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Holographic special relativity

(Special) relativity is not fundamentally about spacetime. It is
about how different observers’ viewpoints relate to each other.

Spacetime is one way to understand these viewpoints:
e Lorentzian manifold M

e An observer is a unit future-directed timelike tangent
vector

but not the only way ....

N



Motivations

o (A)dS/CFT
e Shape dynamics (a conjecture)

e Observer space geometries ...



Observer Space

“Universal” geometry for theories of space and time.

e Relates covariant and canonical pictures of gravity
[S. Gielen, DKW, 1111.7195, 1206.0658; DKW, 1310.1088]

e “Kinstein equations on observer space”

— { Spacetime as a quotient of observer space
Einstein equations on reconstructed spacetime
[SG, DKW, 1210.0019]

e More general than Lorentzian spacetime:
o Preferred-foliation (e.g. Hofava grav.) [S. Gielen, 1301.1692]
¢ Finsler spacetime [M. Hohmann, 1304.5430]
e No spacetime at all (e.g. relative locality)
e From conformal geometry [nowl]

Defined in terms of Cartan geometry....
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Definition of Observer Space geometry

De Sitter space is the homogeneous space
S$31250,(4,1)/S0(4, 1).

SO, (4,1) acts transitively on observers, with stabilizer SO(3),
so the observer space (unit future tangent bundle) of de Sitter
space is SO, (4,1)/SO(3).

Definition: An observer space geometry is a Cartan
geometry modeled on de Sitter observer space SO,(4,1)/SO(3).

(...or Minkowski or AdS analogs, ... also in other dimensions)

Basic example: The unit future tangent bundle of a Lorentzian
manifold has a canonical observer space geometry.



Observer Space

Mathematical punchline of this talk:

Theorem:

1. An nd conformal geometry canonically determines a
(2n+1)d observer space geometry.

2. If the conformal geometry is the standard n-sphere, the
observer space geometry is the observer space of n + 1
de Sitter spacetime.

— de Sitter special relativity without de Sitter spacetime.
——> possibility for observer space dynamics from conformal
space, rather than spacetime.

I will stick to n = 3, and talk about part 2 until the end, i.e.
how to construct the observer space of de Sitter spacetime from
conformal space...



Observers in de Sitter spacetime
R%1 — “ambient space”

All of the spaces we need inherit an action of G := SO,(4, 1)
from the action of SO, (4, 1) on R*!:

e de Sitter spacetime S®! (unit spacelike pseudosphere)

e hyperbolic space H* (unit future-timelike pseudosphere)
e ambient future/past light cones C*, C~

e conformal 3-sphere P(C) (projective lightcone in R%1!)

e observer space O 2 {(x,u) € S3! x H* : n(z,u) = 0}

e inertial observer space O (space of timelike geodesics)
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Mapping observer space to conformal space

I“!JJ?J’

2d subspace [z,u] C R*!
containing the observer's
geodesic.

same 2d subspace contains a
pair of lightrays

[z £u] € P(C)

An observer (z,u) € O C §*! x H* has:
asymptotic future [z + u] and asymptotic past [z — u]

(notation: [v,...] =span{v,...})



Symmetries

SO, (4, 1)-spaces and equivariant maps
. and stabilizer subgroups

0 SO(3)

observer space

S~ O

ine%ial 80(3) x R

observer space
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g31 H* c- SO,(3,1) SO(4) ISO(3)
spacetime  hyperbolic ambient past
space light cone
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Observer space geometry from conformal space?

OK, fine, so conformal space is a quotient of observer space,
but...

Suppose we don’t start out with spacetime.

Can we construct the de Sitter observer space O just from the
conformal sphere? ...

And then, can we generalize this construction to other
conformal geometries?



Fiber of the map O — P(C)

For [v] € P(C), what are all observers (x,u) with [x — u] = [v]?
Answer:

All observers who share the same past cosmological horizon.

/

S31 []

— past horizon

This whole field of observers corresponds to a point in P(C).
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How to pick out one observer in the field

Theorem: If you know where you came from and where
you're going, then you know who you are.

(More precisely: An inertial observer is uniquely determined by two
distinct points in P(C), the ‘asymptotic past’ and ‘asymptotic

Y
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future’.)

Theorem: The more you can see of the past, the older you
are.

