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What is Quantum Geometrodynamics?

Classical Basics

® Earliest approach to the quantization of general relativity
(DeWitt '67, Arnowitt et al. '62)

® Start from classical Hamiltonian formulation

® Canonical variables:
Spatial metric g.p(x) and conjugate momentum p??(x)
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What is Quantum Geometrodynamics?

Classical Basics

Earliest approach to the quantization of general relativity
(DeWitt '67, Arnowitt et al. '62)

Start from classical Hamiltonian formulation

Canonical variables:
Spatial metric g.p(x) and conjugate momentum p??(x)

First class system of Hamiltonian and diffeomorphism constraints:

1 1 b
M=z <qacqbd - n_lqachd> p*°p™ — /4R,
D, = —2Dyp”,

Hamiltonian fully constrained
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What is Quantum Geometrodynamics?

Quantization

® Naive canonical quantization:

(V1] = as(Vlatl, B00Van] = -5 0]

® Implementation of constraints in the quantum theory:

H(§,p)V =0  Dy(§,p)V =0
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What is Quantum Geometrodynamics?

Open Questions

® How can we make sense of non-linear functions such as H(§, p) of
operator—valued distributions G.,(x) and p?°(x)?
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What is Quantum Geometrodynamics?

Open Questions

® How can we make sense of non-linear functions such as H(§, p) of
operator—valued distributions G.,(x) and p?°(x)?

® What Hilbert space do the wave—functionals W[q.s] belong to?
® How can we enforce that §.p(x)s?s” is a positive operator for all s?

Failure to address these and other issues led to the abandonment of

quantum geometrodynamics
(Kiefer '07, Isham '91)
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Other approaches

.. and led to the birth of alternative approaches:

Canonical LQG (Thiemann '07)

® Spin foams (Perez '03, Rovelli '07)

® Group field theory (Oriti '09)
® Causal dynamical triangulations (Loll '20)
[ )
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Common theme: Reformulate the theory and then adopt lattice
regularizations in order to gain non—perturbative control
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Other approaches

.. and led to the birth of alternative approaches:

Canonical LQG (Thiemann '07)

Spin foams (Perez '03, Rovelli '07)
Group field theory (oriti '09)
Causal dynamical triangulations (Loll '20)

Common theme: Reformulate the theory and then adopt lattice
regularizations in order to gain non—perturbative control

A lattice regularization in the original ADM variables has never been
tried!
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2. Forward Solutions

2.1. A Regularization Scheme
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2.1 Forward Solutions — A Regularization Scheme

General Idea

Regularization
® |R: Torus as spatial manifold

® UV: Restrict phase space of classical geometrodynamics to piecewise
constant fields on a cubic lattice

® Replace derivatives 9, by finite differences A,
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2.1 Forward Solutions — A Regularization Scheme

General Idea

Regularization
® |R: Torus as spatial manifold

® UV: Restrict phase space of classical geometrodynamics to piecewise
constant fields on a cubic lattice

® Replace derivatives 9, by finite differences A,

Implementation
® Evaluate constraints on restricted phase space
e Compute lattice corrections to constraint algebra
® Compute constraint algebra

® Quantize and study continuum limit

7/25



2.1 Forward Solutions — A Regularization Scheme

Example in two spatial dimensions

® (/] ¢ @ . . .
c Restrict phase space of field variables
€ qab(x, y), p<(x, y) to piecewise
L] ® @ @ .
constant fields, e.g.:
® 0 @ @ N
a(x) = Y @ xxv (%)
0 o @ @ X,y=1
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2.1 Forward Solutions — A Regularization Scheme

Example in two spatial dimensions

® (/] ¢ @ . . .
c Restrict phase space of field variables
€ qab(x, y), p<(x, y) to piecewise
L] ® @ @ .
constant fields, e.g.:
® 0 @ @ N
a(x) = Y @ xxv (%)
0 o @ @ X,y=1

® Associate lattice degrees of freedom g to the lattice site (X, Y)

