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Motivation

Black holes are one of the most promising places to explore, and
potentially even to test, a theory of quantum gravity.

In classical general relativity, a black hole contains a curvature
singularity,

The information loss problem: according to QFT on a curved
background, a black hole created by infalling matter in a pure state
appears to act as a black body and evaporate to a mixed state of
Hawking radiation, [Hawking, 1975]

Could quantum gravity effects cause a black hole to transition to a
white hole? [Rovelli, Vidotto, 2014; Haggard, Rovelli, 2015; . . . ]

Our goal in this work is to use LQG and LQC techniques to study
quantum gravity effects in black holes, and to try to make some progress
on these problems.
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General Framework

We will study spherically symmetric black hole space-times by:

1. imposing spherical symmetry at the classical level (constraints,
symplectic structure), [Bojowald, Swiderski, 2006]

2. simplifying the problem by gauge-fixing the diffeomorphism
constraint, again at the classical level, [Campiglia, Gambini, Pullin, 2007]

3. including holonomy corrections in an effective framework, [Modesto, 2004;

Ashtekar, Bojowald, 2006; Boehmer, Vandersloot, 2007; Chiou, Ni, Tang, 2012; Gambini, Olmedo, Pullin, 2020; . . . ]

4. finding and solving the effective equations of motion.

We start with vacuum space-times, but the resulting space-time is
incomplete.

So we then add a dust field [see also Bojowald, Reyes, Tibrewala, 2009; . . . ] to be able to
describe the collapse and the entire black hole interior.
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Variables and Gauge-Fixed Hamiltonian

The general spherically symmetric metric is

ds2 = −N(x , t)2dt2 + f (x , t) [dx + Nx (x , t)dt]2 + g(x , t) dΩ2.

We impose the areal gauge g = x2 which gauge-fixes the diffeomorphism
constraint and imposes Nx = −Nb/γ.

Here b ∼ K 2
θ ,K

3
φ captures the extrinsic curvature in the angular directions,

and its conjugate variable is Eb =
√
fg .

In vacuum spherical symmetry, after fixing the areal gauge, b(x) and
Eb(x) are the only remaining phase space variables.

There remains only the scalar constraint,

H =
1

2Gγ

[
3γx

Eb
− 2γx2

(Eb)2
∂xE

b − Eb

γx
∂x

[
x(b2 + γ2)

]]
≈ 0.

The dynamics are generated by C =
∫
NH.
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Holonomy Corrections

Now we want to include holonomy corrections. To do this, we express b in
terms of its parallel transport along edges of a minimal length

√
∆ ∼ `Pl.

This has to be done in H, and also for the relation between N and Nx .

An important point is that the Planckian length of the edge is a physical
length, not a coordinate length (this is the basis of the ‘improved’ or µ̄
dynamics [Ashtekar, Paw lowski, Singh, 2005]). For an edge in the θ direction, the metric
gives ds = x dθ so a physical length δs =

√
∆ implies δθ =

√
∆/x .

Evaluating this parallel transport gives the substitution

b → x√
∆

sin

(√
∆

x
b

)
.

This is based on the LQC ‘K’ loop quantization [Vandersloot, 2007; Singh, WE, 2014].

The path-ordered exponential trivializes due to spherical symmetry. (It
would not trivialize for an edge in the radial direction, but this has been
avoided by the gauge-fixing.)
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Aside: Comments on the µ̄ Scheme

This specific µ̄ scheme was first proposed by Boehmer and Vandersloot
(2007) for the Kantowski-Sachs space-time (which describes the black hole
interior in GR). But this choice gave unacceptably large effects at the
horizon.

We believe that this problem is due to the use of coordinates that become
null at the horizon: the physical length of a short path in the radial
direction goes to 0, but the µ̄ scheme requires imposing that this physical
length be ∼ `Pl. This tension could be the source of large QG effects at
the horizon.
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Aside: Comments on the µ̄ Scheme (Continued)

The problem of null coordinates can be avoided by using horizon-piercing
coordinates, as first tried by Chiou, Ni and Tang (2012), and more recently
by Gambini, Olmedo and Pullin (2020) and us. Note that the constraints
obtained by Chiou, Ni and Tang did not have a closed algebra; this seems
to be due to the use of a ‘point holonomy’ approximation in the radial
direction to avoid evaluating the path-ordered exponential.

