**.

 \[\Pi^{AB} := \frac{1}{4} \sigma^A \tilde{C}[\alpha \tilde{\sigma}^{CB}_\beta] \Pi^{\alpha\beta} = -\frac{1}{2} \omega(A, \pi B) \quad (7) \]

- **$\mathbb{C} - \{0\}$ gauge symmetry (requires gauging $D \rightarrow (D - a)$ of covariant derivative.**

 \[(\pi^A, \omega^A) \rightarrow (e^{-z} \pi^A, e^{-z} \omega^A) \quad (8) \]
Instead of discretizing the quadratic simplicity constraints

\[\Sigma_{\alpha\beta} \wedge \Sigma_{\mu\nu} \propto \epsilon_{\alpha\beta\mu\nu}, \]

(9)

we will use the linear simplicity constraints:

For a tetrahedron \(T_e \) (dual to an edge \(e \)) there exist an internal future-oriented four-vector \(n^\alpha_e \) such that the fluxes through the four bounding triangles \(\triangle_f \) (dual to a face \(f \): \(e \subset \partial f \)) annihilate \(n^\alpha_e \):

\[\int_{\triangle_f} \Sigma_{\alpha\beta} n^\beta_e = 0. \]

(10)

The spinorial parametrization turns the simplicity constraints into the following complex conditions:

\[V_f = \frac{i}{\beta + i} \pi^f_A \omega^A_f + \text{cc.} = 0, \]

(11a)

\[W_{ef} = n^A_{e \bar{A}} \pi^f_A \bar{\omega}^f_{\bar{A}} = 0. \]

(11b)
What is the geometric interpretation of $n^{A\bar{A}}$?

We interpret the normal $n^{A\bar{A}} = n^\alpha$ as the pull back of a one-form e^α_a to the boundary of f.

$$n^{A\bar{A}} = e^{A\bar{A}}_a t^a.$$

We add the constraints and arrive at the following action:

$$S_f [Z|\zeta, \varphi|A, e, a, b] = \oint_{\partial f} \left[\pi_A (D - a) \omega^A - \zeta e_{A\bar{A}} \pi^A \omega^{\bar{A}} + \text{cc.} \right] +$$

$$+ \int_f \left[b \, da + \bar{b} \, d\bar{a} - \varphi \left(\frac{i}{\beta + i b} + \text{cc.} \right) \right].$$
What is the geometric interpretation of $n^{A\bar{A}}$?

We interpret the normal $n^{A\bar{A}} = n^\alpha$ as the pull back of a tetrad e^α_a to the boundary of f.

$$n^{A\bar{A}} = e^{A\bar{A}}_a t^a.$$

We add the constraints and arrive at the following action:

$$S_f [Z|\zeta, \varphi|A, e, a, b] = \oint_{\partial f} \left[\pi_A (D - a) \omega^A - \zeta e_{A\bar{A}} \pi^A \omega^{\bar{A}} + \text{cc.} \right] +$$

$$+ \int_f \left[b \, da + \bar{b} \, d\bar{a} - \varphi \left(\frac{i}{\beta + i} b + \text{cc.} \right) \right].$$

discretised BF
What is the geometric interpretation of $n^{A\bar{A}}$?

We interpret the normal $n^{A\bar{A}} = n^\alpha$ as the pull back of a tetrad e^{α}_a to the boundary of f.

$$n^{A\bar{A}} = e^{A\bar{A}}_a t^a.$$

We add the constraints and arrive at the following action:

$$S_f [Z|\zeta, \varphi|A, e, a, b] = \oint_{\partial f} \left[\pi_A (D - a) \omega^A - \zeta e^{A\bar{A}} \pi^A \omega^{\bar{A}} + \text{cc.} \right] +$$

$$+ \int_f \left[b \, da + \bar{b} \, d\bar{a} - \varphi \left(\frac{i}{\beta + i} b + \text{cc.} \right) \right].$$

simplicity constraints
What is the geometric interpretation of $n^{A\bar{A}}$?

