Lifting General Relativity to Observer Space

Derek Wise

Institute for Quantum Gravity
University of Erlangen

Work with Steffen Gielen: 1111.7195 1206.0658 1210.0019

International Loop Quantum Gravity Seminar

2 October 2012
Three pictures of gravity

observer
space

spacetime picture

geometrodynamic picture
What it is:

\[
\text{observer space} \quad = \quad \text{space of unit future-timelike tangent vectors in spacetime}
\]

Why study it?

- Observers as logically prior to space or spacetime
- Link between covariant and canonical gravity
- Lorentz-violating theories
- Observer dependent geometry (Finsler, relative locality...)

How to study it? ...
Cartan geometry

 Euclidean Geometry \[\text{allow curvature}\] \rightarrow \text{Riemannian Geometry}

 generalize symmetry group

 Klein Geometry \[\text{allow curvature}\] \rightarrow \text{Cartan Geometry}

 arbitrary homogeneous space

 approximation by tangent planes

 approximation by tangent homogeneous spaces

(Adapted from diagram by R.W. Sharpe.)
Cartan geometry is ‘geometry via symmetry breaking’.

Cartan geometry modeled on a homogeneous space G/H is described by a **Cartan connection**—a pair of fields:

- $A \sim$ connection on a principal G bundle
 - (locally g-valued 1-form)
- $z \sim$ symmetry-breaking field
 - (locally a function $z: M \to G/H$)

(satisfying a nondegeneracy property...)

```plaintext
Cartan geometry

Cartan geometry is ‘geometry via symmetry breaking’.

Cartan geometry modeled on a homogeneous space $G/H$ is described by a **Cartan connection**—a pair of fields:

- $A \sim$ connection on a principal $G$ bundle
  - (locally $g$-valued 1-form)
- $z \sim$ symmetry-breaking field
  - (locally a function $z: M \to G/H$)

(satisfying a nondegeneracy property...)
```
Homogeneous model of spacetime is G/H with:

$$G = \begin{cases}
\text{SO}(4, 1) & \Lambda > 0 \\
\text{ISO}(3, 1) & \Lambda = 0 \\
\text{SO}(3, 2) & \Lambda < 0
\end{cases}$$

Break symmetry! As reps of $\text{SO}(3, 1)$:

$$g \cong \mathfrak{so}(3, 1)_z \oplus \mathbb{R}^{3,1}_z$$

$$\implies A = \omega + e$$

$\mathbb{R}^{3,1}_z$ identified with tangent space of G/H

‘Nondegeneracy condition’ in CG means e nondegenerate.
Spacetime Cartan Geometry

MacDowell–Mansouri, Stelle–West (w. $\Lambda > 0$):

$$S[A, z] = \int \varepsilon_{abcde} F^{ab} \wedge F^{cd} z^e$$

"Rolling de Sitter space along physical spacetime" (gr-qc/06111154)
Can we think of Ashtekar variables as Cartan geometry?!

S. Gielen and D. Wise, 1111.7195

physical spacetime (one tangent space) “internal spacetime”

→ spacetime and internal splittings of fields.
Start with Holst action; split all fields internally and externally:

$$S = \int \hat{u} \wedge \left[E^a \wedge E^b \wedge \mathcal{L}_u(A_{ab}) + \cdots \right]$$

- “co-observer” dual to u ($\sim dt$)
- triad
- spatial SO(3) connection (\sim Ashtekar–Barbero)
- proper time derivative for observer u
Cartan geometrodynamics

\[S = \int \hat{u} \wedge \left[E^a \wedge E^b \wedge \mathcal{L}_u(A_{ab}) + \cdots \right] \]

Fix \(\hat{u} \), let \(u = u(\hat{u}, y, E) \)

Whenever \(\ker \hat{u} \) is \textit{integrable}, we get:

- Hamiltonian form clearly embedded in spacetime variables
- System of evolving spatial Cartan geometries.
 (Cartan connection built from \(A \) and \(E \))
 “Cartan geometrodynamics”

But also:

- Manifestly Lorentz covariant
- Refoliation symmetry as special case of Lorentz symmetry
Observer Space
Observer space of a spacetime

M a time-oriented Lorentzian 4-manifold.

