Some analytical results of the Hamiltonian operator in LQG

Cong Zhang

January 22, 2018

Outline

Deparametrized model of LQG coupled to scalar field

General works about the physical Hamiltonian

Restriction on a special case

A toy model of LQG cosmology

Conclusion and outlook

Deparametrized model of LQG coupling to a scalar field (Alessi et al. 2015)

- Introduce the other fields as reference frame classically.

Deparametrized model of LQG coupling to a scalar field (Alescsi et al. 2015) $^{\text {2 }}$

- Introduce the other fields as reference frame classically.
- Solve the constraint equation to obtain a physical Hamiltonian. In the model coupling to a scalar field

$$
C^{\prime}(x)=\pi(x) \pm \sqrt{h(x)}
$$

where

$$
h(x)=-\sqrt{|\operatorname{det} E|}\left(-C^{\mathrm{gr}} \pm \sqrt{\left(C^{\mathrm{gr}}\right)^{2}-q^{a b} C_{a}^{\mathrm{gr}} C_{b}^{\mathrm{gr}}}\right)
$$

Deparametrized model of LQG coupling to a scalar field (Alescsi et al. 2015) $^{\text {2 }}$

- Introduce the other fields as reference frame classically.
- Solve the constraint equation to obtain a physical Hamiltonian. In the model coupling to a scalar field

$$
C^{\prime}(x)=\pi(x) \pm \sqrt{h(x)}
$$

where

$$
h(x)=-\sqrt{|\operatorname{det} E|}\left(-C^{\mathrm{gr}} \pm \sqrt{\left(C^{\mathrm{gr}}\right)^{2}-q^{a b} C_{a}^{\mathrm{gr}} C_{b}^{\mathrm{gr}}}\right)
$$

- Quantize this system.

Main results of the quantum Theory ${ }_{\text {(Domagata e tal., 2010, }}$

Lewandowski et al., 2011)

- The physical Hilbert space $\mathcal{H}_{\text {phy }}$: the Hilbert space space of pure gravity, satisfying Gaussian and vector constraints.

Main results of the quantum Theory (Domagat e e al., 2010, $^{\text {, }}$

Lewandowski et al., 2011)

- The physical Hilbert space $\mathcal{H}_{\text {phy }}$: the Hilbert space space of pure gravity, satisfying Gaussian and vector constraints.
- The dynamic:

$$
i \hbar \frac{d}{d t} \Psi=\hat{H} \Psi
$$

where t is a parameter of the transformations $\phi \mapsto \phi+t$.

Main results of the quantum Theory ${ }_{\text {(Domagata e tal., 2010, }}$

Lewandowski et al., 2011)

- The physical Hilbert space $\mathcal{H}_{\text {phy }}$: the Hilbert space space of pure gravity, satisfying Gaussian and vector constraints.
- The dynamic:

$$
i \hbar \frac{d}{d t} \Psi=\hat{H} \Psi
$$

where t is a parameter of the transformations $\phi \mapsto \phi+t$.

- The quantum Hamiltonian

$$
\hat{H}=\int d^{3} x \sqrt{-2 \sqrt{|\operatorname{det} E(x)|} C^{\operatorname{gr}}(x)}
$$

Main results of the quantum Theory ${ }_{\text {(Domagat e e al., 2010, }}$

- The physical Hilbert space $\mathcal{H}_{\text {phy }}$: the Hilbert space space of pure gravity, satisfying Gaussian and vector constraints.
- The dynamic:

$$
i \hbar \frac{d}{d t} \Psi=\hat{H} \Psi
$$

where t is a parameter of the transformations $\phi \mapsto \phi+t$.

- The quantum Hamiltonian

$$
\hat{H}=\int d^{3} x \sqrt{-2 \sqrt{|\operatorname{det} E(x)|} C^{\operatorname{gr}}(x)}
$$

What I do is to study this (physical) Hamiltonian operator.

General works about the physical Hamiltonian

- Classical expression of $\sqrt{|\operatorname{det} E(x)|} C^{\text {gr }}(x)$

$$
\begin{aligned}
& -\sqrt{|\operatorname{det} E(x)|} C^{\mathrm{gr}}(x) \\
= & \frac{1}{16 \pi \beta^{2} G}\left(\epsilon_{i j k} E_{i}^{a}(x) E_{j}^{b}(x) F_{a b}^{k}(x)+\left(1+\beta^{2}\right)|\operatorname{det} E(x)| R(x)\right) \\
= & : \frac{1}{16 \pi \beta^{2} G}\left(H^{E}(x)+H^{L}(x)\right) .
\end{aligned}
$$

General works about the physical Hamiltonian

- Classical expression of $\sqrt{|\operatorname{det} E(x)|} C^{\text {gr }}(x)$

$$
\begin{aligned}
& -\sqrt{|\operatorname{det} E(x)|} C^{\mathrm{gr}}(x) \\
= & \frac{1}{16 \pi \beta^{2} G}\left(\epsilon_{i j k} E_{i}^{a}(x) E_{j}^{b}(x) F_{a b}^{k}(x)+\left(1+\beta^{2}\right)|\operatorname{det} E(x)| R(x)\right) \\
= & : \frac{1}{16 \pi \beta^{2} G}\left(H^{E}(x)+H^{L}(x)\right) .
\end{aligned}
$$

- Volume operator is not involved.

