Holographic Special Relativity: Observer Space from Conformal Geometry

Derek K. Wise

University of Erlangen

Based on 1305.3258

International Loop Quantum Gravity Seminar

15 October 2013

Holographic special relativity

(Special) relativity is *not* fundamentally about spacetime. It is about how different observers' viewpoints relate to each other.

Spacetime is one way to understand these viewpoints:

- Lorentzian manifold M
- An *observer* is a unit future-directed timelike tangent vector

but not the only way

Motivations

- (A)dS/CFT
- Shape dynamics (a conjecture)
- Observer space geometries . . .

Observer Space

"Universal" geometry for theories of space and time.

- Relates covariant and canonical pictures of gravity [S. Gielen, DKW, 1111.7195, 1206.0658; DKW, 1310.1088]
- "Einstein equations on observer space"
 - \implies { Spacetime as a quotient of observer space Einstein equations on reconstructed spacetime [SG, DKW, 1210.0019]
- More general than Lorentzian spacetime:
 - Preferred-foliation (e.g. Hořava grav.) [S. Gielen, 1301.1692]
 - Finsler spacetime [M. Hohmann, 1304.5430]
 - No spacetime at all (e.g. relative locality)
 - From conformal geometry [now!]

Defined in terms of Cartan geometry....

Cartan geometry

Definition of Observer Space geometry

De Sitter space is the homogeneous space $S^{3,1} \cong SO_o(4,1)/SO(4,1)$.

 $SO_o(4,1)$ acts transitively on observers, with stabilizer SO(3), so the observer space (unit future tangent bundle) of de Sitter space is $SO_o(4,1)/SO(3)$.

Definition: An observer space geometry is a Cartan geometry modeled on de Sitter observer space $SO_o(4, 1)/SO(3)$.

(...or Minkowski or AdS analogs, ... also in other dimensions)

Basic example: The unit future tangent bundle of a Lorentzian manifold has a canonical observer space geometry.

Observer Space

Mathematical punchline of this talk:

Theorem:

- 1. An nd conformal geometry canonically determines a (2n+1)d observer space geometry.
- 2. If the conformal geometry is the standard n-sphere, the observer space geometry is the observer space of n+1 de Sitter spacetime.
- ⇒ de Sitter special relativity without de Sitter spacetime.
- ⇒ possibility for observer space dynamics from conformal space, rather than spacetime.

I will stick to n = 3, and talk about part 2 until the end, i.e. how to construct the observer space of de Sitter spacetime from conformal space...

7

Observers in de Sitter spacetime

 $\mathbb{R}^{4,1}$ — "ambient space"

All of the spaces we need inherit an action of $G := SO_o(4,1)$ from the action of $SO_o(4,1)$ on $\mathbb{R}^{4,1}$:

- de Sitter spacetime $S^{3,1}$ (unit spacelike pseudosphere)
- hyperbolic space H⁴ (unit future-timelike pseudosphere)
- ambient future/past light cones C^+ , C^-
- conformal 3-sphere $P(\mathcal{C})$ (projective lightcone in $\mathbb{R}^{4,1}$)
- observer space $O \cong \{(x, u) \in S^{3,1} \times \mathbb{H}^4 : \eta(x, u) = 0\}$
- inertial observer space \overline{O} (space of timelike geodesics)

Mapping observer space to conformal space

2d subspace $[x,u]\subset\mathbb{R}^{4,1}$ containing the observer's geodesic.

same 2d subspace contains a pair of lightrays $[x\pm u]\in P(\mathcal{C})$

An observer $(x, u) \in O \subset S^{3,1} \times H^4$ has: asymptotic future [x + u] and asymptotic past [x - u]

(notation: $[v, \ldots] = \operatorname{span}\{v, \ldots\}$)

Symmetries

 $SO_o(4,1)$ -spaces and equivariant maps

... and stabilizer subgroups

Observer space geometry from conformal space?

OK, fine, so conformal space is a quotient of observer space, but...

Suppose we don't start out with spacetime.

Can we construct the de Sitter observer space O just from the conformal sphere? ...

And then, can we generalize this construction to other conformal geometries?

Fiber of the map $O \to P(\mathcal{C})$

For $[v] \in P(\mathcal{C})$, what are all observers (x, u) with [x - u] = [v]? Answer:

All observers who share the same past cosmological horizon.

This whole field of observers corresponds to a point in $P(\mathcal{C})$.

How to pick out one observer in the field

Theorem: If you know where you came from and where you're going, then you know who you are.

(More precisely: An *inertial observer* is uniquely determined by two distinct points in $P(\mathcal{C})$, the 'asymptotic past' and 'asymptotic future'.)

Theorem: The more you can see of the past, the older you are.

(More precisely: The time along an inertial observer's worldline is uniquely determined by a 2-sphere in $P(\mathcal{C})$, ...)