(More precisely: The time along an inertial observer’s worldline is
uniquely determined by a 2-sphere in P(C), ...)
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Conformal picture of an observer

4 9

(asymptotic future)

(07

(asymptotic past)

equally spaced
concentric
copies of S

S3

The conformal compactification of R? is S% = P(C)

Conversely, choosing ‘0’, ‘c0’, and the ‘unit sphere’ S? in P(C)
makes P(C) — {oc} into a Euclidean vector space = R3.
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Dual pictures of de Sitter observer space

Theorem:
{observers in $*'} 2 {Euclidean de-compactifications of P(C)}

This isomorphism is canonical and SO, (4, 1)-equivariant.



Dual pictures of de Sitter observer space

Continuing in this way, we get...

Spacetime picture:

O

space of unit future

timelike vectors
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Conformal picture:
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Local description

So far, an observer is very ‘nonlocal’: need two points in P(C)
plus a sphere.

Fortunately, the Euclidean decompactification is determined
entirely by local data on P(C):

Theorem: The observer space of de Sitter spacetime is
isomorphic as a G-space to the space of all transverse 3-planes
in the tautological bundle over the conformal 3-sphere.



Main theorem

We can now write the theorem from the beginning more
precisely:

Theorem:

1. A conformal geometry canonically determines an observer
space geometry on the space of transverse 3-planes in the
tautological bundle.

2. For the P(C), this coincides with the observer space
associated to St

We can also write integrability conditions that allow
reconstruction of conformal space from a general observer space
geometry, analogous to the conditions for reconstruction of
spacetime in [1210.0019].

What do Cartan geometries actually look like? ...
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Example: spacetime Cartan geometry

Cartan geometry modeled on G/H involves breaking G
symmetry to H to split a connection into pieces....

Familiar example: MacDowell-Mansouri gravity:
G =8S0,(4,1) H =S0,(3,1)
As reps of SO(3,1):

s0(4,1) =2 s0(3,1) @ R

= A = w + e
spin conn. coframe

[gr-qc/0611154]


http://arxiv.org/abs/gr-qc/0611154/

Cartan geometry

Observer space geometry is modeled on SO,(4,1)/SO(3), so
[1210.0019]

s0(4,1) = s0(3) & (R} & R} & R)

/ N

rotations boosts spatial time
translations translations

On the other hand, the dual ‘holographic’ picture of observers
suggests a different splitting:

50(4,1) =91 ® g D 911
translations of rotations translations of
asymptotic past and time asymptotic future

translations

This splitting is a standard tool in conformal Cartan geometry.

Here we interpret it terms of observer space geometry.
20
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Cartan geometry

How are the two decompositions (and their geometric
interpretations) related?

s0(4,1) = 50(3) ® (R} @ R} O R) | [s0(4,1) = g, D gy @ 9.

50(3) is the stabilizer of (z,u) € O

go = 50(3) @& R (stabilizer of inertial observer)
gx1={(B,T) eR} &R} : B = £T}

® p:=g, D gy is the stabilizer of [z — u] € P(C)



What's this got to do with “shape dynamics”?

S. Gryb and F. Mercati, 1209.4858:

e 2-+1 split of 3d gravity (Chern-Simons with G = SO,(3,1))
e write the fields according to the split

50(3,1) 2 50(2) @ (R @ RZ @ R)

e take linear combinations of fields to reorganize them
according to
50(3,1) =g 1 S go D g

e interpret these fields as living on a 2-sphere, thus giving a
conformal Cartan connection.

e show the result is equivalent to shape dynamics for 3d GR!

But the geometric meaning of this reorganization of fields is
explained by observer space...

N
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What's this got to do with “shape dynamics”?

In particular:

The 2d conformal space in this theory is evidently not “space”,
but some nonlocal quotient of observer space. For 3d de Sitter
spacetime, a point in this conformal space looks like this in

spacetime:
¥ \ :JJ
R

\
|

So, is shape dynamics really is a theory of dynamical “spatial”

conformal geometry?
23



Conclusions

e New examples of observer space geometries! Questions:
e Dynamics for physically realistic ‘holographic general
relativity’?
o Is shape dynamics exactly that?
e Challenge: Geometric interpretation of shape dynamics?

o Is this a special trick of 3d gravity?

e Try doing it for 4d starting from [S. Gielen, DKW,
1111.7195], keeping all of the Cartan geometric aspects
explicit.

e Is the nonlocal nature of conformal ‘space’ responsible for
the nonlocal Hamiltonian in shape dynamics?

e Is the ‘linking theory’ [1101.5974] best framed in terms of
observer space?


http://arxiv.org/abs/1111.7195/
http://arxiv.org/abs/1101.5974/

