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What is Quantum Geometrodynamics?

Classical Basics

• Earliest approach to the quantization of general relativity
(DeWitt ’67, Arnowitt et al. ’62)

• Start from classical Hamiltonian formulation

• Canonical variables:
Spatial metric qab(x) and conjugate momentum pab(x)

• First class system of Hamiltonian and diffeomorphism constraints:

H =
1
√
q

(
qacqbd −

1
n − 1

qabqcd

)
pabpcd −√qR,

Da = −2Dbp
b
a

• Hamiltonian fully constrained
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What is Quantum Geometrodynamics?

Quantization

• Naive canonical quantization:

q̂ab(x)Ψ[qab] = qab(x)Ψ[qab], p̂ab(x)Ψ[qab] = −i
δΨ[qab]

δqab(x)

• Implementation of constraints in the quantum theory:

H(q̂, p̂)Ψ = 0 Da(q̂, p̂)Ψ = 0
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What is Quantum Geometrodynamics?

Open Questions

• How can we make sense of non–linear functions such as H(q̂, p̂) of
operator–valued distributions q̂ab(x) and p̂ab(x)?

• What Hilbert space do the wave–functionals Ψ[qab] belong to?

• How can we enforce that q̂ab(x)sasb is a positive operator for all s?

Failure to address these and other issues led to the abandonment of
quantum geometrodynamics

(Kiefer ’07, Isham ’91)
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Other approaches

... and led to the birth of alternative approaches:

• Canonical LQG (Thiemann ’07)

• Spin foams (Perez ’03, Rovelli ’07)

• Group field theory (Oriti ’09)

• Causal dynamical triangulations (Loll ’20)

• ...

Common theme: Reformulate the theory and then adopt lattice
regularizations in order to gain non–perturbative control

A lattice regularization in the original ADM variables has never been
tried!
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Overview

1. Motivation ✓

2. Forward Solutions

2.1 A Regularization Scheme

2.2 Quantum Theory with Positive–Def. Metric

3. Representation of Gauge Transformations

4. Continuum Limit

5. Summary and Outlook
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2. Forward Solutions

2.1. A Regularization Scheme
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2.1 Forward Solutions – A Regularization Scheme

General Idea
Regularization
• IR: Torus as spatial manifold
• UV: Restrict phase space of classical geometrodynamics to piecewise

constant fields on a cubic lattice
• Replace derivatives ∂a by finite differences ∆a

Implementation
• Evaluate constraints on restricted phase space
• Compute lattice corrections to constraint algebra
• Compute constraint algebra
• Quantize and study continuum limit
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2.1 Forward Solutions – A Regularization Scheme
Example in two spatial dimensions

a
Restrict phase space of field variables
qab(x , y), p

cd(x , y) to piecewise
constant fields, e.g.:

qab(x) =
N∑

X ,Y=1

qXYab χXY (x)

• Associate lattice degrees of freedom qXYab to the lattice site (X ,Y )

• Lattice degrees of freedom inherit Poisson bracket algebra from
continuum fields:{

qX1Y1
ab , pcdX2Y2

}
=

1
ϵ2
δ(ca δ

d)
b δ

X2
X1
δY2
Y1

• Torus regularization implies periodic boundary conditions

8 / 25



2.1 Forward Solutions – A Regularization Scheme
Example in two spatial dimensions

a
Restrict phase space of field variables
qab(x , y), p

cd(x , y) to piecewise
constant fields, e.g.:

qab(x) =
N∑

X ,Y=1

qXYab χXY (x)

• Associate lattice degrees of freedom qXYab to the lattice site (X ,Y )

• Lattice degrees of freedom inherit Poisson bracket algebra from
continuum fields:{

qX1Y1
ab , pcdX2Y2

}
=

1
ϵ2
δ(ca δ

d)
b δ

X2
X1
δY2
Y1

• Torus regularization implies periodic boundary conditions

8 / 25



2.1 Forward Solutions – A Regularization Scheme

Evaluation of the constraints on the restricted phase space yields lattice
regularized constraints:

H[N] = ϵ2
∑
XY

NXY

(
1
√
q

(
qacqbd −

1
n − 1

qabqcd

)
pabpcd −√qR

)XY

Da[N
a] = ϵ2

∑
XY

Na
XY

(
−2∆b(qacp

cb) + (∆aqbc)p
bc
)XY

Note: Chain rule for finite differences acquires extra term proportional to
lattice constant

⇒ necessity of a choice regarding the order of execution
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2.1 Forward Solutions – A Regularization Scheme

Constraint algebra on the lattice acquires extra terms:{
D[M⃗],D[N⃗]

}
= D[LM⃗N⃗] + ϵADD(M⃗, N⃗),{

D(N⃗ ),H[N]
}
= H(LN⃗N) + ϵADH(N⃗,N),

{H[M],H[N]}= D[F (M,N)] + ϵAHH(M,N)

• First class property broken
• Unphysical degrees of freedom
• Suppressed on fine lattices ϵ→ 0

Hint for continuum limit: Tune the limit such that long time evolutions
are matched with sufficiently fine lattice spacings in order to control the
deviation from the constraint surface
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2. Forward Solutions

2.2. Quantum Theory with Pos.–Def. Metric
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2.2 Forward Solutions – Quantum Theory

Standard Schrödinger Representation

(q̂XYab ψ)(q) = qXYab ψ(q)

(p̂abXYψ)(q) = −i
∂

∂qXYab

ψ(q)

with ψ(q) ∈ H = L2
(
R3,dqab

)
for each lattice site (X ,Y )

Satisfy standard commutation relations[
q̂X1Y1
ab , p̂cdX2Y2

]
=

1
ϵ2
δ(ca δ

d)
b δ

X2
X1
δY2
Y1
,[

q̂X1Y1
ab , q̂X2Y2

cd

]
=

[
p̂abX1Y1

, p̂cdX2Y2

]
= 0

States can have support on non–positive definite metrics – causal
structure lost!
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2.2 Forward Solutions – Quantum Theory

Our idea of using a different representation
• ... that ensures positive–definiteness
• but keeps the standard commutation relations

Cholesky Decomposition
Every positive definite matrix q can be decomposed into the product

q = uTu,

where u is an upper triangular matrix with positive diagonal elements.
This decomposition is unique.

Note that UT+(2,R) is a Lie group.
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2.2 Forward Solutions – Quantum Theory

Use this Lie group UT+(2,R) to construct a Hilbert space:

H = L2(UT+(2,R), ρ(u)du)

where ρ(u) is the left Haar measure associated with UT+(2,R)

Representation of q̂XYab on H

(q̂11ψ)(u) = u2
11ψ(u),

(q̂12ψ)(u) = u11u12ψ(u),

(q̂22ψ)(u) =
(
u2

12 + u2
22
)
ψ(u).

Realizes positive–definiteness of the spatial metric

How to represent the momentum operator?
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2.2 Forward Solutions – Quantum Theory

First, define generators of shifts in positive q–directions

U(sab)q̂abU(sab)
T = q̂ab + sab,

where sab > 0. The following U(s) does the job

(U(s)ψ)(u) =

√
det Jq(u)

det Jq(gs(u))

ρ(gs(u))

ρ(u)
ψ(gs(u)),

where gs is a diffeo on UT+(2,R) with gs(u) = q−1(q(u) + s).

One can show that
{
U(s) ∈ B(H), s ∈ R3

}
forms a strongly continuous

contraction semigroup.
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2.2 Forward Solutions – Quantum Theory

To define the momentum operators, we use that the contraction
semigroup

{
U(s) ∈ B(H), s ∈ Rn(n+1)/2

}
admits the infinitesimal

generators

i p̂ab ψ =

(
d

dsab
U(s)ψ

)
s=0

.