General works about the physical Hamiltonian

- Classical expression of $\sqrt{|\operatorname{det} E(x)|} C^{\text {gr }}(x)$

$$
\begin{aligned}
& -\sqrt{|\operatorname{det} E(x)|} C^{\mathrm{gr}}(x) \\
= & \frac{1}{16 \pi \beta^{2} G}\left(\epsilon_{i j k} E_{i}^{a}(x) E_{j}^{b}(x) F_{a b}^{k}(x)+\left(1+\beta^{2}\right)|\operatorname{det} E(x)| R(x)\right) \\
= & : \frac{1}{16 \pi \beta^{2} G}\left(H^{E}(x)+H^{L}(x)\right) .
\end{aligned}
$$

- Volume operator is not involved.
- The analysis is simpler.

General works about the physical Hamiltonian

- Classical expression of $\sqrt{|\operatorname{det} E(x)|} C^{\text {gr }}(x)$

$$
\begin{aligned}
& -\sqrt{|\operatorname{det} E(x)|} C^{\mathrm{gr}}(x) \\
= & \frac{1}{16 \pi \beta^{2} G}\left(\epsilon_{i j k} E_{i}^{a}(x) E_{j}^{b}(x) F_{a b}^{k}(x)+\left(1+\beta^{2}\right)|\operatorname{det} E(x)| R(x)\right) \\
= & : \frac{1}{16 \pi \beta^{2} G}\left(H^{E}(x)+H^{L}(x)\right) .
\end{aligned}
$$

- Volume operator is not involved.
- The analysis is simpler.
- It is possible to start from the simplest case of 2-valent graph.

General works about the physical Hamiltonian

- The chosen loop to quantize $F_{a b}$ (Thiemann, 2007, Yang and Ma , 2015)

General works about the physical Hamiltonian

- The chosen loop to quantize $F_{a b}$ (Thiemann, 2007, Yang and $M a, 2015$)

- Expression of the Hamiltonian operator(Alesci et al., 2015)

$$
\begin{aligned}
& \hat{H}=\frac{1}{\sqrt{16 \pi G \beta^{2}}} \sum_{v \in V(\gamma)} \sqrt{\sum_{e, e^{\prime} \text { atv }} \epsilon\left(e, e^{\prime}\right)\left(H_{v, e e^{\prime}}^{\mathrm{E}}+\left(H_{v, e e^{\prime}}^{\mathrm{E}}\right)^{\dagger}\right)+\left(1+\beta^{2}\right) H_{v, e e^{\prime}}^{L}} \\
& H_{v, e e^{\prime}}^{E}=\epsilon_{j j k} \mathrm{Tr}^{(1)}\left(h_{\alpha e^{\prime}} \tau^{\prime}\right) J_{v, e}^{j} e_{v, e^{\prime}}^{k}
\end{aligned}
$$

General works about the physical Hamiltonian

The physical Hilbert space:

- Degenerate vertex:

General works about the physical Hamiltonian

The physical Hilbert space:

- Degenerate vertex:

- $V_{\text {nd }}(\gamma)$: non-degenerate vertices.

Diff $_{V_{\text {nd }}}$: diffeomorphisms preserving $V_{n d}$.
Diff $(\gamma)_{\mathrm{Tr}}$: diffeomorphisms acting trivially on γ

General works about the physical Hamiltonian

The physical Hilbert space:

- Degenerate vertex:

- $V_{\text {nd }}(\gamma)$: non-degenerate vertices.

Diff $_{V_{\text {nd }}}$: diffeomorphisms preserving $V_{n d}$.
Diff $(\gamma)_{\mathrm{Tr}}$: diffeomorphisms acting trivially on γ

- Physical state from $\left|\psi_{\gamma}\right\rangle$

$$
\left(\psi_{\gamma}\left|=\mathcal{N}_{\gamma} \sum_{\phi \in \operatorname{Diff}_{\mathrm{v}_{\mathrm{nd}}} / \operatorname{Diff}(\gamma)_{\mathrm{Tr}}} U_{\phi}\right| \psi_{\gamma}\right\rangle:=\eta|\psi\rangle
$$

Restriction on a special case

- The graphs:
$\left(H^{E}\right)^{n}: \gamma_{0}:=$

Restriction on a special case

- The graphs:
$\left(H^{E}\right)^{n}: \gamma_{0}:=$

- The Hilbert space: Spin networks on γ_{n}.

Restriction on a special case

- Spin networks on $\gamma_{n}:\left|\gamma_{n}, \vec{j}, \vec{l}\right\rangle \sim$

Restriction on a special case

- Spin networks on $\gamma_{n}:\left|\gamma_{n}, \vec{j}, \vec{l}\right\rangle \sim$

- Ambiguity of choosing spin I :
$\epsilon_{i j k} \operatorname{Tr}^{(/)}\left(h_{\alpha_{e e^{\prime}}} \tau^{i}\right) J_{v, e}^{j} J_{v, e^{\prime}}^{k}:$

Restriction on a special case

- Spin networks on $\gamma_{n}:\left|\gamma_{n}, \vec{j}, \vec{l}\right\rangle \sim$

- Ambiguity of choosing spin I :

$$
\epsilon_{i j k} \operatorname{Tr}^{(I)}\left(h_{\alpha_{e e^{\prime}}} \tau^{i}\right) J_{v, e}^{j} J_{v, e^{\prime}}^{k}:
$$

- $I\left(j_{n}\right)=\left\{\begin{array}{cl}1 & , j_{n}=1 / 2, \\ 1 / 2 & , j_{n} \neq 1 / 2 .\end{array}\right.$

