Some analytical results of the Hamiltonian operator in LQG

Cong Zhang

January 22, 2018

Outline

Deparametrized model of LQG coupled to scalar field

General works about the physical Hamiltonian

Restriction on a special case

A toy model of LQG cosmology

Conclusion and outlook

Deparametrized model of LQG coupling to a scalar field_(Alesci et al., 2015)

Introduce the other fields as reference frame classically.

Deparametrized model of LQG coupling to a scalar field(Alesci et al., 2015)

- Introduce the other fields as reference frame classically.
- Solve the constraint equation to obtain a physical Hamiltonian. In the model coupling to a scalar field

$$C'(x) = \pi(x) \pm \sqrt{h(x)}$$

where

$$h(x) = -\sqrt{|\det E|} \left(-C^{\mathrm{gr}} \pm \sqrt{(C^{\mathrm{gr}})^2 - q^{ab}C_a^{\mathrm{gr}}C_b^{\mathrm{gr}}} \right)$$

Deparametrized model of LQG coupling to a scalar field(Alesci et al., 2015)

- Introduce the other fields as reference frame classically.
- Solve the constraint equation to obtain a physical Hamiltonian. In the model coupling to a scalar field

$$C'(x) = \pi(x) \pm \sqrt{h(x)}$$

where

$$h(x) = -\sqrt{|\det E|} \left(-C^{\mathrm{gr}} \pm \sqrt{(C^{\mathrm{gr}})^2 - q^{ab}C_a^{\mathrm{gr}}C_b^{\mathrm{gr}}} \right)$$

Quantize this system.

Lewandowski et al., 2011)

▶ The physical Hilbert space \mathcal{H}_{phy} : the Hilbert space space of pure gravity, satisfying Gaussian and vector constraints.

Lewandowski et al., 2011)

- ▶ The physical Hilbert space \mathcal{H}_{phy} : the Hilbert space space of pure gravity, satisfying Gaussian and vector constraints.
- ► The dynamic:

$$i\hbar \frac{d}{dt}\Psi = \hat{H}\Psi$$

where t is a parameter of the transformations $\phi \mapsto \phi + t$.

Lewandowski et al., 2011)

- ► The physical Hilbert space H_{phy}: the Hilbert space space of pure gravity, satisfying Gaussian and vector constraints.
- ► The dynamic:

$$i\hbar \frac{d}{dt}\Psi = \hat{H}\Psi$$

where t is a parameter of the transformations $\phi \mapsto \phi + t$.

► The quantum Hamiltonian

$$\hat{H} = \int d^3x \sqrt{-2\sqrt{|\det E(x)|}C^{\rm gr}(x)}$$

Lewandowski et al., 2011)

- ► The physical Hilbert space H_{phy}: the Hilbert space space of pure gravity, satisfying Gaussian and vector constraints.
- ► The dynamic:

$$i\hbar \frac{d}{dt}\Psi = \hat{H}\Psi$$

where t is a parameter of the transformations $\phi \mapsto \phi + t$.

► The quantum Hamiltonian

$$\hat{H} = \int d^3x \sqrt{-2\sqrt{|\det E(x)|}C^{\rm gr}(x)}$$

What I do is to study this (physical) Hamiltonian operator.

► Classical expression of $\sqrt{|\det E(x)|}C^{gr}(x)$ $-\sqrt{|\det E(x)|}C^{gr}(x)$ $=\frac{1}{16\pi\beta^2G}\left(\epsilon_{ijk}E_i^a(x)E_j^b(x)F_{ab}^k(x)+(1+\beta^2)|\det E(x)|R(x)\right)$ $=:\frac{1}{16\pi\beta^2G}(H^E(x)+H^L(x)).$

► Classical expression of $\sqrt{|\det E(x)|}C^{gr}(x)$ $-\sqrt{|\det E(x)|}C^{gr}(x)$ $=\frac{1}{16\pi\beta^2G}\left(\epsilon_{ijk}E^a_i(x)E^b_j(x)F^k_{ab}(x)+(1+\beta^2)|\det E(x)|R(x)\right)$ $=:\frac{1}{16\pi\beta^2G}(H^E(x)+H^L(x)).$

Volume operator is not involved.