This yields

i p̂11 =
1

2u11

∂

∂u11
− u12

2u2
11

∂

∂u12
+

u2
12

2u2
11u22

∂

∂u22
− 2u2

22 + u2
12

2u2
11u

2
22

,

i p̂12 =
1
u11

∂

∂u12
− u12

u11u22

∂

∂u22
+

u12

u11u2
22
,

i p̂22 =
1

2u22

∂

∂u22
− 1

2u2
22
.
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2.2 Forward Solutions – Quantum Theory

With this representation, q̂XYab and p̂cdXY satisfy the standard commutation
relations [

q̂X1Y1
ab , p̂cdX2Y2

]
= iδ(ca δ

d)
b δ

X2
X1
δY2
Y1
,[

q̂X1Y1
ab , q̂X2Y2

cd

]
=

[
p̂abX1Y1

, p̂cdX2Y2

]
= 0.

At the same time, q̂XYab is positive definite in the sense that

q̂abs
asb

is a positive operator for any s.
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3. Representation of Gauge Transformations
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3. Representation of Gauge Transformations

• Restrict to theories whose constraints form a Lie algebra (e.g., the
diffeo constraints)

• For illustrative purposes consider a scalar field theory

Classical continuum theory

General form of continuum constraint:

D[N] =

∫
T
D(ϕ(x), ∂ϕ(x), π(x), ∂π(x))f (x)dx

Satisfies first class Poisson bracket algebra:

{D[f ],D[g ]} = D[F (f , ∂f , g , ∂g)]
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3. Representation of Gauge Transformations

Classical lattice theory

Use lattice discretization ϕn(x) =
∑Nn

k=1 ϕnkχXk
(x). Lattice constraints

are given by:

Dn[fn] =
Nn∑
k=1

D(ϕnk ,∆nϕnk , πnk ,∆
nπnk)fnkϵn

Algebra on the lattice:

{Dn[fn],Dn[gn]} = Dn[Fn(fn,∆
nfn, gn,∆

ngn)] + ϵnGn(fn,∆
nfn, gn,∆

ngn)
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3. Representation of Gauge Transformations

Solve Hamilton’s equations of motion on the lattice:

dϕn[gn]
ds

= {ϕn[gn],Dn[fn]}

Solution only depends on inital data for ϕnk if Dn[fn] is of first order in
πnk . The Hamiltonian flow φ

Dn[fn]
s can be interpreted as an approximate

gauge transformation.
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3. Representation of Gauge Transformations

Quantum theory

Define approximate gauge transformation in the quantum theory on the
lattice:(
U
(
φDn[fn]
s

)
ψn

)
((ϕnk)k) =

√
det

(
J
φ

Dn [fn ]
s

((ϕnk)k)
)
ψn(φ

Dn[fn]
s ((ϕnk)k))

Forms a unitary one–parameter group ⇒ generator exists
See Thiemann ’22 for related approach
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4. Continuum Limit
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4. Continuum Limit

The Weyl algebra on the lattice is spanned by the exponentiated
canonical variables:

Wn = span{eϕ̂n[fn]+π̂n[gn]}

Let W = lim←−Wn be the inverse limit with identifications

ϕ̂n+1,2k fn+1,2k + ϕ̂n+1,2k+1fn+1,2k+1 ≡ ϕ̂nk(fn+1,2k + fn+1,2k+1)

Choose a sequence ψn of states on every lattice. Define

ωn

(
eϕ̂n[fn]+π̂n[gn]

)
:=

〈
ψn, e

ϕ̂n[fn]+π̂n[gn]ψn

〉
.

If ωn forms Cauchy sequence, define

ω
(
lim

n→∞
eϕ̂n[fn]+π̂n[gn]

)
:= lim

n→∞
ωn

(
eϕ̂n[fn]+π̂n[gn]

)
.

Use GNS–construction to obtain continuum Hilbert space.
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5. Summary and Outlook
Summary
• Lattice regularized version of quantum geometrodynamics
• Non–standard representation of the canonical commutation relations

with inherently positive definite metric
• Representation of approximate gauge transformations on the lattice
• Criterion for existence of continuum limit

Outlook
• Explore converging sequences of lattice states
• Study continuum limit of approximate gauge transformations
• Goal: Find a strongly continuous representation of the

diffeomorphism group
• Use generalized Weyl transformation to represent lattice

Hamiltonian constraints
• Study continuum limit (probably involves renormalization

techniques)
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Thank you for your attention!


