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> Solve the constraint equation to obtain a physical
Hamiltonian. In the model coupling to a scalar field

C'(x) = 7(x) £ Vh(x)

where
h(x) = —+/| det E| (—Cgr + \/(Cgr)2 — qabCangEr)

» Quantize this system.
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Main results of the quantum Theoryomagi et a. 2010,

Lewandowski et al., 2011)

» The physical Hilbert space H,y:
the Hilbert space space of pure gravity, satisfying Gaussian
and vector constraints.

» The dynamic:
d

dt
where t is a parameter of the transformations ¢ — ¢ + t.
» The quantum Hamiltonian
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What | do is to study this (physical) Hamiltonian operator.
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General works about the physical Hamiltonian

> Classical expression of 4/|det E(x)|C&"(x)

| det E(x)| C8"(x)
= e (HEPGOEP (XA + (14 57) det E(OIR(x))

~ 16 (HE0) + L))

> Volume operator is not involved.

» The analysis is simpler.
» |t is possible to start from the simplest case of 2-valent graph.
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General works about the physical Hamiltonian

> The Chosen IOOp to qUantiZe Fab (Thiemann, 2007, Yang and Ma, 2015)
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General works about the physical Hamiltonian

> The Chosen IOOp to qUantiZe Fab (Thiemann, 2007, Yang and Ma, 2015)

f ¢ £ e
e ¢ o d
v — v

» Expression of the Hamiltonian operator(atesci et al., 2015)
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A= — > >° (e, e)HE , +(HE )T+ (1 +BY)HE
/167TGB2 Vi Ve mew v, ee v, ee v, ee’
E ) N k
Hv,ee’ = eifkTr( )(haee/ TI)J{/,er,e’
S dk I
n f i / 27 Koy e?y e
Hepr = \/6[,-/ (eifkj‘l/ve'/\’/(,e’) (ei’j’k’f\’/,e-/f,e/) o 7 + arccos v.©

k gk’ k K’
V Okt A5 eI e\ [ Ok Jv’e, Jv’e,
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General works about the physical Hamiltonian

The physical Hilbert space:
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General works about the physical Hamiltonian

The physical Hilbert space:

» Degenerate vertex: v

> Vua(7): non-degenerate vertices.
Diffy, :diffeomorphisms preserving V4.
Diff (7)1 diffeomorphisms acting trivially on v

> Physical state from [¢.,)

(V] =N, > Ugly) = i)

#€Difty,, /Diff (7)1
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Restriction on a special case

» The graphs:
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Restriction on a special case

» The graphs:

@

» The Hilbert space: Sp|n networks on .
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Restriction on a special case

> Spin networks on v,: |fy,,,f,7> ~
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Restriction on a special case
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Restriction on a special case
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Restriction on a special case

» The graphs:

(HE)" i 70 := — m

C =

» Hilbert space:

Hony = span( ([7al.J | =N 2 Uslns s 1G7) ).
pEDiffy /Diffry (yn)
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Restriction on a special case

» The graphs:

&

(HEY" i g = — @ =,

» Hilbert space: F

Hony = span( ([7al.J | =N 2 Uslns s 1G7) ).
pEDiffy /Diffry (yn)

» Operator: Hamiltonian operator restricted on the Hilbert
space.
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Restriction on a special case
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Restriction on a special case

(HE) : v = — @ = n

> The graphs:

» Hilbert space:

Hpny = span( ([va],J | =N > U¢|’7mj7 1G) )
¢€Diffy /Diffry (vn)
» Operator: Hamiltonian operator restricted on the Hilbert
space, H\thy.
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Restriction on a special case

v

The graphs:

(HE)" 70 = - w

Cf =

Hilbert space:

Hphy = span( ([va],J | =N > UplvnJs 1G) ).
¢€Diﬂv/DiﬁTr ("Yn)