We interpret the normal $n^{A\bar{A}} = n^\alpha$ as the pull back of a tetrad e^α_a to the boundary of f.

$$n^{A\bar{A}} = e^{A\bar{A}}_a t^a.$$

We add the constraints and arrive at the following action:

$$S_f [Z|\zeta, \varphi|A, e, a, b] = \oint_{\partial f} \left[\pi_A (D - a) \omega^A - \zeta e^{A\bar{A}} \pi^A \omega^{\bar{A}} + cc. \right] +$$

$$\quad + \int_f \left[b da + \bar{b} d\bar{a} - \varphi \left(\frac{i}{\beta + i} b + cc. \right) \right].$$

Lagrange multipliers
Coupling to a three-dimensional field theory on the horizon
The action depends on background fields.

\[S_f[Z|\zeta, \varphi|A, e, a, b] = \oint_{\partial f} \left[\pi_A (D - a) \omega^A - \zeta e_{A\bar{A}} \pi^A \omega^{\bar{A}} + cc \right] + \int_f \left[b \, da + \bar{b} \, d\bar{a} - \varphi \left(\frac{i}{\beta + i} b + cc \right) \right]. \]

It seems natural to turn the one-forms $A^A_{\bar{B}a}$ and $e^{A\bar{A}}_a$ into dynamical fields as well. We propose an additional field theory for $A^A_{\bar{B}a}$ and $e^{A\bar{A}}_a$.
Smearing out the discretisation and replace them by a three-manifold \mathcal{M}.

Similar topological structure appears in the isolated horizon framework: Punctured two-spheres connected by spin network links

Advantage: Removal of point-like interactions — spin foam vertices.
Propose the following action for a topological field theory on \mathcal{M}

$$S_{\mathcal{M}}[A, e] = \frac{\alpha}{2} \int_{\mathcal{M}} \left[A_{\beta}^\alpha \wedge dA^\alpha_\beta + \frac{2}{3} A^\alpha_\mu \wedge A^\mu_\nu \wedge A^\nu_\alpha \right] - \lambda \int_{\mathcal{M}} e_\alpha \wedge De^\alpha.$$

Equations of motion

\begin{align*}
\text{vanishing of torsion:} & \quad De^\alpha = 0 \quad (12a) \\
\text{local de Sitter curvature:} & \quad F_{\alpha}^{\alpha} - \frac{\lambda}{\alpha} e_\alpha \wedge e_\beta = 0 \quad (12b)
\end{align*}

Comments:

- “cosmological constant” $\Lambda = 3\lambda/\alpha$ on \mathcal{M}.
- $S_{\mathcal{M}}$ is an $SO(1, 4)$ resp. $SO(2, 3)$ Chern–Simons action depending on the sign $\Lambda > 0$ resp. $\Lambda < 0$ of the cosmological constant.
- Local $SO(p, q)$ gauge symmetries are on-shell equivalent to diffeomorphisms \times Lorentz transformations.
- The limit $\alpha, \zeta, \varphi, \beta \to 0$ yields a recent model of Perez and Freidel.

*L Freidel and A Perez, Quantum gravity at the corner (2015), arXiv:1507.02573.
*ww, Complex Ashtekar variables, the Kodama state and spinfoam gravity (2011), arXiv:1105.2330.
Integrability conditions and the value of the cosmological constant
The N defects on S^2 are sources for curvature and torsion

\[T^{A\bar{A}} = De^{A\bar{A}} = + \frac{1}{2\lambda} \sum_{i=1}^{N} (\zeta_i \pi_i^A \bar{\omega}_i^\bar{A} - \text{cc.}) \tilde{\delta}(\vec{x}_i), \]

(13a)

\[F^{AB} - \frac{\Lambda}{6} e^{A\bar{C}} \wedge e^B_{\bar{C}} = - \frac{1}{2\alpha} \sum_{i=1}^{N} \pi_i^A \omega_i^B \tilde{\delta}(\vec{x}_i). \]

(13b)

The spinors have a non-trivial dynamics along their trajectory

\[\frac{D}{dt} \omega^A = \{t \mathcal{H}, \omega^A\}, \quad \frac{D}{dt} \pi^A = \{t \mathcal{H}, \pi^A\}. \]

(14)

with Hamiltonian

\[t \mathcal{H} = t^b a_b \pi_A \omega^A + t^b e^{A\bar{A}}_b \zeta \pi_A \bar{\omega}_{\bar{A}} + \text{cc.} \]

(15)

and Poisson brackets

\[\{\pi_A, \omega^B\} = \delta_A^B, \quad \{\bar{\pi}_{\bar{A}}, \bar{\omega}^\bar{B}\} = \delta_{\bar{A}}^\bar{B}. \]

(16)
Bianchi identities

\[DF^{\alpha\beta} = 0, \quad DT^\alpha = D^2 e^\alpha = F^{\alpha\beta} \wedge e^\beta. \]

(17)

Imply integrability conditions (secondary constraints)