Restriction on a special case

- Spin networks on $\gamma_{n}:\left|\gamma_{n}, \vec{j}, \vec{l}\right\rangle \sim$

- Ambiguity of choosing spin I :
$\epsilon_{i j k} \operatorname{Tr}^{(I)}\left(h_{\alpha_{e e^{\prime}}} \tau^{i}\right) J_{v, e}^{j} J_{v, e^{\prime}}^{k}:$

- $I\left(j_{n}\right)=\left\{\begin{array}{cl}1 & , j_{n}=1 / 2, \\ 1 / 2 & , j_{n} \neq 1 / 2 .\end{array}\right.$
- $\mathcal{H}_{\text {phy }}=\overline{\operatorname{span}\left(\left(\left[\gamma_{n}\right], \vec{j}\left|:=\mathcal{N} \sum_{\phi \in \operatorname{Diff}_{\mathrm{v}} / \operatorname{Diff}_{\mathrm{Tr}_{\mathrm{r}}\left(\gamma_{\mathrm{n}}\right)}} U_{\phi}\right| \gamma_{n}, \vec{j}, l(\vec{j})\right\rangle\right)}$

Restriction on a special case

- The graphs:
$\left(H^{E}\right)^{n}: \gamma_{0}:=$

- Hilbert space:

$$
\mathcal{H}_{\mathrm{phy}}=\overline{\operatorname{span}\left(\left(\left[\gamma_{n}\right], \vec{j}\left|:=\mathcal{N} \sum_{\phi \in \operatorname{Diff}_{\mathrm{v}} / \operatorname{Diff}_{\mathrm{Tr}}\left(\gamma_{\mathrm{n}}\right)} U_{\phi}\right| \gamma_{n}, \vec{j}, l(\vec{j})\right\rangle\right)}
$$

Restriction on a special case

- The graphs:
$\left(H^{E}\right)^{n}: \gamma_{0}:=$

- Hilbert space:

$$
\mathcal{H}_{\mathrm{phy}}=\stackrel{\rightharpoonup}{\operatorname{span}\left(\left(\left[\gamma_{n}\right], \vec{j}\left|:=\mathcal{N} \sum_{\phi \in \operatorname{Diff}_{\mathrm{v}} / \operatorname{Diff}_{\mathrm{Tr}}\left(\gamma_{\mathrm{n}}\right)} U_{\phi}\right| \gamma_{n}, \vec{j}, l(\vec{j})\right\rangle\right)}
$$

- Operator: Hamiltonian operator restricted on the Hilbert space.

Restriction on a special case

Restriction on a special case

- The graphs:

- Hilbert space:

$$
\mathcal{H}_{\text {phy }}=\overline{\operatorname{span}\left(\left(\left[\gamma_{n}\right], \vec{j}\left|:=\mathcal{N} \sum_{\phi \in \operatorname{Diff}_{\mathrm{v}} / \operatorname{Diff}_{\mathrm{Tr}}\left(\gamma_{\mathrm{n}}\right)} U_{\phi}\right| \gamma_{n}, \vec{j}, l(\vec{j})\right\rangle\right)} .
$$

- Operator: Hamiltonian operator restricted on the Hilbert space, $\left.H\right|_{\mathcal{H}_{\text {phy }}}$.

Restriction on a special case

- The graphs:
$\left(H^{E}\right)^{n}: \gamma_{0}:=$

- Hilbert space:

$$
\mathcal{H}_{\text {phy }}=\overline{\operatorname{span}\left(\left(\left[\gamma_{n}\right], \vec{j}\left|:=\mathcal{N} \sum_{\phi \in \operatorname{Diff}_{\mathrm{v}} / \operatorname{Diff}_{\mathrm{Tr}}\left(\gamma_{\mathrm{n}}\right)} U_{\phi}\right| \gamma_{n}, \vec{j}, l(\vec{j})\right\rangle\right)} .
$$

- Operator: Hamiltonian operator restricted on the Hilbert space, $\left.H\right|_{\mathcal{H}_{\text {phy }}}$.
- Question: Self-adjointness of the restricted H.

Self-adjointness of the Hamiltonian operator

Theorem

Let N be a self-adjoint operator with $N \geq 1$. Let H be a symmetric operator with domain D which is a core for N. Suppose that:
i For some c and all $\psi \in D$,

$$
\|H \psi\| \leq c\|N \psi\| .
$$

ii For some d and all $\psi \in D$,

$$
|(H \psi, N \psi)-(N \psi, H \psi)| \leq d\left\|N^{1 / 2} \psi\right\|^{2}
$$

Then A is essential self-adjoint on D and its closure is essentially self-adjoint on any core for N.

Self-adjointness of the Hamiltonian operator

Theorem

Let N be a self-adjoint operator with $N \geq 1$. Let H be a symmetric operator with domain D which is a core for N. Suppose that:
i For some c and all $\psi \in D$,

$$
\|H \psi\| \leq c\|N \psi\| .
$$

ii For some d and all $\psi \in D$,

$$
|(H \psi, N \psi)-(N \psi, H \psi)| \leq d\left\|N^{1 / 2} \psi\right\|^{2}
$$

Then A is essential self-adjoint on D and its closure is essentially self-adjoint on any core for N.

We can choose the operator N, diagonalized under the basis, that is $\left(\left[\gamma_{n}\right], \vec{j} \mid N=\left(\left[\gamma_{n}\right], \vec{j} \mid N\left(j_{n+1}\right)\right.\right.$, such that $N(j) \cong j^{n}$ with $n \geq 1$.

