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Holographic special relativity

(Special) relativity is not fundamentally about spacetime. It is
about how different observers’ viewpoints relate to each other.

Spacetime is one way to understand these viewpoints:

• Lorentzian manifold M

• An observer is a unit future-directed timelike tangent
vector

but not the only way ....
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Motivations

• (A)dS/CFT

• Shape dynamics (a conjecture)

• Observer space geometries . . .
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Observer Space

“Universal” geometry for theories of space and time.

• Relates covariant and canonical pictures of gravity
[S. Gielen, DKW, 1111.7195, 1206.0658; DKW, 1310.1088]

• “Einstein equations on observer space”

=⇒
{

Spacetime as a quotient of observer space
Einstein equations on reconstructed spacetime

[SG, DKW, 1210.0019]

• More general than Lorentzian spacetime:
• Preferred-foliation (e.g. Hořava grav.) [S. Gielen, 1301.1692]
• Finsler spacetime [M. Hohmann, 1304.5430]
• No spacetime at all (e.g. relative locality)
• From conformal geometry [now!]

Defined in terms of Cartan geometry....
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(Adapted from diagram by R.W. Sharpe.)
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Definition of Observer Space geometry

De Sitter space is the homogeneous space
S3,1 ∼= SOo(4, 1)/SO(4, 1).

SOo(4, 1) acts transitively on observers, with stabilizer SO(3),
so the observer space (unit future tangent bundle) of de Sitter
space is SOo(4, 1)/SO(3).

Definition: An observer space geometry is a Cartan
geometry modeled on de Sitter observer space SOo(4, 1)/SO(3).

(...or Minkowski or AdS analogs, ... also in other dimensions)

Basic example: The unit future tangent bundle of a Lorentzian
manifold has a canonical observer space geometry.
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Observer Space

Mathematical punchline of this talk:

Theorem:

1. An nd conformal geometry canonically determines a
(2n+1)d observer space geometry.

2. If the conformal geometry is the standard n-sphere, the
observer space geometry is the observer space of n+ 1
de Sitter spacetime.

=⇒ de Sitter special relativity without de Sitter spacetime.
=⇒ possibility for observer space dynamics from conformal

space, rather than spacetime.

I will stick to n = 3, and talk about part 2 until the end, i.e.
how to construct the observer space of de Sitter spacetime from
conformal space...
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Observers in de Sitter spacetime

R4,1 — “ambient space”

All of the spaces we need inherit an action of G := SOo(4, 1)
from the action of SOo(4, 1) on R4,1:

• de Sitter spacetime S3,1 (unit spacelike pseudosphere)

• hyperbolic space H4 (unit future-timelike pseudosphere)

• ambient future/past light cones C+, C−

• conformal 3-sphere P (C) (projective lightcone in R4,1)

• observer space O ∼= {(x, u) ∈ S3,1 ×H4 : η(x, u) = 0}
• inertial observer space O (space of timelike geodesics)

S3,1 P (C)

O
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Mapping observer space to conformal space

2d subspace [x, u] ⊂ R4,1

containing the observer’s
geodesic.

same 2d subspace contains a
pair of lightrays

[x± u] ∈ P (C)

An observer (x, u) ∈ O ⊂ S3,1 ×H4 has:
asymptotic future [x+ u] and asymptotic past [x− u]

(notation: [v, . . .] = span{v, . . .})
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Symmetries

SOo(4, 1)-spaces and equivariant maps
... and stabilizer subgroups

O
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spacetime hyperbolic
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SO(3)× R

SO(3)
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Observer space geometry from conformal space?

OK, fine, so conformal space is a quotient of observer space,
but...

Suppose we don’t start out with spacetime.

Can we construct the de Sitter observer space O just from the
conformal sphere? ...

And then, can we generalize this construction to other
conformal geometries?
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Fiber of the map O → P (C)

For [v] ∈ P (C), what are all observers (x, u) with [x− u] = [v]?
Answer:

All observers who share the same past cosmological horizon.

[v]⊥

S3,1 ∩ [v]⊥

past horizon

[v]

This whole field of observers corresponds to a point in P (C).
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How to pick out one observer in the field

Theorem: If you know where you came from and where
you’re going, then you know who you are.

(More precisely: An inertial observer is uniquely determined by two

distinct points in P (C), the ‘asymptotic past’ and ‘asymptotic

future’.)

Theorem: The more you can see of the past, the older you
are.

