Lifting General Relativity to Observer Space

Derek Wise

Institute for Quantum Gravity University of Erlangen

Work with Steffen Gielen: 1111.7195 1206.0658 1210.0019

International Loop Quantum Gravity Seminar

2 October 2012

Three pictures of gravity

Observer Space

What it is:

observer space = space of unit future-timelike tangent vectors in spacetime

Why study it?

- Observers as logically prior to space or spacetime
- Link between covariant and canonical gravity
- Lorentz-violating theories
- Observer dependent geometry (Finsler, relative locality...)

How to study it? ...

Cartan geometry

Cartan geometry

Cartan geometry is 'geometry via symmetry breaking'.

Cartan geometry modeled on a homogeneous space G/H is described by a **Cartan connection**—a *pair* of fields:

- $A \sim \text{connection on a principal } G \text{ bundle}$ (locally $\mathfrak{g}\text{-valued 1-form}$)
- $z \sim \text{symmetry-breaking field}$ (locally a function $z \colon M \to G/H$)

(satisfying a nondegeneracy property...)

Spacetime Cartan Geometry

Homogeneous model of spacetime is G/H with:

$$G = \begin{cases} SO(4,1) & \Lambda > 0 \\ ISO(3,1) & H = SO(3,1) \\ SO(3,2) & \Lambda < 0 \end{cases}$$

Break symmetry! As reps of SO(3,1):

 $\mathbb{R}^{3,1}_z$ identified with tangent space of G/H

'Nondegeneracy condition' in CG means e nondegenerate.

Spacetime Cartan Geometry

MacDowell-Mansouri, Stelle-West (w. $\Lambda > 0$):

$$S[\underline{A,z}] = \int \varepsilon_{abcde} F^{ab} \wedge F^{cd} z^e$$
 Cartan connection curvature

"Rolling de Sitter space along physical spacetime" (gr-qc/0611154)

Lorentz symmetry breaking and Ashtekar variables

Can we think of Ashtekar variables as Cartan geometry?!

S. Gielen and D. Wise, 1111.7195

 \rightsquigarrow spacetime and internal splittings of fields.

Lorentz symmetry breaking and Ashtekar variables

Start with Holst action; split all fields internally and externally:

Cartan geometrodynamics

$$S = \int \hat{u} \wedge \left[E^a \wedge E^b \wedge \pounds_u(\mathbf{A}_{ab}) + \cdots \right]$$

Fix \hat{u} , let $u = u(\hat{u}, y, E)$

Whenever $\ker \hat{u}$ is *integrable*, we get:

- Hamiltonian form clearly embedded in spacetime variables
- System of evolving spatial Cartan geometries.
 (Cartan connection built from A and E)
 "Cartan geometrodynamics"

But also:

- Manifestly Lorentz covariant
- Refoliation symmetry as special case of Lorentz symmetry

Observer Space

Observer space of a spacetime

M a time-oriented Lorentzian 4-manifold.

O its **observer space**, i.e. unit future tangent bundle $O \to M$.

- Lorentzian 7-manifold
- Canonical "time" direction
- Contact structure
- Spatial and boost distributions

Observer space Cartan geometry

Three groups play important roles:

$$G = \begin{cases} SO(4,1) & \Lambda > 0 \\ ISO(3,1) & H = SO(3,1) & K = SO(3) \\ SO(3,2) & \Lambda < 0 \end{cases}$$

$$G/H$$
 = homogenous spacetime H/K = velocity space (hyperbolic) G/K = observer space

Observer space Cartan geometry

So, to do Cartan geometry on observer space, we do both levels of symmetry breaking we've already discussed:

As reps of SO(3):

$$\mathfrak{g} \cong \mathfrak{so}(3) \oplus (\mathbb{R}^3 \oplus \mathbb{R}^3 \oplus \mathbb{R})$$

Geometrically, these pieces are:

- tiny rotations around the observer
- tiny boosts taking us to another observer
- tiny spatial translations from the perspective of the observer
- tiny time translations from the perspective of the observer

So: a Cartan connection A splits into:

- an SO(3) connection
- a "heptad" or "siebenbein" with three canonical parts

Observer space Cartan geometry

Definition: An observer space geometry is a Cartan geometry modeled on G/K for one of the models just given. That is...

- Principal G bundle with connection A
- A reduction of the G bundle to a principal K bundle P (such that the nondegeneracy condition holds)

This definition doesn't rely on spacetime. Can we still talk about spacetime?

Reconstructing Spacetime

Given an observer space geometry (with G-connection A, principal K bundle P)

Theorem:

- 1. If F[A] vanishes on any "boost" vector, then the boost distribution is integrable
 - (\Longrightarrow integrate out to get "spacetime")
- 2. If observer space is also "complete in boost directions", the boost distribution comes from a locally free H-action on P;
- 3. If the H action is free and proper, then P/H is a manifold, with spacetime Cartan geometry modeled on G/H;

General relativity on observer space

Vacuum GR on observer space:

If an observer space Cartan geometry (A, P) satisfies:

- 1. F(v, w) = 0 for all boost vectors v and all vectors w
- 2. The field equations $[e, \star F] = 0$ (with e the spacetime part of the siebenbein)

Then we get both spacetime as a quotient of observer space, and Einstein's equations on the reconstructed spacetime.

Cartan geometrodynamics:

Cartan geometrodynamics is essentially a trivialization of observer space Cartan geometry: geometrically, the 'internal observer' y is a section of the observer bundle

observer space \rightarrow spacetime.

Pull fields down to get the 'geometrodynamic' description.

Relative spacetime

If the boost distribution is *not* integrable:

- each observer has local space, time, and boost directions in observer space
- boost directions give local notion of "coincidence"
- space/time directions give local notion of "spacetime"

Relation to 'relative locality' proposal? Very similar conclusions, but different starting point.

Relative spacetime

Morally speaking:

Outlook

Some things to work on:

- foundational issues: actions on observer space . . .
- controlled way to relax "boost-flatness"; physical consequences?
- matter
- lightlike particles and boundary of observer space
- applications:
 - Relative locality
 - Lorentz-violating theories
 - Finsler
- quantum applications
 - spin foam / LQG?