Operator: Hamiltonian operator restricted on the Hilbert

space, H|y

v

v

phy”

v

Question: Self-adjointness of the restricted H.
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Self-adjointness of the Hamiltonian operator

Theorem

Let N be a self-adjoint operator with N > 1. Let H be a symmetric
operator with domain D which is a core for N. Suppose that:

i For some c and all ¢ € D,
[[HY]] < c[[Ny]|.
il For some d and all ¢ € D,
|(H, Np) = (N9, HY)| < d||[N/2] 2

Then A is essential self-adjoint on D and its closure is essentially
self-adjoint on any core for N.
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Self-adjointness of the Hamiltonian operator

Let N be a self-adjoint operator with N > 1. Let H be a symmetric
operator with domain D which is a core for N. Suppose that:

i For some c and all ¢ € D,

[[HY]] < c||N]].

il For some d and all ¢ € D,
|(Hap, Np) — (N, Hip)| < d||NY/ 24 2

Then A is essential self-adjoint on D and its closure is essentially
self-adjoint on any core for N.

We can choose the operator N, diagonalized under the basis, that is
([%],j N = ([%],f‘ N(jns1), such that N(j) = j7 with n > 1.
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Summation

» We prove the operator H, restricted on the simplest graph, is
self-adjoint.

32/61



Summation

» We prove the operator H, restricted on the simplest graph, is
self-adjoint.
» Turn to the graph preserving version.

33/61



Summation

» We prove the operator H, restricted on the simplest graph, is
self-adjoint.
» Turn to the graph preserving version.

» Consider the coherent state peaking at the cosmology phase
space.

34 /61



Summation

» We prove the operator H, restricted on the simplest graph, is
self-adjoint.
» Turn to the graph preserving version.
» Consider the coherent state peaking at the cosmology phase

space.
» Calculate the semiclassical dynamics with the coherent state as

the initial data.
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The heat kernel coherent state

» Classical phase space of the cosmology phase space:

AL = eV VRl B = pVy e
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The heat kernel coherent state

» Classical phase space of the cosmology phase space:
j —1/3 0 —2/3 .
Al = eV 301 E? = pVy 3 /g8

» The graph: dipole graph with two N-valent vertices.
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The heat kernel coherent state

» Classical phase space of the cosmology phase space:
j —1/3 0 —2/3 .
Al = eV 301 E? = pVy 3 /g8

» The graph: dipole graph with two N-valent vertices.
> Coherent state for p >> 1 (Bahr and Thiemann, 2009, Bianchi et al., 2010):

vep@) = 1 (Z@je +1)e” elettvpieinde ple . (n” 1ge"e)>

e€E(v) \ Je
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The heat kernel coherent state

» Classical phase space of the cosmology phase space:
AL = eV Y3l EP = pVy 2R /g0

» The graph: dipole graph with two N-valent vertices.
> Coherent state for p >> 1 (Bahr and Thiemann, 2009, Bianchi et al., 2010):

vep@) = 1 (Z@je +1)e” elettvpieinde ple . (n” 1ge"e)>

e€E(y) \ Je

» The coherent states inspires us to consider the Hilbert space

Hcos - Span g|./ ® (ne 8Ne )

ecy
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The heat kernel coherent state

» Classical phase space of the cosmology phase space:

AL = eV VRl B = pVy e

v

The graph: dipole graph with two N-valent vertices.
Coherent state for p >> 1 (Bahr and Thiemann, 2009, Bianchi et al., 2010):

v

vep@) = 1 (Z@je +1)e” elettvpieinde ple . (n” lge"e)>

e€E(y) \ Je

v

The coherent states inspires us to consider the Hilbert space

Hcos - Span g|./ ® (ne 8Ne )

ecy

v

The factor e~ UUH)+vpi—ind s 3 Gaussian function on j peaking at
Jo = %2, so we focus on large j limit when calculating.
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Action of holonomy and flux operators on .