Summation

- We prove the operator H, restricted on the simplest graph, is self-adjoint.

Summation

- We prove the operator H, restricted on the simplest graph, is self-adjoint.
- Turn to the graph preserving version.

Summation

- We prove the operator H, restricted on the simplest graph, is self-adjoint.
- Turn to the graph preserving version.
- Consider the coherent state peaking at the cosmology phase space.

Summation

- We prove the operator H, restricted on the simplest graph, is self-adjoint.
- Turn to the graph preserving version.
- Consider the coherent state peaking at the cosmology phase space.
- Calculate the semiclassical dynamics with the coherent state as the initial data.

The heat kernel coherent state

- Classical phase space of the cosmology phase space:

$$
A_{a}^{i}=c V_{o}^{-1 / 3} \dot{\omega}_{a}^{i}, E_{i}^{a}=p V_{0}^{-2 / 3} \sqrt{q_{o}} \stackrel{\grave{e}}{i}_{a}
$$

The heat kernel coherent state

- Classical phase space of the cosmology phase space:

$$
A_{a}^{i}=c V_{o}^{-1 / 3} \stackrel{\omega}{\omega}_{a}^{i}, E_{i}^{a}=p V_{0}^{-2 / 3} \sqrt{q_{o}} \stackrel{e}{e}_{i}^{a}
$$

- The graph: dipole graph with two N-valent vertices.

The heat kernel coherent state

- Classical phase space of the cosmology phase space:

$$
A_{a}^{i}=c V_{o}^{-1 / 3} \stackrel{\omega}{\omega}_{a}^{i}, E_{i}^{a}=p V_{0}^{-2 / 3} \sqrt{q_{o}} \stackrel{e}{e}_{i}^{a}
$$

- The graph: dipole graph with two N-valent vertices.
- Coherent state for $p \gg 1$ (Bahr and Thiemann, 2009, Bianchi et al., 2010):

$$
\Psi_{c, p}(\vec{g}) \cong \prod_{e \in E(\gamma)}\left(\sum_{j_{e}}\left(2 j_{e}+1\right) e^{-t j_{e}\left(j_{e}+1\right)+\nu p_{j}-i \mu j_{e} D_{j_{e}, j_{e}}^{j_{e}}\left(n_{e}^{-1} g_{e} n_{e}\right)}\right)
$$

The heat kernel coherent state

- Classical phase space of the cosmology phase space:

$$
A_{a}^{i}=c V_{o}^{-1 / 3} \stackrel{\omega}{\omega}_{a}^{i}, E_{i}^{a}=p V_{0}^{-2 / 3} \sqrt{q_{o}} \stackrel{e}{e}_{i}^{a}
$$

- The graph: dipole graph with two N-valent vertices.
- Coherent state for $p \gg 1$ (Bahr and Thiemann, 2009, Bianchi et al., 2010):

$$
\Psi_{c, p}(\vec{g}) \cong \prod_{e \in E(\gamma)}\left(\sum_{j_{e}}\left(2 j_{e}+1\right) e^{-t t_{j}\left(j_{e}+1\right)+\nu p j_{e}-i \mu j_{j} D_{j_{e}, j_{e}}^{j_{e}}\left(n_{e}^{-1} g_{e} n_{e}\right)}\right)
$$

- The coherent states inspires us to consider the Hilbert space

$$
\mathcal{H}_{\mathrm{cos}}=\overline{\operatorname{span}\left(\langle\vec{g} \mid \vec{j}\rangle:=\bigotimes_{e \in \gamma} D_{j e_{e}}^{j_{e}}\left(n_{e}^{-1} g n_{e}\right)\right)}
$$

The heat kernel coherent state

- Classical phase space of the cosmology phase space:

$$
A_{a}^{i}=c V_{o}^{-1 / 3} \dot{\omega}_{a}^{i}, E_{i}^{a}=p V_{0}^{-2 / 3} \sqrt{q_{o}} \stackrel{\grave{e}}{i}_{a}
$$

- The graph: dipole graph with two N-valent vertices.
- Coherent state for $p \gg 1$ (Bahr and Thiemann, 2009, Bianchi et al., 2010):

$$
\psi_{c, p}(\vec{g}) \cong \prod_{e \in E(\gamma)}\left(\sum_{j_{e}}\left(2 j_{e}+1\right) e^{-t j_{e}\left(j_{e}+1\right)+\nu p j_{e}-i \mu c_{j}} D_{j_{e}, j_{e}}^{j_{e}}\left(n_{e}^{-1} g_{e} n_{e}\right)\right)
$$

- The coherent states inspires us to consider the Hilbert space

$$
\mathcal{H}_{\mathrm{cos}}=\overline{\operatorname{span}\left(\langle\vec{g} \mid \vec{j}\rangle:=\bigotimes_{e \in \gamma} D_{j j_{e}}^{j_{e}}\left(n_{e}^{-1} g n_{e}\right)\right)}
$$

- The factor $e^{-t j(j+1)+\nu p j-i \mu c j}$ is a Gaussian function on j peaking at $j_{0} \cong \frac{\nu p}{2 t}$, so we focus on large j limit when calculating.

