
The Distributed Adaptive Mesh Refinement Code

Steven L. Liebling
Department of Physics, Long Island University – C.W. Post Campus, Brookville, New York 11548

(Dated: February 8, 2007)

This manual details how to configure, run, and use the distributed adaptive mesh refinement code.

I. INTRODUCTION

This code solves evolution equations using adaptive mesh refinement (AMR) and domain decomposition on multiple
processors using Message Passing Interface (MPI). For details on AMR, see Berger and Oliger.

II. IMPLEMENTATION

The code is written in Fortran for simplicity and ease of debugging as compared to C or C++. However, it tries to
emulate certain aspects of object oriented coding as might be found in a C++ code. From this perspective, the code
tries to respect certain objects. Most fundamental are fields which store the values of fields over a domain. Grids
contain fields and associated other data such as coordinates. Levels consist of all fields at a given resolution. Hence,
level zero consists of just the coarse grid (or all the grids into which the coarse grid may be domain decomposed for
distribution to all the processors), while level one consists of all children of that coarse grid.

The code is written to allow for various projects. The simplest, and perhaps oldest, project is the semilinear wave
equation, called hyperSemiL. This is a good project to emulate and is where I generally test new features. It resides
in had/src/hyperSemiL. Project-specific code is found in a project’s directory.

The code is distributed using Message Passing Interface (MPI) in such a way that grids are sent to the various
processors.

III. RUNNING

A. Basics

When one compiles had, you specify the name of the executable which gets placed in had/bin. Say we call the
executable had. Then you would run it (on a single processor by typing
had id0semi
where id0semi is a parameter file which controls what the code does. The analogous call to run on some number

of processors would be
mpirun -np 10 had id0semi
to run on 10 processors. These directions may be a bit different with different implementations of MPI and different

queues.

B. Understanding Code Output

C. The Initial Data File

The code needs a single initial data file. The goal of having a single file was to be able to reduce the complexity of
ensuring repeated runs had the same parameters. Auxiliary scripts could suffice to take different scripts and process
them into a single one if the file gets too big or awkward.

There are three sets of parameters, all defined in respective setup files. These sets consist of parameters from
the amr side, the hyper side, and the project’s side. I’ll describe here the amr parameters and maybe a few from
the hyper side. It is presumed that you know about a given project’s parameters (or else can refer to some other
documentation).

Note that I play around with the file id often so its state may not be a good one to first play with the code. So, I
have added to the distribution a sample initial data file id sample which should always be a representative data file
one can start from.



2

Parameters

Coarse Level Parameters

nx0, ny0, nz0 number of points in each direction for the coarse level

nt0 number of time steps to be taken by the code (in terms of coarse level steps)

minx0/maxx0 coordinate bounds of coarse level; constrained by grid spacings in each direction must be same

AMR Time Integration

lambda ratio of ∆t/∆x (loosely the Courant factor)

num evol iters number of iterations for time step algorithm (default is 3 for RK3)

ghost width width (in points) of boundary region on child which gets set by parent level

bound width width (in points) of overlap region which gets sync’ed among processors (default == 3)

linearbounds type of interpolation for child boundary data:

> 0 uses linear interpolation

= 0 uses cubic interpolation

Refinement Parameters

refine factor ratio of resolutions between parent and child levels (must be even)

refine period number of evolution steps before re-refinement occurs. For FMR, set to large number

allowedl number of levels allowed (0 for unigrid); maximum set in glob.inc

ethreshold threshold value for error for a point to be flagged for refinement

shadow binary toggle for whether to use the self shadow hierarchy (== 1 turns on); currently requires linearbounds == 0

minefficiency target efficiency to which clustering algorithm strives (number of flagged points / total number of pts)

mindim minimimum linear number of points in any direction for a grid (used by clusterer and domain decomposer)

refine level X for each level ”X”, specifies either:

< 0 creates FMR level at X+1 about the center with linear dimensions 1/refine level X

> 0 multiplies the error for this level (default is 1

Output Parameters

output dim Allows for dimensionally reduced output such as a 2D slice through middle of coarse level

1,2, or 3 picks one dimension to be output (1D, 2D, or 3D)

4,5, or 6 corresponds to sum of dimensions to be output (e.g. 1D and 3D = 4)

7 outputs 1D and 2D dimensional SDFs

output style determines how data is output:

1 data at a certain level is output to level-specific SDF file (used for domain decomposition mode)

4 data at this level and all finer levels are output to level-specific file (useful for AMR)

output XXXX binary flag (0–off or 1–on) which determines whether the field ”XXXX” is output

output level X for each level ”X”, the number of evolution steps before outputting. If 0, no output for that level

Checkpoint Parameters

chkpt period determines frequently (in coarse level time steps) to save state (default is 0 for off)

chkpt readstate Toggles whether to read state from file. Default is off (0)

Elliptic Solver

Excision

TABLE I: Description of parameters for the AMR side of had.



3

1. Unigrid Mode

Set allowedl to zero. The value of output style won’t matter.