► Classical expression of $\sqrt{|\det E(x)|}C^{gr}(x)$ $-\sqrt{|\det E(x)|}C^{gr}(x)$ $=\frac{1}{16\pi\beta^2G}\left(\epsilon_{ijk}E^a_i(x)E^b_j(x)F^k_{ab}(x)+(1+\beta^2)|\det E(x)|R(x)\right)$

$$=:\frac{1}{16\pi\beta^2G}(H^E(x)+H^L(x)).$$

- Volume operator is not involved.
 - ► The analysis is simpler.

▶ Classical expression of $\sqrt{|\det E(x)|}C^{gr}(x)$

$$\begin{split} &-\sqrt{|\det E(x)|}C^{\mathrm{gr}}(x)\\ &=\frac{1}{16\pi\beta^2G}\left(\epsilon_{ijk}E^a_i(x)E^b_j(x)F^k_{ab}(x)+(1+\beta^2)|\det E(x)|R(x)\right)\\ &=:\frac{1}{16\pi\beta^2G}(H^E(x)+H^L(x)). \end{split}$$

- Volume operator is not involved.
 - ▶ The analysis is simpler.
 - ▶ It is possible to start from the simplest case of 2-valent graph.

RS (MERS)

General works about the physical Hamiltonian

► The chosen loop to quantize F_{ab} (Thiemann, 2007, Yang and Ma, 2015)

► The chosen loop to quantize F_{ab} (Thiemann, 2007, Yang and Ma, 2015)

► Expression of the Hamiltonian operator(Alesci et al., 2015)

$$\begin{split} \hat{H} &= \frac{1}{\sqrt{16\pi G\beta^2}} \sum_{v \in V(\gamma)} \sqrt{\sum_{e,e' \text{ at } v} \epsilon(e,e') (H^E_{v,ee'} + (H^E_{v,ee'})^\dagger) + (1+\beta^2) H^L_{v,ee'}} \\ H^E_{v,ee'} &= \epsilon_{ijk} \mathrm{Tr}^{(I)} (h_{\alpha_{\mathbf{ee'}}} \tau^i) J^j_{v,e} J^k_{v,e'} \\ H^L_{ee'} &:= \sqrt{\delta_{ii'} \left(\epsilon_{ijk} J^j_{v,e} J^k_{v,e'}\right) \left(\epsilon_{i'j'k'} J^{j'}_{v,e} J^{k'}_{v,e'}\right)} \left(\frac{2\pi}{\alpha} - \pi + \arccos\left[\frac{\delta_{kl} J^k_{v,e} J^l_{v,e'}}{\sqrt{\delta_{kk'} J^k_{v,e} J^k_{v,e}} \sqrt{\delta_{kk'} J^k_{v,e'}} J^{k'}_{v,e'} J^{k'}_{v,e'}}\right] \right] \end{split}$$

The physical Hilbert space:

► Degenerate vertex:

The physical Hilbert space:

▶ Degenerate vertex:

 $ightharpoonup V_{
m nd}(\gamma)$: non-degenerate vertices. ${
m Diff}_{V_{
m nd}}$:diffeomorphisms preserving $V_{
m nd}$. ${
m Diff}(\gamma)_{
m Tr}$: diffeomorphisms acting trivially on γ

The physical Hilbert space:

► Degenerate vertex:

- $V_{\rm nd}(\gamma)$: non-degenerate vertices. ${\rm Diff}_{V_{\rm nd}}$:diffeomorphisms preserving V_{nd} . ${\rm Diff}(\gamma)_{{\rm Tr}}$: diffeomorphisms acting trivially on γ
- ightharpoonup Physical state from $|\psi_{\gamma}\rangle$

$$(\psi_{\gamma}| = \mathcal{N}_{\gamma} \sum_{\phi \in \mathrm{Diff}_{\mathrm{Vnd}}/\mathrm{Diff}(\gamma)_{\mathrm{Tr}}} U_{\phi} |\psi_{\gamma}\rangle := \eta |\psi\rangle$$

► The graphs:

► The graphs:

▶ The Hilbert space: Spin networks on γ_n .