Action of holonomy and flux operators on $\mathcal{H}_{\text {cos }}$

- For the holonomy operator:

$$
\begin{aligned}
& h_{e}^{1 / 2} D_{n_{e} n_{e}}^{j_{e}}(g) \\
\cong & D^{1 / 2}\left(n_{e}\right) \cdot\left(\begin{array}{cc}
D_{n_{e} n_{e}}^{j_{e}+1 / 2}(g) & 0 \\
0 & D_{n_{e} n_{e}}^{j_{e}-1 / 2}(g)
\end{array}\right) \cdot D^{1 / 2}\left(n_{e}^{-1}\right)+O(1 / \sqrt{j})
\end{aligned}
$$

with the abbreviation of $D_{n n}^{j}(g):=D_{j j}^{j}\left(n^{-1} g n\right)$

Action of holonomy and flux operators on $\mathcal{H}_{\text {cos }}$

- For the holonomy operator:

$$
\begin{aligned}
& h_{e}^{1 / 2} D_{n_{e} n_{e}}^{j_{e}}(g) \\
\cong & D^{1 / 2}\left(n_{e}\right) \cdot\left(\begin{array}{cc}
D_{n_{e} n_{e}}^{j_{e}+1 / 2}(g) & 0 \\
0 & D_{n_{e} n_{e}}^{j_{e}-1 / 2}(g)
\end{array}\right) \cdot D^{1 / 2}\left(n_{e}^{-1}\right)+O(1 / \sqrt{j})
\end{aligned}
$$

with the abbreviation of $D_{n n}^{j}(g):=D_{j j}^{j}\left(n^{-1} g n\right)$

- For the Flux operator

$$
\begin{equation*}
\vec{J}_{v, e} D_{n_{e} n_{e}}^{j_{e}}(g)=j_{e} \vec{n}_{e} D_{n_{e} n_{e}}^{j_{e}}(g)+O(\sqrt{j}) \tag{1}
\end{equation*}
$$

Action of holonomy and flux operators on $\mathcal{H}_{\text {cos }}$

- For the holonomy operator:

$$
\begin{aligned}
& h_{e}^{1 / 2} D_{n_{e} n_{e}}^{j_{e}}(g) \\
\cong & D^{1 / 2}\left(n_{e}\right) \cdot\left(\begin{array}{cc}
D_{n_{e} n_{e}}^{j_{e}+1 / 2}(g) & 0 \\
0 & D_{n_{e} n_{e}}^{j_{e}-1 / 2}(g)
\end{array}\right) \cdot D^{1 / 2}\left(n_{e}^{-1}\right)+O(1 / \sqrt{j})
\end{aligned}
$$

with the abbreviation of $D_{n n}^{j}(g):=D_{j j}^{j}\left(n^{-1} g n\right)$

- For the Flux operator

$$
\begin{equation*}
\vec{J}_{v, e} D_{n_{e} n_{e}}^{j_{e}}(g)=j_{e} \vec{n}_{e} D_{n_{e} n_{e}}^{j_{e}}(g)+O(\sqrt{j}) \tag{1}
\end{equation*}
$$

- The Hilbert space $\mathcal{H}_{\text {cos }}$ is preserved approximately for large j.

The Hamiltonian operator

- Action of H on $\mathcal{H}_{\text {cos }}, H=\sum_{v} \sqrt{\left|\sum_{e e^{\prime}} H_{v, e e^{\prime}}^{E}+H_{v, e e^{\prime}}^{L}\right|}$

$$
\begin{aligned}
H_{v, e e^{\prime}}^{(E)} D_{n_{e} n_{e}}^{j e}\left(g_{e}\right) D_{n_{e^{\prime}} n_{e^{\prime}}}^{j_{e^{\prime}}}\left(g_{e^{\prime}}\right) \cong & \left(\sqrt{j_{e}+1 / 2} D_{n_{e} n_{e}}^{j e+1 / 2}\left(g_{e}\right)-\sqrt{j_{e}-1 / 2} D_{n_{e} n_{e}}^{j e-1 / 2}\left(g_{e}\right)\right) \sqrt{j_{e}} \times \\
& \times\left(\sqrt{j_{e^{\prime}}+1 / 2} D_{n_{e^{\prime}} j_{e^{\prime}}^{j}+1 / 2}^{n_{e^{\prime}}}\left(g_{e^{\prime}}\right)-\sqrt{j_{e^{\prime}}-1 / 2} D_{n_{e^{\prime}} n_{e^{\prime}}^{j}-1 / 2}^{j^{\prime}}\left(g_{e^{\prime}}\right)\right) \sqrt{j_{e^{\prime}}} \\
H_{v, e e^{\prime}}^{L} D_{n_{e} n_{e}}^{j e}\left(g_{e}\right) D_{n_{e^{\prime}} n_{e^{\prime}}}^{j_{e^{\prime}}}\left(g_{e^{\prime}}\right) \cong & \alpha_{e e^{\prime}} \sin \left(\theta_{e e^{\prime}}\right) j_{e j_{e^{\prime}}} D_{n_{e} n_{e}}^{j_{e}}\left(g_{e}\right) D_{n_{e^{\prime}} n_{e^{\prime}}}^{j_{e^{\prime}}}\left(g_{e^{\prime}}\right)
\end{aligned}
$$