> For the holonomy operator:

hi/2Dk, (g)

NeNe

1/2 neﬁl/z( ) 0 1/2(, -1 :
=012(ne) (L Da ) DM 00

with the abbreviation of D/ (g) := JJ(n lgn)
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hi/2Dk, (g)

NeNe

1/2 neﬁl/z( ) 0 1/2(, -1 :
=012(ne) (L Da ) DM 00

with the abbreviation of D/ (g) := JJ(n lgn)

> For the Flux operator

Jy,eDis o (8) = jeTie Dk 1, (8) + O(\/J) (1)
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Action of holonomy and flux operators on .

> For the holonomy operator:

he/2Dl . (g)

1/2 neﬁl/z( ) 0 1/2(, -1 :
=012(ne) (L Da ) DM 00

with the abbreviation of D/ (g) := JJ(n lgn)

> For the Flux operator

Jy,eDis o (8) = jeTie Dk 1, (8) + O(\/J) (1)

> The Hilbert space H.os is preserved approximately for large j.
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The Hamiltonian operator

vee’|

HE) D o (80D, n, (81) (3o + 172D 2(ge) = \ie = 1/2D2 1/ 2(ge)) /T x
+1/2 - —1/2 .
x (i + 17205 26y = i — 172000 P e fi

ot . . jor
(8D n,) (€0r) 20 cer SIN(Oer Ve DI, (8)DIS (821

Nene

> Action of Hon Heos, H=", \/| D e H\‘,'E,eef + H!

ee’ DI

Nene
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The Hamiltonian operator

vee’|

HE) D o (80D, n, (81) (3o + 172D 2(ge) = \ie = 1/2D2 1/ 2(ge)) /T x
+1/2 - —1/2 .
x (i + 17205 26y = i — 172000 P e fi

> Action of Hon Heos, H=", \/| D e H\‘,'E,eef + H!

b et DIt e (8)D1 1 (€01) 20 cer SN0t Ve DI, (86)DYS (821
> H";:ee and Hf . are self-adjoint.
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The Hamiltonian operator

> Action of H on Hees, H=3", \/ | e HE oo + HE |

E 1/2 —1/2
Hs e)e/ nene(ge)Dn s (8er) 2(he + 17202112 (g0) — (/e — 1/2DJ2 1% (ge)) Ve
+1/2 - Jgr —1/2 -
x (s + 1720831 6) = \fir — 17208, e\ i

L . . jor
HE et DIt g (€007, (€01) 20t er SN0 Vi D, (8)D 0, (801

» HE_ and HL

v ee v.ee are self-adjoint.

> ere can be rewritten as HE

—H, oH, o with

v,ee! T

e Of g (ee) = i (Ve + 1720031 %) = \fie = 1/20057/%(60)) Ve
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The Hamiltonian operator

v,ee’|

> Action of Hon Heos, H=", \/| D e H\‘,'E,ee/ + H!

E e ot ; jet+1/2 - jo—1/2 -
HE)  Dle ()OI s (6er) =(\le + 1/2D12 11 % (e) — \ie — 1/2Dis LM (ge)) Ve
- jor +1/2 X jor—1/2 .
X (i + 172000 % 8) = \fier = 1/20, 0" (6 D\ fier

L i Jor . . ’
HY oot DI o (D1 (€01) 0t ger SOt VieJor DI, (8) D1 (821

Nene Nene

» HE__ and HL _, are self-adjoint.

v,ee v,ee
E . E _ .
> H, . can be rewritten as H, .., = —Hy ¢Hy o with

e Of g (ee) = i (Ve + 1720031 %) = \fie = 1/20057/%(60)) Ve
> For large j,
d
Hu,e 2 ivje—/je =t H¢
dje
which is a self-adjoint in the Hilbert space L?(R*) with
. efiu.)ln(je)

“eigenvector” o, (Je) = /A
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Some issues about the Minkowski condition
» Minkowski condition:

Z .jeﬁe =0

eatv
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Some issues about the Minkowski condition

» Minkowski condition:
Z .jeﬁe =0
eatv

» The volume operator under this condition:

Vljeﬁe> ~ \/eeelenjeje’je”ﬁe : (ﬁe’ X ﬁe”)|jeﬁe> + O(\/J—)

coincide with the classical expression.
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Some issues about the Minkowski condition

» Minkowski condition:
Z .jeﬁe =0
eatv

» The volume operator under this condition:

Vljeﬁe> ~ \/eeelenjeje’je”ﬁe : (ﬁe’ X ﬁe”)|jeﬁe> + O(\/J—)

coincide with the classical expression.