Restriction on a special case

▶ Spin networks on γ_n : $|\gamma_n, \vec{j}, \vec{l}\>\rangle\sim$

► Ambiguity of choosing spin *l*:

Restriction on a special case

► Ambiguity of choosing spin *l*:

$$I(j_n) = \begin{cases} 1 & , \ j_n = 1/2, \\ 1/2 & , \ j_n \neq 1/2. \end{cases}$$

- ▶ Spin networks on γ_n : $|\gamma_n, \vec{j}, \vec{l}\> \rangle \sim \int_{\substack{j_1 \\ j_{n-1} \\ j_{n+1} \\ j_{n$
- Ambiguity of choosing spin 1:

$$\epsilon_{ijk} \mathrm{Tr}^{(l)}(h_{lpha_{ee'}} au^i) J^j_{v,e} J^k_{v,e'} : \int_{j_1, \dots, j_n}^{j_1} \int_{j_n}^{j_1} \int_{j_n}^{j_1} \int_{j_n}^{j_1} \int_{j_n}^{j_1} \int_{j_n}^{j_1} \int_{j_n}^{j_1} \int_{j_n}^{j_2} \int_{j_n}^{j$$

$$I(j_n) = \begin{cases} 1 & , j_n = 1/2, \\ 1/2 & , j_n \neq 1/2. \end{cases}$$

$$\blacktriangleright \mathcal{H}_{\text{phy}} = \overline{\text{span}(([\gamma_n], \vec{j} \mid := \mathcal{N} \sum_{\phi \in \text{Diff}_v/\text{Diff}_{T_v}(\gamma_n)} U_\phi | \gamma_n, \vec{j}, I(\vec{j}))})$$

► The graphs:

Hilbert space:

$$\mathcal{H}_{\mathrm{phy}} = \overline{\mathrm{span}\big(\; \big([\gamma_n], \vec{j} \mid := \mathcal{N} \sum_{\phi \in \mathrm{Diff}_{\mathrm{v}}/\mathrm{Diff}_{\mathrm{Tr}}(\gamma_n)} U_\phi | \gamma_n, \vec{j}, I(\vec{j} \; \big) \; \big\rangle\big)}.$$

R RS

Restriction on a special case

► The graphs:

Hilbert space:

$$\mathcal{H}_{\text{phy}} = \overline{\text{span}(\ ([\gamma_n], \vec{j} \mid := \mathcal{N} \sum_{\phi \in \text{Diff}_v/\text{Diff}_{\text{Tr}}(\gamma_n)} U_\phi | \gamma_n, \vec{j}, I(\vec{j}) \ \rangle)}.$$

▶ Operator: Hamiltonian operator restricted on the Hilbert space.

NIC (M RS)

Restriction on a special case

► The graphs:

Hilbert space:

$$\mathcal{H}_{\text{phy}} = \overline{\text{span}(\ ([\gamma_n], \vec{j} \mid := \mathcal{N} \sum_{\phi \in \text{Diff}_v/\text{Diff}_{\text{Tr}}(\gamma_n)} U_{\phi} | \gamma_n, \vec{j}, I(\vec{j}) \ \rangle)}.$$

▶ **Operator**: Hamiltonian operator restricted on the Hilbert space, $H|_{\mathcal{H}_{\text{phy}}}$.

► The graphs:

Hilbert space:

$$\mathcal{H}_{\text{phy}} = \overline{\text{span}(\ ([\gamma_n], \vec{j} \mid := \mathcal{N} \sum_{\phi \in \text{Diff}_v/\text{Diff}_{\text{Tr}}(\gamma_n)} U_{\phi} | \gamma_n, \vec{j}, I(\vec{j}) \ \rangle)}.$$

- ▶ **Operator**: Hamiltonian operator restricted on the Hilbert space, $H|_{\mathcal{H}_{\text{phy}}}$.
- **Question**: Self-adjointness of the restricted *H*.

R R R

Self-adjointness of the Hamiltonian operator

Theorem

Let N be a self-adjoint operator with $N \ge 1$. Let H be a symmetric operator with domain D which is a core for N. Suppose that:

i For some c and all $\psi \in D$,

$$||H\psi|| \le c||\mathsf{N}\psi||.$$

ii For some d and all $\psi \in D$,

$$|(H\psi, N\psi) - (N\psi, H\psi)| \le d||N^{1/2}\psi||^2$$

Then A is essential self-adjoint on D and its closure is essentially self-adjoint on any core for N.

Self-adjointness of the Hamiltonian operator

Theorem

Let N be a self-adjoint operator with $N \ge 1$. Let H be a symmetric operator with domain D which is a core for N. Suppose that:

i For some c and all $\psi \in D$,

$$||H\psi|| \le c||N\psi||.$$

ii For some d and all $\psi \in D$,

$$|(H\psi, N\psi) - (N\psi, H\psi)| \le d||N^{1/2}\psi||^2$$

Then A is essential self-adjoint on D and its closure is essentially self-adjoint on any core for N.