The Hamiltonian operator

- Action of H on $\mathcal{H}_{\text {cos }}, H=\sum_{v} \sqrt{\left|\sum_{e e^{\prime}} H_{v, e e^{\prime}}^{E}+H_{v, e e^{\prime}}^{L}\right|}$

$$
\begin{aligned}
H_{v, e e^{\prime}}^{(E)} D_{n_{e} n_{e}}^{j e}\left(g_{e}\right) D_{n_{e^{\prime}} n_{e^{\prime}}}^{j_{j}^{\prime}}\left(g_{e^{\prime}}\right) \cong & \left(\sqrt{j_{e}+1 / 2} D_{n_{e} n_{e}}^{j e+1 / 2}\left(g_{e}\right)-\sqrt{j_{e}-1 / 2} D_{n_{e} n_{e}}^{j e-1 / 2}\left(g_{e}\right)\right) \sqrt{j_{e}} \times \\
& \times\left(\sqrt{j_{e^{\prime}}+1 / 2} D_{n_{e^{\prime}}^{j}}^{j_{e^{\prime}}+1 / 2}\left(g_{e^{\prime}}\right)-\sqrt{j_{e^{\prime}}-1 / 2} D_{n_{e^{\prime}} n_{e^{\prime}}^{j}-1 / 2}^{n^{\prime}}\left(g_{e^{\prime}}\right)\right) \sqrt{j_{e^{\prime}}} \\
H_{v, e e^{\prime}}^{L} D_{n_{e} n_{e}}^{j e}\left(g_{e}\right) D_{n_{e^{\prime}} n_{e^{\prime}}}^{j_{e^{\prime}}}\left(g_{e^{\prime}}\right) \cong & \alpha_{e e^{\prime}} \sin \left(\theta_{e e^{\prime}}\right) j_{e j_{j^{\prime}}} D_{n_{e} n_{e}}^{j_{e}}\left(g_{e}\right) D_{n_{e^{\prime}} n_{e^{\prime}}}^{j^{\prime}}\left(g_{e^{\prime}}\right)
\end{aligned}
$$

- $H_{v, e e}^{E}$ and $H_{v, e e}^{L}$ are self-adjoint.

The Hamiltonian operator

- Action of H on $\mathcal{H}_{\text {cos }}, H=\sum_{v} \sqrt{\left|\sum_{e e^{\prime}} H_{v, e e^{\prime}}^{E}+H_{v, e e^{\prime}}^{L}\right|}$

$$
\begin{aligned}
H_{v, e e^{\prime}}^{(E)} D_{n_{e} n_{e}}^{j e}\left(g_{e}\right) D_{n_{e^{\prime}} n_{e^{\prime}}}^{j_{j}^{\prime}}\left(g_{e^{\prime}}\right) \cong & \left(\sqrt{j_{e}+1 / 2} D_{n_{e} n_{e}}^{j e+1 / 2}\left(g_{e}\right)-\sqrt{j_{e}-1 / 2} D_{n_{e} n_{e}}^{j e-1 / 2}\left(g_{e}\right)\right) \sqrt{j_{e}} \times \\
& \times\left(\sqrt{j_{e^{\prime}}+1 / 2} D_{n_{e^{\prime}}^{j}}^{j_{e^{\prime}}+1 / 2}\left(g_{e^{\prime}}\right)-\sqrt{j_{e^{\prime}}-1 / 2} D_{n_{e^{\prime}} n_{e^{\prime}}^{j}-1 / 2}^{e^{\prime}}\left(g_{e^{\prime}}\right)\right) \sqrt{j_{e^{\prime}}} \\
H_{v, e e^{\prime}}^{L} D_{n_{e} n_{e}}^{j e}\left(g_{e}\right) D_{n_{e^{\prime}} n_{e^{\prime}}}^{j_{e^{\prime}}}\left(g_{e^{\prime}}\right) \cong & \alpha_{e e^{\prime}} \sin \left(\theta_{e e^{\prime}}\right) j_{e j_{e}} D_{n_{e} n_{e}}^{j_{e}}\left(g_{e}\right) D_{n_{e^{\prime}} n_{e^{\prime}}}^{j_{e^{\prime}}}\left(g_{e^{\prime}}\right)
\end{aligned}
$$

- $H_{v, e e}^{E}$ and $H_{v, e e}^{L}$ are self-adjoint.
- $H_{v, e e}^{E}$ can be rewritten as $H_{v, e e^{\prime}}^{E}=-H_{v, e} H_{v, e^{\prime}}$ with

$$
H_{v, e} D_{n_{e} n_{e}}^{j_{e}}\left(g_{e}\right)=i\left(\sqrt{j_{e}+1 / 2} D_{n_{e} n_{e}}^{j_{e}+1 / 2}\left(g_{e}\right)-\sqrt{j_{e}-1 / 2} D_{n_{e} n_{e}}^{j_{e}-1 / 2}\left(g_{e}\right)\right) \sqrt{j_{e}}
$$

The Hamiltonian operator

- Action of H on $\mathcal{H}_{\text {cos }}, H=\sum_{v} \sqrt{\left|\sum_{e e^{\prime}} H_{v, e e^{\prime}}^{E}+H_{v, e e^{\prime}}^{L}\right|}$

$$
\begin{aligned}
& H_{v, e e^{\prime}}^{(E)} D_{n_{e} n_{e}}^{j_{e}}\left(g_{e}\right) D_{n_{e^{\prime}}^{j_{e} n_{e^{\prime}}}}\left(g_{e^{\prime}}\right) \cong\left(\sqrt{j_{e}+1 / 2} D_{n_{e} n_{e}}^{j_{e}+1 / 2}\left(g_{e}\right)-\sqrt{j_{e}-1 / 2} D_{n_{e} n_{e}}^{j_{e}-1 / 2}\left(g_{e}\right)\right) \sqrt{j_{e}} \times \\
& \times\left(\sqrt{j_{e^{\prime}}+1 / 2} D_{n_{e^{\prime}} j^{\prime}{ }^{\prime}+1 / 2}^{n_{e^{\prime}}}\left(g_{e^{\prime}}\right)-\sqrt{j_{e^{\prime}}-1 / 2} D_{n_{e^{\prime}}{ }^{j} \boldsymbol{e}^{\prime}-1 / 2}\left(g_{e^{\prime}}\right)\right) \sqrt{j_{e^{\prime}}}
\end{aligned}
$$