® Lattice degrees of freedom inherit Poisson bracket algebra from
continuum fields:

1
X4 Y, d) < Xs < Y-
{qaé 17P)C<ZY2} = 675gc5b)5xf5vf

® Torus regularization implies periodic boundary conditions
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2.1 Forward Solutions — A Regularization Scheme

Evaluation of the constraints on the restricted phase space yields lattice
regularized constraints:

HIN] = € Z NXY <\;5 (qacqbd

XY

1 XY
1qachd> ab Cd \FR>

XY
DN = > Niy (—285(qacp™) + (Daqse)p™)
XY

9/25



2.1 Forward Solutions — A Regularization Scheme

Evaluation of the constraints on the restricted phase space yields lattice
regularized constraints:

XY
1 1 ab e
H[N] =é E NXY <\/a (qacqbd 1qachd> bpd \FR>

XY

DN = > Niy (—285(qacp™) + (Daqse)p™)
XY

XY

Note: Chain rule for finite differences acquires extra term proportional to
lattice constant

= necessity of a choice regarding the order of execution
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2.1 Forward Solutions — A Regularization Scheme

Constraint algebra on the lattice acquires extra terms:
{ DN, DIN | = DIL ] + € App (M, N),

{D(A7), H[/\/]}: H(LGN) + € Apa (N, N),
{H[M], H[N]}= D[F (M, N)] + € Ayz (M, N)
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2.1 Forward Solutions — A Regularization Scheme

Constraint algebra on the lattice acquires extra terms:
{ DN, DIN | = DIL ] + € App (M, N),

{D(A7), H[N]}: H(LGN) + € Apa (N, N),
{H[M], H[N]}= D[F (M, N)] + € Ayz (M, N)

® First class property broken
® Unphysical degrees of freedom
® Suppressed on fine lattices € — 0
Hint for continuum limit: Tune the limit such that long time evolutions

are matched with sufficiently fine lattice spacings in order to control the
deviation from the constraint surface
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2. Forward Solutions

2.2. Quantum Theory with Pos.—Def. Metric
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2.2 Forward Solutions — Quantum Theory

Standard Schrédinger Representation

(825 ¥)(q) = %% ¥(q)

(B2 0)(q) = —fafxbywq)

with ¢(q) € H = L2 (R3,dq.p) for each lattice site (X, Y)
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2.2 Forward Solutions — Quantum Theory

Standard Schrédinger Representation

(825 ¥)(q) = %% ¥(q)

(B2 0)(q) = —faq‘ibywq)

with ¢(q) € H = L2 (R3,dq.p) for each lattice site (X, Y)
Satisfy standard commutation relations
1
(57 s = 00007,

AX1Y1 aXaYa| _ [aab ~cd _
[qab 1 Aed :| - [pX1Y1’szYz] =0

States can have support on non—positive definite metrics — causal
structure lost!
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2.2 Forward Solutions — Quantum Theory

Our idea of using a different representation

e . that ensures positive—definiteness
® but keeps the standard commutation relations

Cholesky Decomposition
Every positive definite matrix g can be decomposed into the product

q=uu,

where u is an upper triangular matrix with positive diagonal elements.

This decomposition is unique.

Note that UT (2, R) is a Lie group.
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2.2 Forward Solutions — Quantum Theory

Use this Lie group UT;(2,R) to construct a Hilbert space:
M = L*(UT1(2,R), p(u)du)
where p(u) is the left Haar measure associated with UT; (2, R)

Representation of XY on H

(8110)(u) = uf1¥(u),
(4129)(v) = urr 29 (u),
(G220)(u) = (635 + U3,) P(u).

Realizes positive—definiteness of the spatial metric

How to represent the momentum operator?
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2.2 Forward Solutions — Quantum Theory

First, define generators of shifts in positive g—directions
U(Sab)aab U(Sab)T = aab + Sab,

where s,, > 0. The following U(s) does the job

(U(s)wxu)ﬁ det Jo(u) _p(=u)) 0 (),

det Jo(gs(u))  p(u)

where g; is a diffeo on UT, (2, R) with gi(u) = g~ (q(u) + s).

