
Merging Projects within HAD infrastructure

Iñaki Olabarrieta
Department of Physics and Astronomy, Louisiana State University – 202 Nicholson Hall Tower Drive, Baton Rouge, LA 70803

(Dated: February 8, 2007)

These notes explain the basic procedure about how to merge two different independent projects
within the HAD infrastructure.

I. INTRODUCTION

The idea is that we have two different codes that solves different sets of equations and wish to merge them. We
will assume that the different codes have different right hand sides with some coupling on the equations of motion
which should be predefined beforehand. An example of such a problem is the merger of a gravitational code with a
matter one, in these notes we will use the merging of hyperGR with hyperFlower as an example. In this case the
coupling comes through the stress-energy tensor for the gravitational code, and through the metric coefficients for the
matter code. The independent codes should have these functions defined even though they could be not dynamical
(i.e. static metric for example or a stress-energy which is exactly zero).

II. IMPLEMENTATION

A. New Files

At the time this document is written there are a minimum set of files that every proyect should have. We are going
to list them and comment which kind of modifications should be done in order to produce the merger of the codes.

• setup: Special care needs to be taken for the setup file in the case of a project merger. When declaring the
ufuncs and vfuncs (and their derivatives dufuncs and dvfuncs) it should be done in two different parts, in
the case of the hyperGRFlower code it is defined in the following way:

ufuncs[G]
{
g11,g12,g13, <...>
}
ufuncs[M]
{
D[FV][diss=0], Sx[FV][diss=0], Sy[FV][diss=0], <...>
}
dufuncs[G]
{
dx_g11, dy_g11, dz_g11, <...>
}
dufuncs[M]
{
}
vfuncs[G]
{
Tmunu00, Tmunu01, Tmunu02, <...>
}
vfuncs[M]
{
}
<...>

where <...> denotes that we haven’t written in this document all the actual functions for reasons of brevity.
We note that the declaration of the ufuncs is done in two steps, the functions for the hyperGR code, which
we distinguish by a label [G] (Gravity variables) and the hyperFlower code denoted by [M] (Matter variables).

2

Note also that the Matter variables are finite volume [FV] variables with no dissipation[diss=0], that may or
may not be your case. These labels are going to produce a separate set of pointers that can be used in the
implementation to distiguish between the variables from the two different projects. Therefore three different
sets of pointers are going to be produced in hyperparam.f90, for example the function g11 will have associated
to it the following pointers: H G11, G G11 and M G11. Depending if we consider it as a function of the combined
project, the hyperGR project of the matter project. Note that this function is defined in the three projects (not
always the case), in hyperGR and hyperGRFlower it is a dynamical (u variable) while in the hyperFlower code
it is fixed (v or w variable). We are denoting the number of u variables of the combine code as NU, NU G are the
number of U variables which are denoted by the G label and NU M are the ones with M label. Likelywise with
the v variables. The following relationships hold for the number of functions of each type:

NU = NU_G + NU_M
NV_M = NV + NU_G
NV_G = NV + NU_M

Note that the v[G] (and alternatively the v[M]) are the v variables which are in hyperGR and that we are not
previously declared as a u variable in the combine code, i.e. the metric function g11 is declared as u variable in
hyperFlower but as a v variable in hyperFlower, in the combined code it will be declared as a u[G] variable and
not as a v[M] one. Note that in the example above there is no v[M] variable this is not because hyperFlower
does not have any v variable but because all the v variables are already declared as u[G] variables. In the
way we have declared the variables in the setup file the first NU G variables of the u vector of the combine code
corresponds to the geometric u variables and the other NU M corresponds to the matter ones. The number of v
variables of any independent project is always equal or larger than the number of v variables of the combined
one (something that could seem counter intuitive).

The parameters of the combined project should have at least the union of the parameters of the two independent
codes plus any new parameter that you may include. The declaration of the parameters does not have any special
secret in the case of the combined project.

• Makefile: Now the Makefile should compile all the files needed for both codes. In order to do the compilation
the makefile makes symbolic links to the files on the appropiate directories. Define enviroment variables to
store the locations of the directories for the projects that we are merging: For example:

GRFLOWER_DIR = $(HEADDIR)/src/hyperGRFlower
FLOWER_DIR = $(HEADDIR)/src/hyperFlower
GR_DIR = $(HEADDIR)/src/hyperGR

In the previous case we are merging projects hyperFlower and hyperGR into hyperGRFlower. The following
gives an example of how to do the symbolic links:

if test ! -f exact_gr.f90; then\
ln -s $(GR_DIR)/exact.f90 ./exact_gr.f90;\

fi

Note that in the previous example we are linking the file from the hyperGR project to the current directory and
we are also changing its name adding gr label to it to denote that this is the ”exact.f90” file from the hyperGR
code. This needs to be done for every filename that may be duplicated. When doing the symbolic linking do
not forget to link also any include file needed to the appropiate subdirectory in the combined project.