With this µ̄ scheme applied to the full space-time (not restricting to
Kantowski-Sachs), there appear to be 3 ways to get a closed constraint
algebra:

1. avoid using the ‘point holonomies’ approximation and instead
evaluate the path-ordered exponential in x (seems hard),

2. try a different combination of the constraints [Gambini, Olmedo, Pullin, 2020], but
hard to include matter,

3. impose a gauge (our approach).
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Effective Scalar Constraint

This process gives the effective scalar constraint

H(eff ) =
1

2Gγ

[
3γx

Eb
− 2γx2

(Eb)2
∂xE

b − Eb

γx
∂x

(
x3

∆
sin2

√
∆ b

x
+ γ2x

)]
,

from which we can derive the equations of motion.

Note that even after fixing the areal gauge, there is a non-trivial constraint
algebra:

{C[N1], C[N2]} = C

[
− x

γ
√

∆
sin

√
∆ b

x
cos

√
∆ b

x
(N1∂xN2 − N2∂xN1)

]
.

We also need to update the relation between N and Nx . Setting

Nx = −N · x
γ
√

∆
sin

√
∆ b
x cos

√
∆ b
x gives a constraint algebra that looks the

same as in classical GR, [This Nx also agrees with Gambini, Olmedo, Pullin, 2020]

{C[N1], C[N2]} = C [Nx
1 ∂xN2 − Nx

2 ∂xN1] .
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Results

Looking for a stationary solution, the effective dynamics can be solved
explicitly for Painlevé-Gullstrand-like coordinates with N = 1:

ds2 = −
(

1− RS

x
+
γ2∆R2

S

x4

)
dt2 + 2

√
RS

x

(
1− γ2∆RS

x3

)
dt dx

+ dx2 + x2dΩ2,

here RS = 2GM.

This solution is only valid for x ≥ xmin with
xmin = (γ2∆RS )1/3. [See also Gambini, Olmedo, Pullin, 2020]

It is of course possible to make different choices for the lapse. For
example, for N = 1/(

√
1 + RS/x) we recover the effective space-time

found by Gambini, Olmedo and Pullin (2020).

An intriguing result is that for M . mPl, there is no horizon: a mass
greater than mPl is needed to create a black hole.
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Properties of the Solution

For M � mPl, there is an outer horizon at xouter ≈ RS − γ2∆
RS

and an inner

horizon at xinner ≈ xmin + (γ4∆2/27RS )1/3:

t

x0 xmin xinner xouter

Also, curvature invariants are bounded above by:

lim
x→xmin

R = − 6

γ2∆
, lim

x→xmin

RµνR
µν =

90

γ4∆2
,

lim
x→xmin

RµνρσR
µνρσ =

360

γ4∆2
.
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Adding Matter

While these results are nice, the space-time is incomplete: the metric is
only defined for x ≥ xmin. This suggests that something is missing:
matter.

To generate a gravitational field, there must be a source and in spherical
symmetry there are no gravitational waves, so we need mass. Classically, it
is possible to have a point mass at the origin, ρ(x) = M δ(x).

But if quantum gravity imposes an upper bound on ρ ≤ ρc ∼ ρPl, then a
compact object of mass M must extend to a radius of at least
xmin ∼ (M/ρc )1/3.

To explore this, we add a zero-pressure dust field. We use the dust-time
gauge [Husain, Paw lowski, 2012], implying N = 1, in addition to the areal gauge; the
resulting equations of motion are LQG effective equations for Lemâıtre-
Tolman-Bondi (LTB) space-times in Painlevé-Gullstrand-like coordinates.
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Lemâıtre-Tolman-Bondi Space-times

A nice property of the dust-time gauge is that the physical Hamiltonian is
algebraically identical to the gravitational part of the constraint, so

H
(eff )
d =

1

2Gγ

[
3γx

Eb
− 2γx2

(Eb)2
∂xE

b − Eb

γx
∂x

(
x3

∆
sin2

√
∆ b

x
+ γ2x

)]
.

H
(eff )
d is not a constraint since there is a dust field present. In fact,

ρd = −
H

(eff )
d

4πx Eb
.