We can choose the operator N, diagonalized under the basis, that is $\left(\left[\gamma_{n}\right],\vec{j}\middle|N=\left(\left[\gamma_{n}\right],\vec{j}\middle|N(j_{n+1})\right)$, such that $N(j)\cong j^{n}$ with $n\geq 1$.

Summation

▶ We prove the operator *H*, restricted on the simplest graph, is self-adjoint.

Summation

- ▶ We prove the operator *H*, restricted on the simplest graph, is self-adjoint.
- ▶ Turn to the graph preserving version.

Summation

- ▶ We prove the operator *H*, restricted on the simplest graph, is self-adjoint.
- Turn to the graph preserving version.
 - Consider the coherent state peaking at the cosmology phase space.

Summation

- ▶ We prove the operator *H*, restricted on the simplest graph, is self-adjoint.
- Turn to the graph preserving version.
 - Consider the coherent state peaking at the cosmology phase space.
 - ► Calculate the semiclassical dynamics with the coherent state as the initial data.

RS (MERS)

The heat kernel coherent state

Classical phase space of the cosmology phase space:

$$A_a^i = c V_o^{-1/3} \mathring{\omega}_a^i, E_i^a = p V_0^{-2/3} \sqrt{q_o} \mathring{e}_i^a$$

RS RS

The heat kernel coherent state

Classical phase space of the cosmology phase space:

$$A_a^i = cV_o^{-1/3}\mathring{\omega}_a^i, E_i^a = pV_0^{-2/3}\sqrt{q_o}\mathring{e}_i^a$$

► The graph: dipole graph with two *N*-valent vertices.

The heat kernel coherent state

Classical phase space of the cosmology phase space:

$$A_a^i = cV_o^{-1/3}\mathring{\omega}_a^i, E_i^a = pV_0^{-2/3}\sqrt{q_o}\mathring{e}_i^a$$

- ► The graph: dipole graph with two *N*-valent vertices.
- lacktriangle Coherent state for $p\gg 1$ (Bahr and Thiemann, 2009, Bianchi et al., 2010):

$$\Psi_{c,p}(\vec{g}) \cong \prod_{e \in E(\gamma)} \left(\sum_{j_e} (2j_e + 1)e^{-tj_e(j_e+1) + \nu pj_e - i\mu cj_e} D^{j_e}_{j_e,j_e}(n_e^{-1}g_e n_e) \right)$$

The heat kernel coherent state

Classical phase space of the cosmology phase space:

$$A_a^i = cV_o^{-1/3}\mathring{\omega}_a^i, E_i^a = pV_0^{-2/3}\sqrt{q_o}\mathring{e}_i^a$$

- ► The graph: dipole graph with two *N*-valent vertices.
- lacktriangle Coherent state for $p\gg 1$ (Bahr and Thiemann, 2009, Bianchi et al., 2010):

$$\Psi_{c,p}(\vec{g}\) \cong \prod_{e \in E(\gamma)} \left(\sum_{j_e} (2j_e + 1)e^{-tj_e(j_e + 1) + \nu pj_e - i\mu cj_e} D^{j_e}_{j_e,j_e}(n_e^{-1}g_e n_e) \right)$$

▶ The coherent states inspires us to consider the Hilbert space

$$\mathcal{H}_{\cos} = \mathrm{span}(\langle ec{g} | ec{j} \
angle := igotimes_{e \in \gamma} D^{j_e}_{j_e j_e}(n_e^{-1}gn_e))$$

The heat kernel coherent state

Classical phase space of the cosmology phase space:

$$A_a^i = cV_o^{-1/3}\mathring{\omega}_a^i, E_i^a = pV_0^{-2/3}\sqrt{q_o}\mathring{e}_i^a$$

- ► The graph: dipole graph with two *N*-valent vertices.
- lacktriangle Coherent state for $p\gg 1$ (Bahr and Thiemann, 2009, Bianchi et al., 2010):

$$\Psi_{c,p}(\vec{g}\) \cong \prod_{e \in E(\gamma)} \left(\sum_{j_e} (2j_e + 1)e^{-tj_e(j_e + 1) + \nu pj_e - i\mu cj_e} D^{j_e}_{j_e,j_e}(n_e^{-1}g_e n_e) \right)$$

▶ The coherent states inspires us to consider the Hilbert space

$$\mathcal{H}_{\cos} = \overline{\operatorname{span}(\langle \vec{g} | \vec{j} \; \rangle := \bigotimes_{e \in \gamma} D^{j_e}_{j_e j_e}(n_e^{-1}gn_e))}$$

► The factor $e^{-tj(j+1)+\nu pj-i\mu cj}$ is a Gaussian function on j peaking at $j_0 \cong \frac{\nu p}{2t}$, so we focus on large j limit when calculating.