Another important modification to the Makefile is the addition to the compilation command of -DGR FLOWER
-DHYPER this is done in order to have the variables GR FLOWER and HYPER defined for their use in preprocessor
conditionals. See more about this in the section related the modification of the Old Files.

.f.o:
$(F90_FIXED) -DGR_FLOWER -DHYPER -c $*.f

.F90.o:
$(F90_FIXED) -DGR_FLOWER -DHYPER -c $*.F90

.f90.o:
$(CPP) -DGR_FLOWER -DHYPER $*.f90 $*.f90.f

3

$(F90_) -c $*.f90.f
mv $*.f90.o $*.o
rm -f $*.f90.f

.c.o:
$(CC_) -DGR_FLOWER -c $*.c

• main rhs.f90: This file could have different names (rhs.f90, maple rhs.f90 have been used in different HAD
projects) the important thing is that this file should contain the routine which computes the right hand side
necessary for the rk routine being used in the hyper directory (calrhs and calcrhs2 have being used depending
if the routine does the calculation point- or grid-wise). Right now there are three different rk routines avaiable
in the hyper directory: rk3.f90, rk3tvd.f90, rk3tvd fv.f90 with different options each one. You should look in
detail how this routine works and which one is more appropiate for your particular project.

The calcrhs2 routine basically consists in calls to the original calcrhs2 routines for each independent project.
Remember that these routines does not know now that u and v are the ones for the combined project and are
expecting the u and v for each independent code. In order to pass the appropiate piece of the original u and v
vector we declare the following grid functions:

type(gridfunction), dimension(NU_G) :: gr_dtu
type(gridfunction), dimension(NU_G) :: gr_u, gr_dxu, gr_dyu, gr_dzu
type(gridfunction), dimension(NV_G) :: gr_v, gr_dxv, gr_dyv, gr_dzv

type(gridfunction), dimension(NU_M) :: m_dtu
type(gridfunction), dimension(NU_M) :: m_u, m_dxu, m_dyu, m_dzu
type(gridfunction), dimension(NV_M) :: m_v, m_dxv, m_dyv, m_dzv

and then initialize them in the following manner:

do i = 1, NU_G
gr_u (i) = u (i)
gr_dxu(i) = dxu(i)
gr_dyu(i) = dyu(i)
gr_dzu(i) = dzu(i)
gr_dtu(i) = dtu(i)

end do
do i = 1, NU_M
m_u (i) = u (NU_G+i)
m_dxu(i) = dxu(NU_G+i)
m_dyu(i) = dyu(NU_G+i)
m_dzu(i) = dzu(NU_G+i)
m_dtu(i) = dtu(NU_G+i)

end do
do i = 1, NV
gr_v (i) = v (i)
gr_dxv(i) = dxv(i)
gr_dyv(i) = dyv(i)
gr_dzv(i) = dzv(i)

end do
do i = 1, NU_M
gr_v (NV+i) = m_u (i)
gr_dxv(NV+i) = m_dxu(i)
gr_dyv(NV+i) = m_dyu(i)
gr_dzv(NV+i) = m_dzu(i)

end do
do i = 1, NV
m_v (i) = v (i)
m_dxv(i) = dxv(i)
m_dyv(i) = dyv(i)

4

m_dzv(i) = dzv(i)
end do
do i = 1, NU_G
m_v (NV+i) = gr_u (i)
m_dxv(NV+i) = gr_dxu(i)
m_dyv(NV+i) = gr_dyu(i)
m_dzv(NV+i) = gr_dzu(i)

end do

where we have made use of the fact that the G variables are at the begining of the u vector and M ones are at
the end. Now we can call to the appropiate routines with the appropiate vectors:

call update_gr (gr_dtu, gr_u, gr_v, &
gr_dxu, gr_dyu, gr_dzu, &
gr_dxv, gr_dyv, gr_dzv, w, imask, par);

call update_flower (m_dtu, m_u, m_v, w, &
m_dxu, m_dyu, m_dzu, &
m_dxv, m_dyv, m_dzv, imask, par);

We note that we have modified the original names of these routines (which did not have the flower or the gr
labels attached to them) in order to not have overloading of subroutine names. The final part of this routine
involves joining together the right hand side obtained from each routine into the original u vector:

do i = 1, NU_G
dtu(i) = gr_dtu(i)

end do
do i = 1, NU_M

dtu(i+NU_G) = m_dtu(i)
end do

This is the basic idea to apply in most of the files of the combined project. One more thing to take into account
is that now we are making reference to routines that are in modules that are called in the original projects as
the module where we are using it. The names of the original modules have to be changed, see the Old Files
section, and here you want to add the new names of the modules. For the example above:

module rhs_mine
use GF
use params
use flower_rhs
use gr_rhs
use HYPER_DERIVS
implicit none

we have added the use of flower rhs and gr rhs which are the new names of the modules containing the rhs
for the original projects.