- $H_{v, e e}^{E}$ and $H_{v, e e}^{L}$ are self-adjoint.
- $H_{v, e e}^{E}$ can be rewritten as $H_{v, e e^{\prime}}^{E}=-H_{v, e} H_{v, e^{\prime}}$ with

$$
H_{v, e} D_{n_{e} n_{e}}^{j_{e}}\left(g_{e}\right)=i\left(\sqrt{j_{e}+1 / 2} D_{n_{e} n_{e}}^{j_{e}+1 / 2}\left(g_{e}\right)-\sqrt{j_{e}-1 / 2} D_{n_{e} n_{e}}^{j_{e}-1 / 2}\left(g_{e}\right)\right) \sqrt{j_{e}}
$$

- For large j,

$$
H_{v, e} \cong i \sqrt{j_{e}} \frac{d}{d j_{e}} \sqrt{j_{e}}=: H_{e}^{c}
$$

which is a self-adjoint in the Hilbert space $L^{2}\left(\mathbb{R}^{+}\right)$with "eigenvector" $\varphi_{\omega}\left(j_{e}\right)=\frac{e^{-i \omega \ln \left(j_{e}\right)}}{\sqrt{j_{e}}}$.

Some issues about the Minkowski condition

- Minkowski condition:

$$
\sum_{e \text { at } v} j_{e} \vec{n}_{e}=0
$$

Some issues about the Minkowski condition

- Minkowski condition:

$$
\sum_{e \text { at } v} j_{e} \vec{n}_{e}=0
$$

- The volume operator under this condition:

$$
V\left|j_{e} \vec{n}_{e}\right\rangle \sim \sqrt{\epsilon^{e e^{\prime} e^{\prime \prime}} j_{e} j_{e^{\prime}} j_{e^{\prime \prime}} \vec{n}_{e} \cdot\left(\vec{n}_{e^{\prime}} \times \vec{n}_{e^{\prime \prime}}\right)}\left|j_{e} \vec{n}_{e}\right\rangle+o(\sqrt{j})
$$

coincide with the classical expression.

Some issues about the Minkowski condition

- Minkowski condition:

$$
\sum_{e \text { at } v} j_{e} \vec{n}_{e}=0
$$

- The volume operator under this condition:

$$
V\left|j_{e} \vec{n}_{e}\right\rangle \sim \sqrt{\epsilon^{e e^{\prime} e^{\prime \prime}} j_{e} j_{e^{\prime}} j_{e^{\prime \prime}} \vec{n}_{e} \cdot\left(\vec{n}_{e^{\prime}} \times \vec{n}_{e^{\prime \prime}}\right)}\left|j_{e} \vec{n}_{e}\right\rangle+o(\sqrt{j})
$$

coincide with the classical expression.

- The operator $\sum_{e e^{\prime} \text { at } v} H_{v, e e^{\prime}}$ doesn't preserve the condition.

Some issues about the Minkowski condition

- Minkowski condition:

$$
\sum_{e \text { at } v} j_{e} \vec{n}_{e}=0
$$

- The volume operator under this condition:

$$
V\left|j_{e} \vec{n}_{e}\right\rangle \sim \sqrt{\epsilon^{e e^{\prime} e^{\prime \prime}} j_{e} j_{e^{\prime}} j_{e^{\prime \prime}} \vec{n}_{e} \cdot\left(\vec{n}_{e^{\prime}} \times \vec{n}_{e^{\prime \prime}}\right)}\left|j_{e} \vec{n}_{e}\right\rangle+o(\sqrt{j})
$$

coincide with the classical expression.

- The operator $\sum_{e e^{\prime} \text { at } v} H_{v, e e^{\prime}}$ doesn't preserve the condition.
- Does the evolution operator $e^{i H t}$ preserve this condition?

A toy model for LQG cosmology

- Regardless of the Lorentz part of the Hamiltonian operator,

A toy model for LQG cosmology

- Regardless of the Lorentz part of the Hamiltonian operator,
- Consider the "continuous" limit of the above model

A toy model for LQG cosmology

- Regardless of the Lorentz part of the Hamiltonian operator,
- Consider the "continuous" limit of the above model
- The Hilbert space $\mathcal{H}_{\mathrm{cos}}=$ $\overline{\operatorname{span}\left(\langle\vec{g} \mid \vec{j}\rangle:=\bigotimes_{e \in \gamma} D_{j_{e} j_{e}}^{j_{e}}\left(n_{e}^{-1} g n_{e}\right)\right)} \rightarrow L^{2}\left(\left(\mathbb{R}^{+}\right)^{N}, d \vec{x}\right)$