» The operator > H, e doesn’t preserve the condition.

ee’ at v
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Some issues about the Minkowski condition

v

Minkowski condition:

Z jeﬁe =0

eatv

v

The volume operator under this condition:

Vljeﬁe> ~ \/eeelenjeje’je”ﬁe : (ﬁe’ X ﬁe”)|jeﬁe> + O(\/J—)

coincide with the classical expression.
The operator Y . 4

Does the evolution operator e

v

H, e doesn’t preserve the condition.
iHt

v

preserve this condition?
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A toy model for LQG cosmology

> Regardless of the Lorentz part of the Hamiltonian operator,
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A toy model for LQG cosmology

> Regardless of the Lorentz part of the Hamiltonian operator,
» Consider the "continuous” limit of the above model
» The Hilbert space Hceos =

span((gl]') = ®ee,, Dl (e gne)) — LX((RT)", dX)
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A toy model for LQG cosmology

v

Regardless of the Lorentz part of the Hamiltonian operator,
Consider the "continuous” limit of the above model

The Hilbert space Heos =

span((gl] ) = ®ee, DI (e "gne)) — L2((RH)Y, d)

The Hamiltonian operator H =73 />, o H‘Eee, — H=

2
V |Zee’ HgHg" = \/Zee’ V |XeXe’%axe,\/XeXe’|

v

v

v
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Semiclassical analysis:

» Coherent state V(X) = [, ¥(xe)

(w—wg)? .
w0 = /°° dwe aaR 0w 0 [98 — 5 (€= () —iiolEo —In)
— 00 X
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Semiclassical analysis:

» Coherent state V(X) = [, ¥(xe)

W(x) = /°° doe (Ta#ﬂ&ow% =1 D 22 (60— In(x))2 ~ g (€0 —In(x))
— 00 X

» The semiclassical condition: &, > 1, 0 < 1, while 0§y > 1
for Alnx/Inx < 1.
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Semiclassical analysis:

» Coherent state V(X) = [, ¥(xe)

v = [~ dwe a0 o [0 8 (60 (o —n(e)
— 00 X
» The semiclassical condition: &, > 1, 0 < 1, while 0§y > 1
for Alnx/Inx < 1.
» Solving the dynamic:
WE T) = eMTu(R) = /oo dee—Z'%wz,-(so—ln(x,-))w,-+,\/\z,-#jw,.wj\f
VIIixi J—oo
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Semiclassical analysis:

» Coherent state V(X) = [, ¥(xe)

_(w=wp)?

P(x) = /jo dwe 202

HEgw = ] T o= G (€0 —n()? (€0 —In(x)

X

» The semiclassical condition: &, > 1, 0 < 1, while 0§y > 1
for Alnx/Inx < 1.
» Solving the dynamic:

wi—wp)?
i
o

) _ i 0% IS (e —in(e Nt TS e
U(E, ) = e Tu(R) = - /oo Ve T 2gr T RilComInbiwiti /1 2 wiw|
—oo

VH[X:'
» The trajectory where the state peaks:
N-1
In X — fo = T
24/CR
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Conclusion and outlook

» Semiclassically, the quantum dynamic gives us an expanding
universe.

» The peak satisfies the Minkowski condition.

» Future works: the quantum phenomenon, generalization to
general graph, same problem with graph changing
Hamiltonian......
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Thanks!
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