Action of holonomy and flux operators on \mathcal{H}_{\cos}

For the holonomy operator:

$$h_e^{1/2} D_{n_e n_e}^{j_e}(g)$$

$$\cong D^{1/2}(n_e) \cdot \begin{pmatrix} D_{n_e n_e}^{j_e + 1/2}(g) & 0 \\ 0 & D_{n_e n_e}^{j_e - 1/2}(g) \end{pmatrix} \cdot D^{1/2}(n_e^{-1}) + O(1/\sqrt{j})$$

with the abbreviation of $D^j_{nn}(g) := D^j_{jj}(n^{-1}gn)$

Action of holonomy and flux operators on \mathcal{H}_{\cos}

► For the holonomy operator:

$$h_e^{1/2} D_{n_e n_e}^{j_e}(g)$$

$$\cong D^{1/2}(n_e) \cdot \begin{pmatrix} D_{n_e n_e}^{j_e + 1/2}(g) & 0 \\ 0 & D_{n_e n_e}^{j_e - 1/2}(g) \end{pmatrix} \cdot D^{1/2}(n_e^{-1}) + O(1/\sqrt{j})$$

with the abbreviation of $D_{nn}^{j}(g) := D_{ij}^{j}(n^{-1}gn)$

► For the Flux operator

$$\vec{J}_{v,e}D_{n_e n_e}^{j_e}(g) = j_e \vec{n}_e D_{n_e n_e}^{j_e}(g) + O(\sqrt{j})$$
 (1)

RS RS

Action of holonomy and flux operators on \mathcal{H}_{\cos}

For the holonomy operator:

$$h_e^{1/2} D_{n_e n_e}^{j_e}(g)$$

$$\cong D^{1/2}(n_e) \cdot \begin{pmatrix} D_{n_e n_e}^{j_e + 1/2}(g) & 0 \\ 0 & D_{n_e n_e}^{j_e - 1/2}(g) \end{pmatrix} \cdot D^{1/2}(n_e^{-1}) + O(1/\sqrt{j})$$

with the abbreviation of $D_{nn}^{j}(g) := D_{ij}^{j}(n^{-1}gn)$

► For the Flux operator

$$\vec{J}_{v,e}D_{n_e n_e}^{j_e}(g) = j_e \vec{n}_e D_{n_e n_e}^{j_e}(g) + O(\sqrt{j})$$
 (1)

▶ The Hilbert space \mathcal{H}_{\cos} is preserved approximately for large j.

The Hamiltonian operator

▶ Action of
$$H$$
 on \mathcal{H}_{COS} , $H = \sum_{v} \sqrt{\left|\sum_{\text{ee'}} H_{v,\text{ee'}}^E + H_{v,\text{ee'}}^L\right|}$

$$H_{v,\text{ee'}}^{(E)}, D_{n_e n_e}^{j_e}(g_e) D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'}) \cong (\sqrt{j_e + 1/2} D_{n_e n_e}^{j_e + 1/2}(g_e) - \sqrt{j_e - 1/2} D_{n_e n_e}^{j_e - 1/2}(g_e)) \sqrt{j_e} \times \times (\sqrt{j_{e'} + 1/2} D_{n_{e'} n_{e'}}^{j_{e'} + 1/2}(g_{e'}) - \sqrt{j_{e'} - 1/2} D_{n_{e'} n_{e'}}^{j_{e'} - 1/2}(g_{e'})) \sqrt{j_{e'}}$$

$$H_{v,\text{ee'}}^L, D_{n_e n_e}^{j_e}(g_e) D_{n_e n_e}^{j_{e'}}(g_{e'}) \cong \alpha_{ee'} \sin(\theta_{ee'}) j_{e'}, D_{n_e n_e}^{j_e}(g_e) D_{n_e n_e}^{j_{e'}}(g_{e'})$$