The effective equations of motion for LTB space-times are

Ėb =− x2

2γ
√

∆
∂x

(
Eb

x

)
sin

√
∆ b

x
cos

√
∆ b

x
,

ḃ =
γ

2

(
x

(Eb)2
− 1

x

)
− 1

2γ∆x
∂x

(
x3 sin2

√
∆ b

x

)
.
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Oppenheimer-Snyder Collapse

Let’s consider the simple Oppenheimer-Snyder collapse model: a star of
radius L(t), with ρd = 0 outside the star and ρd = ρ(t) inside the star.

If we neglect edge effects at x = L(t), we can derive simple equations of
motion for this system from the effective dynamics for general LTB
space-times: (

L̇

L

)2

=
8πG

3
ρ

(
1− ρ

ρc

)
, ρ =

3M

4πL3
.

In this context, the LTB effective dynamics imply the LQC effective
Friedman equation for flat FLRW space-times, and even ρc is exactly the
same as in LQC. We can also find explicit solutions for Eb, b and Nx :
there is a bounce.

Further, the minimum value of L(t) is exactly equal to xmin. So, the
smallest radius x for which the vacuum solution needs to exist is precisely
xmin: exactly where the vacuum solution ends.
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xmin: exactly where the vacuum solution ends.
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‘White Hole’

This model gives an explicit realization of a transition from a black hole to
something that is in some ways similar to a white hole, generated by
quantum gravity effects.

But this is not exactly a white hole: the region just inside the outer
horizon is still trapped; it is only within the dust matter field that there is
an anti-trapped region.

t

x0 L(t) −→ xouter

As the system evolves, the edge L moves outwards. Once L passes xouter,
there will not be a black hole anymore.
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Outgoing Shock Wave

The Oppenheimer-Snyder solution cannot be trusted after the bounce
since it neglects edge effects. Of course, edge effects become important
due to the discontinuity at L.

This discontinuity is a shock wave in the gravitational field
itself—specifically, b(x) is discontinuous. To understand how L moves
outwards it is necessary to use the full LTB effective equations.

A back of the envelope estimation suggests the discontinuity in b slows the
expansion, and the lifetime of the black hole could be ∼ GM2/mPl.
Further work is needed to verify this estimate.

Note: here the lifetime of the black hole corresponds to the time elapsed
between the Killing horizon being formed by the collapsing star, and then
the front L of the shock wave expanding past xouter, as measured by a
distant observer.
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Ramifications for the Information Loss Problem

If the lifetime of a black hole is indeed ∼ GM2/mPl, then this could have
interesting ramifications for the information loss problem.

First, there is no singularity where information could be lost, or an eternal
event horizon behind which information could hide forever.

Further, it is often argued that potential information loss becomes a
problem once half of the black hole has evaporated [Page, 1993]. The
entanglement entropy between the Hawking radiation and the black hole
can increase until the Page time, when there are more degrees of freedom
in the Hawking radiation than are left in the black hole—at this point
purification must occur for the entanglement entropy to decrease. The
Page time for a black hole is ∼ GM3/m2

Pl.

But if the black hole has a lifetime of ∼ GM2/mPl, then Hawking
evaporation is a subleading quantum effect compared to the bounce.
There is not enough time for information loss to become a problem.
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Summary

We derive LQG effective equations with holonomy corrections for
spherical symmetry in vacuum and with dust.

In vacuum, we find a stationary solution that agrees with Gambini,
Olmedo and Pullin (2020). There is an inner horizon, and minimum
radius where the vacuum solution breaks down.

By adding a dust matter field, we can describe the entire space-time.
For the Oppenheimer-Snyder model of black hole collapse, there is a
non-singular bounce from the collapsing matter to an expanding
‘white hole’ shock wave solution.

We estimate the lifetime of the black hole to be ∼ GM2/mPl, in
which case the information loss problem would be avoided.
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Open Questions

How should the µ̄ scheme be implemented if a coordinate becomes
null?

The (reduced) constraint algebra is deformed. What are the physical
ramifications of this?

Determine the dynamics of the white hole shock wave more exactly,
and calculate the lifetime of a black hole with more precision.

Explore other forms of black hole collapse beyond the simplest
Oppenheimer-Snyder model.

Couple other types of matter. What is the role of pressure?

Thank you for listening!
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