Definite sign of \(\Lambda \)

\[\frac{d}{dt} \zeta = t_L (a - \bar{a}) \zeta, \quad (18a) \]

\[\Lambda = -6 \zeta \bar{\zeta} < 0. \quad (18b) \]
Deformed Gauss law

The N defects on S^2 are sources for curvature and torsion

\[T^{A\bar{A}} = De^{A\bar{A}} = \sum_{i=1}^{N} J_{i}^{A\bar{A}} \tilde{\delta}(\vec{x}_i), \]

\[F^{AB} - \frac{\Lambda}{6} e^{A\bar{C}} \wedge e^{B\bar{C}} = \sum_{i=1}^{N} J_{i}^{AB} \tilde{\delta}(\vec{x}_i). \]

$SO(1, 4)$ De Sitter connection

\[A^{IJ}_a = \frac{1}{2} A^{\mu\nu} a M^{IJ}_{\mu\nu} + e^\mu a P^{IJ}_\mu, \]

\[
\begin{align*}
[M_{\alpha\beta}, M_{\mu\nu}] &= +4\delta^\rho_{[\alpha} \delta^\rho'_{\beta]} \eta_{\rho'\sigma'} \delta^\sigma_{[\mu} \delta^\sigma_{\nu]} M_{\rho\sigma}, \\
[P_\mu, P_\nu] &= -\frac{\Lambda}{3} M_{\mu\nu}, \\
[M_{\mu\nu}, P_\alpha] &= -2\eta_{\alpha[\mu} P_{\nu]}. \end{align*}
\]
The N defects on S^2 are sources for curvature and torsion

\[T^{A\bar{A}} = De^{A\bar{A}} = \sum_{i=1}^{N} J^{A\bar{A}}_i \delta(\vec{x}_i), \]

\[F^{AB} - \frac{\Lambda}{6} e^{A\bar{C}} \wedge e^{B\bar{C}} = \sum_{i=1}^{N} J^{AB}_i \tilde{\delta}(\vec{x}_i). \]

Deformed Gauss law from nonabelian Stokes' theorem

\[1 = \text{Pexp}\left(-\frac{1}{2} \oint_{\partial \mathcal{D}} (A^{\alpha\beta} M_{\alpha\beta} + 2 e^\alpha P_\alpha) \right) = \]

\[= \text{P} \text{Pexp}\left(-\frac{1}{2} \int_{\mathcal{D}} (F^{\alpha\beta} M_{\alpha\beta} + 2 T^\alpha P_\alpha) \right) = \]

\[= \text{P} \prod_{i=1}^{N} \exp\left(-\frac{1}{2} J^{\alpha\beta}_i M_{\alpha\beta} - J^\alpha_i P_\alpha \right). \quad (21) \]
Conclusion
Spin-foam amplitudes = TFT with defects

four-dimensional amplitudes through three-dimensional path integral

\[\mathcal{L} = \sum_{\mathcal{M}} \int \mathcal{D}[A, e] e^{iS_{\mathcal{M}}[A, e]} \int \mathcal{D}[Z|\zeta, \varphi|a, b] \prod_{f:\text{faces}} e^{iS_f[Z|\zeta, \varphi|A, e, a, b]} \].

SO(1,4) Chern–Simons action
Spin-foam amplitudes = TFT with defects

four-dimensional amplitudes through three-dimensional path integral

\[\mathcal{L} = \sum_{\text{3-geometries}} \int \mathcal{D}[A, e] e^{iS_M[A, e]} \int \mathcal{D}[Z|\zeta, \varphi|a, b] \prod_{f:\text{faces}} e^{iS_f[Z|\zeta, \varphi|A, e, a, b]} \]

insertion of charges along worldlines \(\gamma_i = \partial f_i \)
The discretised BF action can be written as a worldline action for spinors propagating along the edges of the discretisation.

Gravity is a constrained topological theory (BF+simplicity) — we assume the same holds for the discretised theory and add the discretised simplicity constraints to the worldline model.

We proposed to blew up the one-dimensional edges and replaced them by an oriented three-manifold \mathcal{M}. This has a number of advantages: (i) removal of point-like interactions (spinfoam vertices), (ii) same topological structure as in isolated horizon framework, (iii) the spinors couple naturally to a three-dimensional field theory on \mathcal{M}. The simplest field theory that we can build out of the background fields e^α and A^α_β on \mathcal{M} is an $G = SO(p, q)$ Chern–Simons theory for the de Sitter group.

Integrability conditions fix the gauge group to $SO(2, 3)$ rather than $SO(1, 4)$. AdS/CFT?