• boundary.f90: In the case of hyperGRFlower the boundary conditions for the fluid are built in the calculation
of the right hand side. Therefore the only boundary conditions that need to be applied are the ones on the
gravitational ones. Note that these can be applied on the right hand side gr dtu or on the vector gr u itself
therefore after calling the routine you should put back both of the vectors to the u vector of the combined
project.

• comp amr error.f, grid ell.f: This file probably should be produced independtly of the particular
comp amr error.f from the orginal projects.

• exact.f90: Nothing to do here, move along

• global auxvars.f90, auxvars.f90: This is a good place to calculate some of the coupling between the two
codes. In particular in the case of hyperGRFlower global auxvars has a call to the auxvars routine where the
calculation of the stress-energy tensor is performed.

5

• outer.f90: Nothing special to do here.

• renaming.inc: This file is new at this point. In this file you should write the relationship between pointers in
the two different codes. The problem is that grid functions in the two different projects could be named in a
different way. In this file we set the names between the pointers to be equal:

integer, parameter:: M_ALPHA = M_LAPSE
integer, parameter:: M_D111 = M_D1G11
integer, parameter:: M_D211 = M_D2G11

In the example above in one project the ALPHA function is called LAPSE in the other one, D111 is called D1G11
and D211 is called D2G11. The last modification is adding at the end of hyperparam.F90, once it is created, a
line:

include ’renaming.inc’

B. Old Files

In this section we describe the modifications needed in the old projects in order to be able to merge them. Two
main modifications need to be done in the files belonging to the original projects. Both modifications should not alter
the way the independent project work, and this should be checked.

The first modification involves the change of any pointer that may appear in the original projects. In order to do
that the setup file has to be changed plus any explicit appearence of pointers. In the setup file (remember this is the
old setup file sitting in the original project directory, i.e. hyperGR and hyperFlower in the case of our example) we
want to add the same label we use to denote this particular project variables in the combined code. For example in
the case of hyperGR/setup it will look something like:

ufuncs [G]
{
g11,g12,g13, <...>
}
vfuncs [G]
{
Tmunu00,Tmunu01,Tmunu02, <...>
}

where the only modification is the [G] label (there is no [M] label at all). Note that this will produce a new set of
G pointers which, in this case and since there is no other label, will be exactly the same as the original H pointers.
Now every appearance of H pointers in any routine of the hyperGR code should be changed to G pointers. This will
have no effect in the case of compiling hyperGR by itself since, again, H pointers are the same as G ones but will
reference to the proper location in memory for the combined code. Note that also the size of the arrays have to be
changed from NU to NU G and NV to NV G.

The second main change involves changing the names of any routine that appear more than once in the combined
project. A tipical example of this is the calcrhs2 routines. Both projects that we are combining are going to have
the same name for different routines (and it should be that way in the HAD infrastructure if we want to compile that
project by itself). In orther not to overload the routine names we make use of preprocessor statements, for example
in the case of the routine prim2char in the hyperGR project we have the following:

#if defined GR_SF || defined GR_FLOWER
subroutine prim2char_gr(par,v,w,direction,u,w_in,w_out,w_0,T,uevolved,uexact,dxu,dyu,dzu,sources)

#else
subroutine prim2char (par,v,w,direction,u,w_in,w_out,w_0,T,uevolved,uexact,dxu,dyu,dzu,sources)

#endif
<...>
#if defined GR_SF || defined GR_FLOWER
end subroutine prim2char_gr

#else
end subroutine prim2char

#endif

6

Note that we are changing the name of the routine in case the variables GR FLOWER or GR SF are defined while compiling,
remember the -D option we included in the compiling command in the Makefile of the combined project. In this case
we are considering the possibility of joining hyperGR with two different codes (GR FLOWER corresponds to the merger
of hyperGR with hyperFlower and GR SF corresponds to the merger with a scalar field project). The same has to be
done with the module names:

#if defined GR_SF || defined GR_FLOWER
module charvars_gr
#else
module charvars
#endif
<...>
#if defined GR_SF || defined GR_FLOWER
public prim2char_gr, char2prim_gr, what_boundary

#else
public prim2char, char2prim

#endif
<...>
#if defined GR_SF || defined GR_FLOWER
end module charvars_gr
#else
end module charvars
#endif

are the proper modifications in the case of the charvars module in the hyperGR project.

	Introduction
	Implementation
	New Files
	Old Files