Conformal picture of an observer

The conformal compactification of \mathbb{R}^3 is $S^3 \cong P(\mathcal{C})$

Conversely, choosing '0', ' ∞ ', and the 'unit sphere' S^2 in $P(\mathcal{C})$ makes $P(\mathcal{C}) - \{\infty\}$ into a Euclidean vector space $\cong \mathbb{R}^3$.

Dual pictures of de Sitter observer space

Theorem:

 $\{\text{observers in }S^{3,1}\}\cong\{\text{Euclidean de-compactifications of }P(\mathcal{C})\}$

This isomorphism is *canonical* and $SO_o(4, 1)$ -equivariant.

Dual pictures of de Sitter observer space

Continuing in this way, we get...

Spacetime picture:

Conformal picture:

Local description

So far, an observer is very 'nonlocal': need two points in $P(\mathcal{C})$ plus a sphere.

Fortunately, the Euclidean decompactification is determined entirely by local data on $P(\mathcal{C})$:

Theorem: The observer space of de Sitter spacetime is isomorphic as a G-space to the space of all transverse 3-planes in the tautological bundle over the conformal 3-sphere.

Main theorem

We can now write the theorem from the beginning more precisely:

Theorem:

- 1. A conformal geometry *canonically* determines an observer space geometry on the space of transverse 3-planes in the tautological bundle.
- 2. For the $P(\mathcal{C})$, this coincides with the observer space associated to $S^{3,1}$.

We can also write *integrability conditions* that allow reconstruction of conformal space from a general observer space geometry, analogous to the conditions for reconstruction of spacetime in [1210.0019].

What do Cartan geometries actually look like? ...

Example: spacetime Cartan geometry

Cartan geometry modeled on G/H involves breaking G symmetry to H to split a connection into pieces....

Familiar example: MacDowell-Mansouri gravity:

$$G = SO_o(4,1) \qquad H = SO_o(3,1)$$

As reps of SO(3,1):

[gr-qc/0611154]

Cartan geometry

Observer space geometry is modeled on $SO_o(4,1)/SO(3)$, so [1210.0019]

On the other hand, the dual 'holographic' picture of observers suggests a different splitting:

This splitting is a standard tool in *conformal* Cartan geometry. Here we interpret it terms of observer space geometry.

Cartan geometry

How are the two decompositions (and their geometric interpretations) related?

$$\mathfrak{so}(4,1) = \mathfrak{so}(3) \oplus (\mathbb{R}^3_\mathrm{b} \oplus \mathbb{R}^3_\mathrm{t} \oplus \mathbb{R})$$

$$\mathfrak{so}(4,1)=\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_{+1}$$

- $\mathfrak{so}(3)$ is the stabilizer of $(x, u) \in O$
- $\mathfrak{g}_0 = \mathfrak{so}(3) \oplus \mathbb{R}$ (stabilizer of inertial observer)
- $\mathfrak{g}_{\pm 1} = \{ (B, T) \in \mathbb{R}^3_b \oplus \mathbb{R}^3_t : B = \pm T \}$
- $\mathfrak{p} := \mathfrak{g}_0 \oplus \mathfrak{g}_{+1}$ is the stabilizer of $[x-u] \in P(\mathcal{C})$

What's this got to do with "shape dynamics"?

S. Gryb and F. Mercati, 1209.4858:

- 2+1 split of 3d gravity (Chern–Simons with $G = SO_o(3,1)$)
- write the fields according to the split

$$\mathfrak{so}(3,1) \cong \mathfrak{so}(2) \oplus (\mathbb{R}^2_b \oplus \mathbb{R}^2_t \oplus \mathbb{R})$$

• take linear combinations of fields to reorganize them according to

$$\mathfrak{so}(3,1) \cong \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_{+1}$$

- interpret these fields as living on a 2-sphere, thus giving a conformal Cartan connection.
- show the result is equivalent to shape dynamics for 3d GR!

But the *geometric meaning* of this reorganization of fields is explained by observer space...

What's this got to do with "shape dynamics"?

In particular:

The 2d conformal space in this theory is evidently *not* "space", but some *nonlocal* quotient of observer space. For 3d de Sitter spacetime, a *point* in this conformal space looks like this in spacetime:

So, is shape dynamics really is a theory of dynamical "spatial" conformal geometry?

23

Conclusions

- New examples of observer space geometries! Questions:
 - Dynamics for physically realistic 'holographic general relativity'?
 - Is shape dynamics exactly that?
- Challenge: Geometric interpretation of shape dynamics?
 - Is this a special trick of 3d gravity?
 - Try doing it for 4d starting from [S. Gielen, DKW, 1111.7195], keeping all of the Cartan geometric aspects explicit.
 - Is the nonlocal nature of conformal 'space' responsible for the nonlocal Hamiltonian in shape dynamics?
 - Is the 'linking theory' [1101.5974] best framed in terms of observer space?

