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Basic motivation
          … what is a gravitational subsystem?



Coarse-graining and GR
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• In any realistic experiment, the environment is split into subsystems that 
evolve for sufficient time in controlled isolation. Such subsystems are 
characterised by a relatively small number of coarse grained observables. 

• One of the main conceptual difficulties in classical and quantum GR is that 
there is no obvious such coarse graining on the ADM phase space. Some 
manifestations of this difficulty: 

- Averaging problem in cosmology [Buchert, Carfora, Wald, Green, Wiltshire,…]. 

- Problem of time in QG [Rovelli, Smolin, Kuchař, Thiemann,…]. 

- How to effectively build Dirac observables for GR? What is a thermodynamical 
ensemble of spacetimes? [Rovelli, Dittrich, Kuchař, Thiemann,…]. 

• Main strategy here: revers the problem and build the entire phase space 
from the bottom up.



Subsystem Hamiltonians
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• Consider a system coupled to its environment. 

• The subsystem is characterised by 

- symplectic structure 

- Hamiltonian   

• Hamilton’s equations contain explicit dependence on the environment.



quasi-local energy
         … let us now consider the problem in gravity



Which subsystems?
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Two important points that determine the subsystem:

- Choice must be made for how to extend 
the boundary of the partial Cauchy 
hypersurface 𝝨 into a worldtube 𝓝.  

- Flux of gravitational radiation across the 
worldtube of the boundary must be 
prescribed as an external source J 
(background field, c-number).
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Emerging field of quasi-local observables in LQG: [Riello, Pranzetti, Dittrich, Freidel, Bodendorfer, ww, Corichi,…]



Subsystems bounded by null surfaces
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Choice here: identify gravitational subsystems with compact regions of 
spacetime that are bounded by null surfaces.

[Bondi, Sachs, Penrose, Winicour, Goldberg, Robinson, Soteriou, Reisenberger, …]

edge modes
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- Induced metric:  

- free data: 

- gauge conditions: non-affinity 𝜿, and 
choice of foliation of the null 
hypersurface (i.e. a choice of time 
variable u). 

- free corner data (edge modes): conformal 
factor, out and ingoing expansion, outgoing shear, plus 
one additional spin coefficient (NP scalar 𝝉).



Bulk plus boundary fields

 8

• Bulk fields: tetrad, Plebański 2-form, self-dual connection, 

• Boundary fields: dyadic one-forms, spin frame, 

• Covariant derivative: 

• Conformal boundary conditions:
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Bulk plus boundary action
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Variation of the coupled bulk plus boundary action for given boundary conditions 
returns the bulk plus boundary equations of motion. 

• Einstein equations in the bulk. 

• Boundary equations of motion: (i) gluing conditions and (ii) gauge fixing for  u. 



Symplectic structure, gauge symmetries
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• Resulting symplectic structure has bulk plus boundary terms:

• Gauge symmetries are null directions: 

- Diffeomorphisms that vanish at the boundary 

- U(1) flag rotations 

- Simultaneous                gauge transformations of bulk plus boundary fields.



Tangent vectors to covariant phase space
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Tangent vectors                 to the covariant phase space are linearised solutions 
of the bulk plus boundary field equations that must also satisfy boundary 
conditions  

• A generic diffeomorphism will not satisfy this condition, e.g.  

• Define field variation     via a projection  



Quasi-local charges
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boundary dilations

tangential diffeos

*where we introduced the abbreviation  

• Charges obtained by integrating Hamilton’s equations 

• Simplest Dirac observables: generators of boundary dilations and tangential 
diffeomorphisms. 

- boundary dilations:  

- tangential bulk plus boundary diffeomorphisms:



Special vector fields
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It is instructive to evaluate the charge on area-preserving vector fields on 
u=const. cross sections of the null boundary

*note: 

›a
f = 2im[am̄b]Dbf œ TCu.



Quasi-local Hamiltonian
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• Smoothly extend the null flag      inside, 
define the null vector  

• Define the field variation      (its projection 
onto       is Hamiltonian). 

bulk translation

boundary translation
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Expansion as quasi-local Hamiltonian
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• The quasi-local Hamiltonian is given by 
the expansion (plus an irrelevant 
constant). 

• The u-translations are integrable on       :
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What does this all 
         have to do with LQG?



Action with Barbero-Immirzi term
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• In the Palatini formalism, the addition of a term                      does not change the 
equations of motion in the interior. But it does change the boundary field theory.                     

• Bulk plus boundary action 

• Bulk plus boundary symplectic structure 



• Introduce fiducial dyadic basis: 

• Canonical conjugate boundary variables: 

Boundary symplectic structure
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• Generators of complexified U(1) transformations 

• Reality conditions on the area two-form implies a constraint: 

Boundary reality condition
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null dilatations

U(1) flag rotations



LQG boundary states
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• Consider a Schrödinger quantisation of the 
boundary phase space. 

- States are functionals on configuration space. 

- LQG assumption: geometry excited only in a 
superposition of punctures.        

• Momentum smeared around a puncture acts as 
an ordinary derivative 

• Irreducible unitary representations of SL(2,ℂ) labelled by homogenous functions  

z
1

z
2
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LQG quantisation of area
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•               condition implies             restriction on allowed SL(2,ℂ) representations.   

• Each puncture carries discrete eigenvalues of area-flux: 

• Typical wave functions are of the form: 

• These are the same type of wave functions that appear in LQG [Freidel, Speziale, 
Bianchi, Donà, Dupuis, Levine, Girelli, ww].



Summary and conclusion
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Loop gravity spinor representation can be understood from the quantisation of 
gravitational boundary (edge) modes that arise at the boundary of causal regions. 

In addition, quantum discreteness of area also compatible with conventional Fock 
space quantization in the continuum. [1,2,3]: 

• Entire construction is manifestly Lorentz covariant. 

• When applied to three dimensions, new connection between CFTs and gravity [3]. 

• Fundamental boundary variables are the same that underpin twistor string theory 
and amplitudes [Arkani-Hamed, Cachazo, Penrose, Mason, Skinner, Adamo]. 
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