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Papers:

I B. Bahr, B. Dittrich, FH, W. Kaminski:

Holonomy Spin Foam Models: Definition and coarse graining.
(arxiv:1208:3388),

Holonomy Spin Foam Models: Boundary Hilbert spaces and
canonical dynamics. (arxiv:soon)

I FH, W. Kaminski:

Holonomy Spin Foam Models: Asymptotic Dynamics of EPRL type
models. (arxiv: soon+ε)

Alesci, Baez, Barrett, Baratain, Bonzom, Conrady, Crane, Ding, Engle,
Fairbairn, Freidel, Han, Kisielowski, Krasnov, Lewandowski, Livine,
Oeckel, Oriti, Pereira, Perez, Pfeiffer, Reisenberger, Rovelli, Smerlak,
Speziale, Wieland, Zhang, . . . 1 [since 1998, ongoing].

1Apologies to everyone I forgot.
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Holonomies throughout History

Holonomy formulations have been central to understanding spin foams
throughout their development.

90s Ooguri, Boulatov, Reisenberger, Rovelli

00s Perez, Oriti, Williams, Pfeiffer, Oeckl

10s Rivasseau, Gurau, Ben Geloun, Bonzom, Smerlak

. . .
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The main results

The Holonomy Spin Foam Partition Function

Z?(C) =

∫ ∏
e⊂f

dgef

(∏
v⊂e

dgev

)∏
e⊂f

E?(gef )

∏
f

δ(gf )

 .

with ? ∈ {BC,BF,BOγ ,EPRLγ ,FKγ , . . . }, not KKL.

I Maximal number of structural assumptions = Minimal number of
parameters.

I Natural common boundary space for all models.

I Immediate generalisation to finite groups (without studying
complicated representation theory).

I Composition of distribution is very geometric, ill defined. Use tools
from distribution theory to study partition function.
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The main results - 2

The Holonomy Spin Foam Partition Function

Z?(C) =

∫ ∏
e⊂f

dgef

(∏
v⊂e

dgev

)∏
e⊂f

E?(gef )

∏
f

δ(gf )

 .

with ? ∈ {BC,BF,BOγ ,EPRLγ ,FKγ , . . . }, not KKL.

I Not well defined (
∏
δ) due to problematic configurations with

arbitrarily large bivectors inside finite boundary.

I Any regularisation of the γ twisted models that preserves the
geometricity of the connection is flat2. FK0 is fine.

I This flatness has its origin in the incorrect twisting of the equations
on the face. We can fix this by changing the type of face amplitude.

2Except for some accidental zeros.
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The partition function - Space of parameters

Z?(C) =

∫ ∏
e⊂f

dgef

(∏
v⊂e

dgev

)∏
e⊂f

E?(gef )

∏
f

δ(gf )

 .

gf = gv1e1ge1fge1v2gv2e2 . . . ge5v1
g̃f = gv1e1ge1v2gv2e2 . . . ge5v1

H ⊂ G, Lie or finite. g ∈ G, h ∈ H,

E(g) = E(g−1),
E(hgh−1) = E(g),

From now on: G = Spin(4), H = SU(2)
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The partition function - Equivalence to EPRL

Here ρ is a G Irrep, k is an H Irrep, ι is an H intertwiner and I(ρ, k) is
an injection.
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The EPRL distribution

The EPRL simplicity distribution is thus

EγEPRL(g) =
∑
k

dim(ρk) trρk
(
Dρk(g) I(ρk, k)I(ρk, k)†

)
,

with ρk =
(

1+γ
2 k, |1−γ|2 k

)
.

→ Suggests generalization to finite groups3: Characterize the critical
manifold M of E group theoretically. Mimic with ΘM in the finite case.

3As the usual construction is all about the
Lie algebra, this is hard otherwise!
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The critical manifolds

Characterize the critical manifold M of E group theoretically:

I BF: 1

I BC: SU(2)diag = H

I EPRLγ/FKγ :
Mγ = {g ∈ Spin(4)|∃L ∈ su(2) : g = (exp(L), exp(−γL))}.

Thus the generalizations to finite groups H ⊂ G are:

I BF: E(h) = Θe(h) with e being the trivial subgroup consisting of
the identity element.

I BC: E(h) = ΘH(h)

I EPRLC/FKC : EC(h) = ΘMC
(h), where C is a cyclic subgroup of G

and MC = H .ad C.

Study renormalization numerically. First results: Non-trivial fix points on
hierarchical lattices. Models like to flow to BF .
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Analysis of distributions

Can be much more sophisticated in the study of distributions:

The wave front set of a distribution f (roughly)

The wavefront set WF (f) ⊂ T ∗G are the phase space elements (g, p)
such that for semiclassical states ψ(g, λp) peaked on them, 〈ψ(g, λp)|f〉
is not exponentially suppressed for λ→∞.

The wave front set of a distribution f (precisely)

Let f be a distribution over M , f ∈ D(M). The wave front set
WF (f) ⊂ T ∗M of A is defined as the complement of the set of
elements {(x, p) ∈ T ∗M \ {0}} such that there is a local coordinate
patch U × V with

∃U × V 3 (x, p), ∀φ ∈ C∞0 (U), ∀p̃ ∈ V :∫
U

eiλp̃x̃φ(x̃)f(x̃) dx̃ = O(λ−∞)
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WF - Properties

These behave geometrically under composition:

I f(g, g′) = f̃(gg′) → WF (f) enforces good parallel transport
between g and g′, p = g . p′.