O its **observer space**, i.e. unit future tangent bundle $O \rightarrow M$.

- Lorentzian 7-manifold
- Canonical “time” direction
- Contact structure
- Spatial and boost distributions
Three groups play important roles:

\[
G = \begin{cases}
\text{SO}(4, 1) \\
\text{ISO}(3, 1) \\
\text{SO}(3, 2)
\end{cases} \quad H = \text{SO}(3, 1) \quad K = \text{SO}(3) \\
\Lambda > 0 \quad \Lambda = 0 \quad \Lambda < 0
\]

\[G/H = \text{homogenous spacetime}\]
\[H/K = \text{velocity space (hyperbolic)}\]
\[G/K = \text{observer space}\]
So, to do Cartan geometry on observer space, we do both levels of symmetry breaking we’ve already discussed:

\[\mathfrak{g} \]

\[\mathfrak{so}(3, 1) \quad \mathbb{R}^{3,1} \]

\[\mathfrak{so}(3)_y \quad \mathbb{R}^3_y \quad \mathbb{R}^1_y \]

\[\leftarrow \text{spacetime algebra} \]

\[\leftarrow \text{reps of SO}(3, 1) \]

\[\leftarrow \text{observer-dependent reps of SO}(3)_y \]
As reps of $\text{SO}(3)$:

$$\mathfrak{g} \cong \mathfrak{so}(3) \oplus (\mathbb{R}^3 \oplus \mathbb{R}^3 \oplus \mathbb{R})$$

Geometrically, these pieces are:

- tiny rotations around the observer
- tiny boosts taking us to another observer
- tiny spatial translations from the perspective of the observer
- tiny time translations from the perspective of the observer

So: a Cartan connection A splits into:

- an $\text{SO}(3)$ connection
- a “heptad” or “siebenbein” with three canonical parts
Definition: An *observer space geometry* is a Cartan geometry modeled on G/K for one of the models just given. That is...

- Principal G bundle with connection A
- A reduction of the G bundle to a principal K bundle P
(such that the nondegeneracy condition holds)

This definition doesn’t rely on spacetime. Can we still talk about spacetime?
Given an observer space geometry
(with G-connection A, principal K bundle P)

Theorem:

1. If $F[A]$ vanishes on any “boost” vector, then the boost distribution is integrable
 (\implies integrate out to get “spacetime”)
2. If observer space is also “complete in boost directions”, the boost distribution comes from a locally free H-action on P;
3. If the H action is free and proper, then P/H is a manifold, with spacetime Cartan geometry modeled on G/H;
Vacuum GR on observer space:

If an observer space Cartan geometry \((A, P)\) satisfies:

1. \(F(v, w) = 0\) for all boost vectors \(v\) and all vectors \(w\)
2. The field equations \([e, \star F] = 0\) (with \(e\) the spacetime part of the siebenbein)

Then we get both spacetime as a quotient of observer space, and Einstein’s equations on the reconstructed spacetime.

Cartan geometrodynamics:

Cartan geometrodynamics is essentially a trivialization of observer space Cartan geometry: geometrically, the ‘internal observer’ \(y\) is a section of the observer bundle

\[
\text{observer space} \rightarrow \text{spacetime.}
\]

Pull fields down to get the ‘geometrodynamic’ description.
Relative spacetime

If the boost distribution is *not* integrable:

- each observer has local space, time, and boost directions in observer space
- boost directions give local notion of “coincidence”
- space/time directions give local notion of “spacetime”

Relation to ‘relative locality’ proposal? Very similar conclusions, but different starting point.
Morally speaking:

Relative spacetime

observer space

- flat in boost directions
- flat in spacetime directions

general relativity

relative locality
Outlook

Some things to work on:

- foundational issues: actions on observer space . . .
- controlled way to relax “boost-flatness”; physical consequences?
- matter
- lightlike particles and boundary of observer space
- applications:
 - Relative locality
 - Lorentz-violating theories
 - Finsler
- quantum applications
 - spin foam / LQG?