The Hamiltonian operator

▶ Action of
$$H$$
 on \mathcal{H}_{cos} , $H = \sum_{v} \sqrt{|\sum_{\text{ee'}} H_{v,\text{ee'}}^{E} + H_{v,\text{ee'}}^{L}|}$
 $H_{v,\text{ee'}}^{(E)} D_{n_e n_e}^{j_e}(g_e) D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'}) \cong (\sqrt{j_e + 1/2} D_{n_e n_e}^{j_e + 1/2}(g_e) - \sqrt{j_e - 1/2} D_{n_e n_e}^{j_e - 1/2}(g_e)) \sqrt{j_e} \times (\sqrt{j_{e'} + 1/2} D_{n_{e'} n_{e'}}^{j_{e'} + 1/2}(g_{e'}) - \sqrt{j_{e'}} - 1/2} D_{n_{e'} n_{e'}}^{j_{e'} - 1/2}(g_{e'})) \sqrt{j_{e'}}$
 $H_{v,\text{ee'}}^{L} D_{n_e n_e}^{j_e}(g_e) D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'}) \cong \alpha_{ee'} \sin(\theta_{ee'}) |j_{e'}| D_{n_e n_e}^{j_e}(g_e) D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'})$

 $\vdash H_{v,ee}^E$ and $H_{v,ee}^L$ are self-adjoint.

The Hamiltonian operator

▶ Action of H on \mathcal{H}_{\cos} , $H = \sum_{v} \sqrt{|\sum_{ee'} H_{v,ee'}^E + H_{v,ee'}^L|}$

$$\begin{split} H_{v,ee'}^{(E)}D_{n_e n_e}^{j_e}(g_e)D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'}) &\cong (\sqrt{j_e+1/2}D_{n_e n_e}^{j_e+1/2}(g_e) - \sqrt{j_e-1/2}D_{n_e n_e}^{j_e-1/2}(g_e))\sqrt{j_e} \times \\ &\times (\sqrt{j_{e'}+1/2}D_{n_{e'} n_{e'}}^{j_{e'}+1/2}(g_{e'}) - \sqrt{j_{e'}-1/2}D_{n_{e'} n_{e'}}^{j_{e'}-1/2}(g_{e'}))\sqrt{j_{e'}} \\ H_{v,ee'}^{L}D_{n_e n_e}^{j_e}(g_e)D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'}) &\cong \alpha_{ee'} \sin(\theta_{ee'})j_e j_e'D_{n_e n_e}^{j_e}(g_e)D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'}) \end{split}$$

- ▶ $H_{v,ee}^E$ and $H_{v,ee}^L$ are self-adjoint.
- ▶ $H_{v,ee}^{E}$ can be rewritten as $H_{v,ee'}^{E} = -H_{v,e}H_{v,e'}$ with

$$H_{v,e}D_{n_e n_e}^{j_e}(g_e) = i\left(\sqrt{j_e + 1/2}D_{n_e n_e}^{j_e + 1/2}(g_e) - \sqrt{j_e - 1/2}D_{n_e n_e}^{j_e - 1/2}(g_e)\right)\sqrt{j_e}$$

The Hamiltonian operator

▶ Action of H on \mathcal{H}_{\cos} , $H = \sum_{v} \sqrt{|\sum_{ee'} H_{v,ee'}^E + H_{v,ee'}^L|}$

$$\begin{split} H_{v,ee'}^{(E)}D_{n_e n_e}^{j_e}(g_e)D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'}) &\cong (\sqrt{j_e+1/2}D_{n_e n_e}^{j_e+1/2}(g_e) - \sqrt{j_e-1/2}D_{n_e n_e}^{j_e-1/2}(g_e))\sqrt{j_e} \times \\ &\times (\sqrt{j_{e'}+1/2}D_{n_{e'} n_{e'}}^{j_{e'}+1/2}(g_{e'}) - \sqrt{j_{e'}-1/2}D_{n_{e'} n_{e'}}^{j_{e'}-1/2}(g_{e'}))\sqrt{j_{e'}} \\ H_{v,ee'}^{L}D_{n_e n_e}^{j_e}(g_e)D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'}) &\cong \alpha_{ee'} \sin(\theta_{ee'})j_e j_{e'} D_{n_e n_e}^{j_e}(g_e)D_{n_{e'} n_{e'}}^{j_{e'}}(g_{e'}) \end{split}$$