2. AMR (serial or parallel

Set allowedl to any value (presumably max). Run as described in Section III A. Likely want output style equal
to four, unless debugging. A refinement factor of two generally works the best. It’s not as efficient as a higher value,
but keeping things smooth seems best for two. I’ve used a refinement period of 4.

3. Domain Decomposition

To get the code to run in this mode is not obvious. One must set refine period to a value of 999 or greater because
you don’t want any re-refinement. Likewise, you only want one level of refinement, allowedl = 1. With these two
set, the code automatically clusters such that the refined level covers the entire domain and that there are the same
number of subgrids as there are processors. To control the resolution, one then adjusts the refinement factor.

4. Checkpointing

The checkpoint routine outputs files with names alternating between ‘hello’ and ‘goodbye’ so that there are po-
tentially two checkpointed states to recover from. When chkpt readstate is set to (1) the routine reads the ‘hello’
state; when set to (2), it reads the ‘goodbye’ state.

The restarted code needs to run on the same number of processors as the original checkpoint source. Modifications
to the parameter file when chkpt readstate is not (0) have no effect with the exception of the nt0 parameter.

CAVEATS: sdf files from the original run will be written-over by the restarted state. Move original sdf output to
a different directory to avoid undefined output results.

D. Shadow Hierarchy

A key ingredient to the B&O algorithm is knowing where refinement is needed. This is accomplished by determining
an estimate of the error in the solution for each location and time.

The simplest such solution is by using some function of the evolved fields, such as a density or gradient. To do this,
you can simply set gr error in the project’s comp amr error() routine.

B&O specify another way, called truncation error estimation (TRE). To get an error estimation of the truncation
error, one takes a two time steps on a given grid and compares the obtained values with values found by taking a
single step on a grid with half the resolution. This difference is indicative of the truncation error.

Where does this coarse grid come from? Well, in their algorithm, you make it, take the step, and then you’re done
with it. Instead, you can simply continually maintain a separate hierarchy from the one on which you’re computing
your solutions which differs by a factor of two in resolution. Then, to compute the TRE, you simply subtract the two
hierarchies at any given time. This is a shadow hierarchy.

But do we really need a separate hierarchy? After all, say you want the error on a fine grid. You want to compare
your solution to a coarser one, but instead of going to the shadow, you can go to the parent grid. Your solution
hierarchy then serves as your shadow hierarchy as well in what is called a self-shadow hierarchy (as per Frans).

So how does had implement a self-shadow?
If you want unigrid, you still specify allowedl=0. If allowedl is greater than 0, then level 0 is essentially only

shadow. Your coarsest level is the level 1. Hence, if shadow=1, then level 1 is forced to cover the entire computational
domain. So it doesn’t make sense to have allowedl=1 if shadow is turned on.

So to use the shadow hierarchy, you would specify shadow=1, allowedl > 1, and linearbounds=0. I would also
set output level 0 :=0 and output level 1 := 1 so that you look at output on level 1.

The only tricky is the initial data. As mentioned, levels 0 and 1 simply get created using the project’s initial data
routines to set their values. Then one step on level 0 and two steps on level 1 are taken. Subtracting, you get an error.
The advanced solutions are discarded (and the levels are reinitialized). If level 2 needs to be created, had creates it.
Do we need a level 3? A step on level 1 and two steps on level 2 are now taken. This process continues.



4

E. Compile Time Configuration

As can be seen in the Makefile, certain environment variables must be set in order to compile. The code requires
some installation of MPI and bbhutil which is installed with the rnpl distribution. In the future, the code may
require rnpl itself and certainly the current version of the unigrid code requires it. Generally, these are set in the
.cshrc:

LSV — On some systems, the bbhutil library links to the sv library if installed. If sv is not installed, then set
this to blank otherwise set it to “-lsv”.

IMPI — Sometimes the MPI installation has include files in a certain spot, in which case it might set as ”-
I/usr/local/vmi/mpich/include”. Otherwise you can leave it blank.

LMPI — the MPI libraries might have different names depending on the platform or distribution. For MPICH,
it’s generally set as “-lmpich”.

MPIF77 — MPICH creates a wrapper for f77 which helps with the libraries. This is the name of this. Examples
include “mpif77” and “/usr/local/mpich/bin/mpif77.” If the distribution lacks such a wrapper, just set to “f77.”

LOCALIB — Points to where installed libraries can be found. On systems I control, I install them such that I
set this variable to “-L/usr/local/lib”, but on supercomputing site I put this in my home directory and set this in my
.cshrc as “-L${HOME}/local/lib”.

There are some variables in the code one might want to change at compile time.
arena – Located in mem.inc, this describes the size of the memory chunk from fields and such are allocated.

Generally one sets it so that the resulting executable size is a bit below the maximum for each processor.
There are other parameters in the .inc files one may want to change, but if one got to the point where they would

need to be changed, the user probably already understands what they do.

IV. ASSOCIATED TOOLS

DV, XVS, RNPL, SDFapps.


	Introduction
	Implementation
	Running
	Basics
	Understanding Code Output
	The Initial Data File
	Unigrid Mode
	AMR (serial or parallel
	Domain Decomposition
	Checkpointing

	Shadow Hierarchy
	Compile Time Configuration

	Associated Tools