A toy model for LQG cosmology

- Regardless of the Lorentz part of the Hamiltonian operator,
- Consider the "continuous" limit of the above model
- The Hilbert space $\mathcal{H}_{\mathrm{cos}}=$
$\operatorname{span}\left(\langle\vec{g} \mid \vec{j}\rangle:=\bigotimes_{e \in \gamma} D_{j_{e} j_{e}}^{j_{e}}\left(n_{e}^{-1} g n_{e}\right)\right) \rightarrow L^{2}\left(\left(\mathbb{R}^{+}\right)^{N}, d \vec{x}\right)$
- The Hamiltonian operator $H=\sum_{v} \sqrt{\sum_{e, e^{\prime}} H_{v, e e^{\prime}}^{E}} \rightarrow H=$
$\sqrt{\left|\sum_{e e^{\prime}} H_{e}^{c} H_{e^{\prime}}^{c}\right|}=\sqrt{\sum_{e e^{\prime}} \sqrt{\mid x_{e} x_{e^{\prime}}} \frac{\partial^{2}}{\partial x_{e} \partial x_{e^{\prime}}} \sqrt{x_{e} x_{e^{\prime}} \mid}}$

Semiclassical analysis:

- Coherent state $\Psi(\vec{x})=\prod_{e \in \gamma} \psi\left(x_{e}\right)$

$$
\psi(x):=\int_{-\infty}^{\infty} d \omega e^{-\frac{\left(\omega-\omega_{0}\right)^{2}}{2 \sigma^{2}}+i \xi_{0} \omega} \phi_{\omega}(x)=\sqrt{\frac{\sigma^{2}}{x}} e^{-\frac{\sigma^{2}}{2}\left(\xi_{0}-\ln (x)\right)^{2}-i \omega_{0}\left(\xi_{0}-\ln (x)\right)}
$$

Semiclassical analysis:

- Coherent state $\Psi(\vec{x})=\prod_{e \in \gamma} \psi\left(x_{e}\right)$

$$
\psi(x):=\int_{-\infty}^{\infty} d \omega e^{-\frac{\left(\omega-\omega_{0}\right)^{2}}{2 \sigma^{2}}+i \xi_{0} \omega} \phi_{\omega}(x)=\sqrt{\frac{\sigma^{2}}{x}} e^{-\frac{\sigma^{2}}{2}\left(\xi_{0}-\ln (x)\right)^{2}-i \omega_{0}\left(\xi_{0}-\ln (x)\right)}
$$

- The semiclassical condition: $\xi_{0} \gg 1, \sigma \ll 1$, while $\sigma \xi_{0} \gg 1$ for $\Delta \ln x / \ln x \ll 1$.

Semiclassical analysis:

- Coherent state $\psi(\vec{x})=\prod_{e \in \gamma} \psi\left(x_{e}\right)$

$$
\psi(x):=\int_{-\infty}^{\infty} d \omega e^{-\frac{\left(\omega-\omega_{0}\right)^{2}}{2 \sigma^{2}}+i \xi_{0} \omega} \phi_{\omega(x)}=\sqrt{\frac{\sigma^{2}}{x}} e^{-\frac{\sigma^{2}}{2}\left(\xi_{0}-\ln (x)\right)^{2}-i \omega_{0}\left(\xi_{0}-\ln (x)\right)}
$$

- The semiclassical condition: $\xi_{0} \gg 1, \sigma \ll 1$, while $\sigma \xi_{0} \gg 1$ for $\Delta \ln x / \ln x \ll 1$.
- Solving the dynamic:

$$
\Psi(\vec{x}, \tau)=e^{i H \tau} \Psi(\vec{x})=\frac{1}{\sqrt{\Pi_{i} x_{i}}} \int_{-\infty}^{\infty} d^{N} \omega^{-\frac{\sum_{i}\left(\omega_{i}-\omega_{0}\right)^{2}}{2 \sigma^{2}}}+i \sum_{i}\left(\xi_{0}-\ln \left(x_{i}\right) \omega_{i}+i \sqrt{\left|\sum_{i \neq j} \omega_{i} \omega_{j}\right| \tau}\right.
$$

Semiclassical analysis:

- Coherent state $\psi(\vec{x})=\prod_{e \in \gamma} \psi\left(x_{e}\right)$

$$
\psi(x):=\int_{-\infty}^{\infty} d \omega e^{-\frac{\left(\omega-\omega_{0}\right)^{2}}{2 \sigma^{2}}+i \xi_{0} \omega} \phi_{\omega}(x)=\sqrt{\frac{\sigma^{2}}{x}} e^{-\frac{\sigma^{2}}{2}\left(\xi_{0}-\ln (x)\right)^{2}-i \omega_{0}\left(\xi_{0}-\ln (x)\right)}
$$

- The semiclassical condition: $\xi_{0} \gg 1, \sigma \ll 1$, while $\sigma \xi_{0} \gg 1$ for $\Delta \ln x / \ln x \ll 1$.
- Solving the dynamic:

$$
\Psi(\vec{x}, \tau)=e^{i H \tau} \Psi(\vec{x})=\frac{1}{\sqrt{\Pi_{i} x_{i}}} \int_{-\infty}^{\infty} d^{N} \omega^{-}-\frac{\sum_{i}\left(\omega_{i}-\omega_{0}\right)^{2}}{2 \sigma^{2}}+i \sum_{i}\left(\xi_{0}-\ln \left(x_{i}\right)\right) \omega_{i}+i \sqrt{\left|\sum_{i \neq j} \omega_{i} \omega_{j}\right| \tau}
$$

- The trajectory where the state peaks:

$$
\ln x_{i}-\xi_{0}=\frac{N-1}{2 \sqrt{C_{N}^{2}}} \tau
$$

Conclusion and outlook

- Semiclassically, the quantum dynamic gives us an expanding universe.
- The peak satisfies the Minkowski condition.
- Future works: the quantum phenomenon, generalization to general graph, same problem with graph changing Hamiltonian......

Thanks!