- ▶ $H_{v,ee}^E$ and $H_{v,ee}^L$ are self-adjoint.
- ▶ $H_{v,ee}^{E}$ can be rewritten as $H_{v,ee'}^{E} = -H_{v,e}H_{v,e'}$ with

$$H_{v,e}D_{n_{e}n_{e}}^{j_{e}}(g_{e})=i\left(\sqrt{j_{e}+1/2}D_{n_{e}n_{e}}^{j_{e}+1/2}(g_{e})-\sqrt{j_{e}-1/2}D_{n_{e}n_{e}}^{j_{e}-1/2}(g_{e})\right)\sqrt{j_{e}}$$

► For large *j*,

$$H_{v,e} \cong i\sqrt{j_e} \frac{d}{dj_e} \sqrt{j_e} =: H_e^c$$

which is a self-adjoint in the Hilbert space $L^2(\mathbb{R}^+)$ with "eigenvector" $\varphi_\omega(j_e)=\frac{\mathrm{e}^{-i\omega\ln(j_e)}}{\sqrt{j_e}}$.

Minkowski condition:

$$\sum_{e \text{ at } v} j_e \vec{n}_e = 0$$

Minkowski condition:

$$\sum_{e \text{ at } v} j_e \vec{n}_e = 0$$

▶ The volume operator under this condition:

$$V|j_eec{n}_e
angle\sim\sqrt{\epsilon^{ee'e''}j_ej_{e'}j_{e''}ec{n}_e\cdot(ec{n}_{e'} imesec{n}_{e''})}|j_eec{n}_e
angle+o(\sqrt{j})$$

coincide with the classical expression.

Minkowski condition:

$$\sum_{e \text{ at } v} j_e \vec{n}_e = 0$$

▶ The volume operator under this condition:

$$V|j_eec{n}_e
angle\sim\sqrt{\epsilon^{ee'e''}j_ej_{e'}j_{e''}ec{n}_e\cdot(ec{n}_{e'} imesec{n}_{e''})}|j_eec{n}_e
angle+o(\sqrt{j})$$

coincide with the classical expression.

▶ The operator $\sum_{ee'} A_{v,ee'} doesn't$ preserve the condition.

Minkowski condition:

$$\sum_{e \text{ at } v} j_e \vec{n}_e = 0$$

▶ The volume operator under this condition:

$$V|j_eec{n}_e
angle\sim\sqrt{\epsilon^{ee'e''}j_ej_{e'}j_{e''}ec{n}_e\cdot(ec{n}_{e'} imesec{n}_{e''})}|j_eec{n}_e
angle+o(\sqrt{j})$$

coincide with the classical expression.

- ▶ The operator $\sum_{ee' \text{ at } v} H_{v,ee'}$ doesn't preserve the condition.
- ▶ Does the evolution operator e^{iHt} preserve this condition?

A toy model for LQG cosmology

► Regardless of the Lorentz part of the Hamiltonian operator,

A toy model for LQG cosmology

- ► Regardless of the Lorentz part of the Hamiltonian operator,
- Consider the "continuous" limit of the above model

A toy model for LQG cosmology

- Regardless of the Lorentz part of the Hamiltonian operator,
- Consider the "continuous" limit of the above model
- The Hilbert space $\mathcal{H}_{\cos} = \frac{1}{\operatorname{span}(\langle \vec{g}|\vec{j} \rangle := \bigotimes_{e \in \gamma} D^{j_e}_{j_e j_e}(n_e^{-1}gn_e))} \to L^2((\mathbb{R}^+)^N, d\vec{x})$

A toy model for LQG cosmology

- Regardless of the Lorentz part of the Hamiltonian operator,
- Consider the "continuous" limit of the above model
- The Hilbert space $\mathcal{H}_{\cos} = \frac{1}{\operatorname{span}(\langle \vec{g} | \vec{j} \rangle) := \bigotimes_{e \in \gamma} D^{i_e}_{i_e i_e}(n_e^{-1}gn_e)} \to L^2((\mathbb{R}^+)^N, d\vec{x})$
- ▶ The Hamiltonian operator $H = \sum_{v} \sqrt{\sum_{e,e'} H^E_{v,ee'}} \rightarrow H = \sqrt{|\sum_{ee'} H^c_e H^c_{e'}|} = \sqrt{\sum_{ee'} \sqrt{|x_e x_{e'}} \frac{\partial^2}{\partial x_e \partial x_{e'}} \sqrt{x_e x_{e'}}|}$

Semiclassical analysis:

• Coherent state $\Psi(\vec{x}) = \prod_{e \in \gamma} \psi(x_e)$

$$\psi(\mathbf{x}) := \int_{-\infty}^{\infty} d\omega e^{-\frac{\left(\omega - \omega_0\right)^2}{2\sigma^2} + i\xi_0 \, \omega} \, \phi_\omega(\mathbf{x}) = \sqrt{\frac{\sigma^2}{\mathbf{x}}} e^{-\frac{\sigma^2}{2} \left(\xi_0 - \ln(\mathbf{x})\right)^2 - i\omega_0(\xi_0 - \ln(\mathbf{x}))}$$

RS RS

Semiclassical analysis:

• Coherent state $\Psi(\vec{x}) = \prod_{e \in \gamma} \psi(x_e)$

$$\psi(\mathbf{x}) := \int_{-\infty}^{\infty} d\omega e^{-\frac{\left(\omega - \omega_0\right)^2}{2\sigma^2} + i\xi_0\omega} \phi_\omega(\mathbf{x}) = \sqrt{\frac{\sigma^2}{x}} e^{-\frac{\sigma^2}{2} \left(\xi_0 - \ln(\mathbf{x})\right)^2 - i\omega_0(\xi_0 - \ln(\mathbf{x}))}$$

► The semiclassical condition: $\xi_0 \gg 1$, $\sigma \ll 1$, while $\sigma \xi_0 \gg 1$ for $\Delta \ln x / \ln x \ll 1$.

RS RS

Semiclassical analysis:

• Coherent state $\Psi(\vec{x}) = \prod_{e \in \gamma} \psi(x_e)$

$$\psi(\mathbf{x}) := \int_{-\infty}^{\infty} d\omega e^{-\frac{\left(\omega - \omega_0\right)^2}{2\sigma^2} + i\xi_0\omega} \phi_\omega(\mathbf{x}) = \sqrt{\frac{\sigma^2}{\mathbf{x}}} e^{-\frac{\sigma^2}{2}(\xi_0 - \ln(\mathbf{x}))^2 - i\omega_0(\xi_0 - \ln(\mathbf{x}))}$$

- ▶ The semiclassical condition: $\xi_0 \gg 1$, $\sigma \ll 1$, while $\sigma \xi_0 \gg 1$ for $\Delta \ln x / \ln x \ll 1$.
- Solving the dynamic:

$$\Psi(\vec{x},\tau) = e^{iH\tau} \Psi(\vec{x}) = \frac{1}{\sqrt{\prod_i x_i}} \int_{-\infty}^{\infty} d^N \omega e^{-\frac{\sum_i (\omega_i - \omega_0)^2}{2\sigma^2} + i \sum_i (\xi_0 - \ln(x_i))\omega_i + i \sqrt{|\sum_{i \neq j} \omega_i \omega_j|} \tau}$$

Semiclassical analysis:

• Coherent state $\Psi(\vec{x}) = \prod_{e \in \gamma} \psi(x_e)$

$$\psi(\mathbf{x}) := \int_{-\infty}^{\infty} d\omega e^{-\frac{(\omega - \omega_0)^2}{2\sigma^2} + i\xi_0\omega} \phi_\omega(\mathbf{x}) = \sqrt{\frac{\sigma^2}{\mathbf{x}}} e^{-\frac{\sigma^2}{2}(\xi_0 - \ln(\mathbf{x}))^2 - i\omega_0(\xi_0 - \ln(\mathbf{x}))}$$

- ► The semiclassical condition: $\xi_0 \gg 1$, $\sigma \ll 1$, while $\sigma \xi_0 \gg 1$ for $\Delta \ln x / \ln x \ll 1$.
- Solving the dynamic:

$$\Psi(\vec{x},\tau) = e^{iH\tau} \Psi(\vec{x}) = \frac{1}{\sqrt{\prod_i x_i}} \int_{-\infty}^{\infty} d^N \omega e^{-\frac{\sum_i (\omega_i - \omega_0)^2}{2\sigma^2} + i \sum_i (\xi_0 - \ln(x_i))\omega_i + i \sqrt{|\sum_{i \neq j} \omega_i \omega_j|} \tau}$$

► The trajectory where the state peaks:

$$\ln x_i - \xi_0 = \frac{N-1}{2\sqrt{C_N^2}} \tau$$

Conclusion and outlook

- Semiclassically, the quantum dynamic gives us an expanding universe.
- ▶ The peak satisfies the Minkowski condition.
- Future works: the quantum phenomenon, generalization to general graph, same problem with graph changing Hamiltonian......

Thanks!