(More precisely: The time along an inertial observer’s worldline is

uniquely determined by a 2-sphere in P (C), ...)
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Conformal picture of an observer

•

‘∞’
(asymptotic future)

•
‘0’

(asymptotic past)

S3

equally spaced
concentric
copies of S2

The conformal compactification of R3 is S3 ∼= P (C)

Conversely, choosing ‘0’, ‘∞’, and the ‘unit sphere’ S2 in P (C)
makes P (C)− {∞} into a Euclidean vector space ∼= R3.
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Dual pictures of de Sitter observer space

Theorem:

{observers in S3,1} ∼= {Euclidean de-compactifications of P (C)}

This isomorphism is canonical and SOo(4, 1)-equivariant.
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Dual pictures of de Sitter observer space

Continuing in this way, we get...

Spacetime picture:

O

S3,1 H4
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Conformal picture:

O

S3,1 H4

P (C)

C−

O
space of Euclidean
decompactifications

a−

space of co-
oriented spheres

conformal 3-sphere

ordered pairs of
distinct points

tautological
bundle
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Local description

So far, an observer is very ‘nonlocal’: need two points in P (C)
plus a sphere.

Fortunately, the Euclidean decompactification is determined
entirely by local data on P (C):

Theorem: The observer space of de Sitter spacetime is
isomorphic as a G-space to the space of all transverse 3-planes
in the tautological bundle over the conformal 3-sphere.
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Main theorem

We can now write the theorem from the beginning more
precisely:

Theorem:

1. A conformal geometry canonically determines an observer
space geometry on the space of transverse 3-planes in the
tautological bundle.

2. For the P (C), this coincides with the observer space
associated to S3,1.

We can also write integrability conditions that allow
reconstruction of conformal space from a general observer space
geometry, analogous to the conditions for reconstruction of
spacetime in [1210.0019].

What do Cartan geometries actually look like? ...
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Example: spacetime Cartan geometry

Cartan geometry modeled on G/H involves breaking G
symmetry to H to split a connection into pieces....

Familiar example: MacDowell–Mansouri gravity:

G = SOo(4, 1) H = SOo(3, 1)

As reps of SO(3, 1):

so(4, 1) ∼= so(3, 1) ⊕ R3,1

=⇒ A = ω + e
spin conn. coframe

[gr-qc/0611154]
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Cartan geometry

Observer space geometry is modeled on SOo(4, 1)/SO(3), so
[1210.0019]

so(4, 1) = so(3)⊕ (R3
b ⊕ R3

t ⊕ R)

rotations boosts spatial
translations

time
translations

On the other hand, the dual ‘holographic’ picture of observers
suggests a different splitting:

so(4, 1) = g−1 ⊕ g0 ⊕ g+1

rotations
and time

translations

translations of
asymptotic past

translations of
asymptotic future

This splitting is a standard tool in conformal Cartan geometry.
Here we interpret it terms of observer space geometry.
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Cartan geometry

How are the two decompositions (and their geometric
interpretations) related?

so(4, 1) = so(3)⊕ (R3
b ⊕ R3

t ⊕ R) so(4, 1) = g−1 ⊕ g0 ⊕ g+1

• so(3) is the stabilizer of (x, u) ∈ O
• g0 = so(3)⊕ R (stabilizer of inertial observer)

• g±1 = {(B, T ) ∈ R3
b ⊕ R3

t : B = ±T}
• p := g0 ⊕ g+1 is the stabilizer of [x− u] ∈ P (C)
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What’s this got to do with “shape dynamics”?

S. Gryb and F. Mercati, 1209.4858:

• 2 + 1 split of 3d gravity (Chern–Simons with G = SOo(3, 1))

• write the fields according to the split

so(3, 1) ∼= so(2)⊕ (R2
b ⊕ R2

t ⊕ R)

• take linear combinations of fields to reorganize them
according to

so(3, 1) ∼= g−1 ⊕ g0 ⊕ g+1

• interpret these fields as living on a 2-sphere, thus giving a
conformal Cartan connection.

• show the result is equivalent to shape dynamics for 3d GR!

But the geometric meaning of this reorganization of fields is
explained by observer space...
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What’s this got to do with “shape dynamics”?

In particular:

The 2d conformal space in this theory is evidently not “space”,
but some nonlocal quotient of observer space. For 3d de Sitter
spacetime, a point in this conformal space looks like this in
spacetime:

So, is shape dynamics really is a theory of dynamical “spatial”
conformal geometry?
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Conclusions

• New examples of observer space geometries! Questions:
• Dynamics for physically realistic ‘holographic general

relativity’?
• Is shape dynamics exactly that?

• Challenge: Geometric interpretation of shape dynamics?
• Is this a special trick of 3d gravity?
• Try doing it for 4d starting from [S. Gielen, DKW,

1111.7195], keeping all of the Cartan geometric aspects
explicit.

• Is the nonlocal nature of conformal ‘space’ responsible for
the nonlocal Hamiltonian in shape dynamics?

• Is the ‘linking theory’ [1101.5974] best framed in terms of
observer space?

S3,1 P (C)

O
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