I f(g) =
∫

dg′f1(g, g′)f2(g, g′)f3(g, g′) . . . → WF (f) is
WF (f1) +WF (f2) +WF (f3) . . . plus closure:

p′1 + p′2 + p′3 + · · · = 0.

Only well defined if

p1 = p2 = p3 = · · · = 0 =⇒ p′1 = p′2 = p′3 = · · · = 0

It can be shown that WF (EEPRLγ ) are the pairs (g, p) such that p is
twisted simple and g is generated by a multiple of ∗p.
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The wave front set of Z

Main statement
〈ψλ|Z〉 is exponentially small unless ψλ is peaked on phase space points
that occur as the boundary of the set of equations below.

At the vertex we have

pvee′ = −pve′e,
pvee′ = gve . p

e
vf .

At the edge we obtain

pevf is twisted simple∑
f3e

pevf = 0,

∃ξef s.t. gef = exp(ξef ∗ p̂evf ).

And on the face we have

gf . p
v
e′e = pve′e,

g̃f . p
v
e′e = pve′e,

gf = 1 or pevf = 0.
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The geometric interpretation - 1

f = (. . . v3, e3, v4, e4 . . . )

tef = Gef t
e
f

Ne
v = −Ne

v′ = Gef Gev′N
v′

e′ .

tef = Gev′ t
v′

ee′

Ne
v′ = Gev′ N

v′

e .

with (v, e, v′, e′) ⊂ f
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The geometric interpretation - 2

Now with Bevf and Bvee′ the bivectors associated to tevf and tvee′ we have
the following geometric equations:

At the vertex we have

Bvee′ = −Bve′e,
Bvee′ = Gve . B

e
vf .

At the edge we obtain

Bevf is simple∑
f3e

Bevf = 0,

∃ξef s.t. Gef = exp(ξef ∗ B̂evf ).

And on the face we have

Gf . B
v
e′e = Bve′e,

G̃f . B
v
e′e = Bve′e.

Gf = 1.
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The geometric interpretation - Let’s twist

Use Tγ = 1
2 (1 + γ∗), invertible. Commutes with adjoint group action.

Acting on the equations above yields:

At the vertex we have

Bvee′ = −Bve′e,
Bvee′ = Gve . B

e
vf .

At the edge we obtain

Bγevf is twisted simple∑
f3e

Bγevf = 0,

∃ξef s.t. Gγef = exp(ξef ∗ B̂γevf ).

And on the face we have

Gγf . B
v
e′e = Bve′e,

G̃f . B
v
e′e = Bve′e.

Gγf = ???.
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The geometric interpretation - Flatness

The untwisted Gev and Gef do not create a rotation in the plane of the
triangle, but Gγef do. Gγf = 1 sets this rotation to the identity. As the
rotation in the plane is proportional to the rotation orthogonal to the
plane, and the rotation orthogonal to the plane is the deficit rotation, the
deficit angle is set to zero:

Gγf = 1→ γΘ = 0 mod 2π

To allow for rotations on the plane of the triangle we need to modify the
face identity as such:

The twisted face equation

Gγf = (γ∗) . G̃f .
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The partition function - Fixing flatness

Thus δ(gf )→ Dγ(gf , g̃f ):

The corrected Holonomy Spin Foam Partition Function

Zγ(C) =

∫ ∏
e⊂f

dgef

(∏
v⊂e

dgev

)∏
e⊂f

Eγ(gef )

∏
f

Dγ(gf , g̃f )


We have a proposal using FK like construction.
BUT: Appears almost certain we lose the LQG Hilbertspace4.

Still: A new Hilbert space appears. L
(
G#(ve)/(G#v ×H#e)

)
universal

to all H ⊂ G, all boundaries (without the usual topological restrictions).

4I never promised you a rose garden.
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The partition function - Regularisation

Most of the above is “if I decide to ignore that this isn’t well defined”.
The wave front set allows us to study how to make it well defined (wip).
The problem are configurations for which p can become arbitrary large in
the interior while remaining finite on the boundary:

BF: The theory contains an unconstrained SU(2) sector. Thus
regularizing the above theory is at least as hard as regularizing
SU(2) BF theory. We know from Bonzom and Smerlak that this is
not possible on the 2-complex alone. Construction ala Bahr might
work for the observables though.

Diffeos: If we have a geometric flat configuration in the interior, with an
internal vertex, we have vertex translation symmetry that allows us
to move this vertex arbitrarily far out.

Are there more? What ambiguities occur when extending the distribution
to these configurations? If the connection gev stays geometric, the
flatness persists!
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Conclusions

What’s new:

1. First analysis of the partition function without assumptions on the
interior.

2. Makes some generalizations obvious that are hard to see in the spin
picture.

3. New boundary Hilbert space that is common to all models based on
groups G, H, and allows gluings on arbitrary graphs, and study of
transfer operator.

ToDo:

1. Lorentzian (fate of flatness).

2. Spinor formulation should be natural (WF sets play nice with
symplectic reduction).

3. Study other simplicity constraints (holomorphic).

4. Study extension and it’s ambiguities.

5. Take continuum limit!
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Thank You!

The one issue which still needs to be addressed in order for the state sum
we are proposing to be a candidate for a quantum theory of gravity is
how probability amplitudes computed with it behave as we refine the

triangulation.
– Barrett and Crane in ’98
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