One can show that {U(s) € B(H),s € R} forms a strongly continuous
contraction semigroup.

15 /25



2.2 Forward Solutions — Quantum Theory

To define the momentum operators, we use that the contraction
semigroup { U(s) € B(#),s € R"("+1)/2} admits the infinitesimal

generators
d
- nab
ip?° 1 = ( U(s 1/)) .
ds"’b ( ) s=0
This yields
gt — 1 0w 0 uh 9 2uf +ud
2ui1 Ouir  2u3; Quin 20 unn unp 202, u2,
A 1 9 u 0 u
lp12 _ = . 12 + 122 7
uy Oup  upiup Oty U11U3,
1 0 1
ip?2 =

— 5
2 uzo 8U22 2 us,
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2.2 Forward Solutions — Quantum Theory

With this representation, §2 and p$g, satisfy the standard commutation
relations

AX1Y1 acd co(ccd) s Xa Y-
[qal; 1’szYz} = 16‘(? 5b 6Xf6Yf’
AX1Y1 aXaYa

nab acd
(457,057 = (B, PSv.] = 0.

At the same time, G2 is positive definite in the sense that

P a.b
qabS™S

is a positive operator for any s.
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3. Representation of Gauge Transformations
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3. Representation of Gauge Transformations

® Restrict to theories whose constraints form a Lie algebra (e.g., the
diffeo constraints)

® For illustrative purposes consider a scalar field theory

Classical continuum theory

General form of continuum constraint:
DIM = [ D(6(x).06(x). (). 0m()F ()

Satisfies first class Poisson bracket algebra:

{DIf], Dlg]} = D[F(f,0f, g, g)
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3. Representation of Gauge Transformations

Classical lattice theory

Use lattice discretization ¢,(x) = Zf;l ®nkxx.(x). Lattice constraints
are given by:

N,

Dn[fn] = Z D(¢nk7 An¢nka Tnk, Anﬂ-nk)fnken
k=1

Algebra on the lattice:

{Dn[fn]7 Dn[gn]} = Dn[Fn(fm A"f,, g, A"gn)] + 6nGn(fn; A"f,, g, A"gn)
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3. Representation of Gauge Transformations

Solve Hamilton's equations of motion on the lattice:

don[gn]
5. = n|8n 7Dn 7(n
26— (6ulga). D]}
Solution only depends on inital data for ¢ if D,[f,] is of first order in
Tnk. The Hamiltonian flow cpsD”[f”] can be interpreted as an approximate

gauge transformation.
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3. Representation of Gauge Transformations

Quantum theory

Define approximate gauge transformation in the quantum theory on the
lattice:

(U (£21) :n) ((¢nk)k):\/det (4,2 ((8mii)) a2 ((S06)e))

Forms a unitary one—parameter group = generator exists
See Thiemann '22 for related approach
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4. Continuum Limit
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4. Continuum Limit

The Weyl algebra on the lattice is spanned by the exponentiated
canonical variables:

W, = Span{e$n[fn]+ﬁ'n[gn]}
Let W = I(Ln W, be the inverse limit with identifications
Ont1,2kfoi1,2k + Oni1 2k 1 1,2k41 = Onk(For1,26 + Fov1,2641)

Choose a sequence v, of states on every lattice. Define

Wn (e$"[f"]+ﬁ”[g"]> = <¢n, e$”[f"]+ﬁ”[g"]¢n> :

If w, forms Cauchy sequence, define

w ( lim eq@nm1+ﬁnlgn1) = lim w, (eq@n[fnwn[gn])_

n—o0 n—oo

Use GNS—construction to obtain continuum Hilbert space.
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5. Summary and Outlook

Summary

e Lattice regularized version of quantum geometrodynamics

® Non-standard representation of the canonical commutation relations
with inherently positive definite metric

® Representation of approximate gauge transformations on the lattice

e Criterion for existence of continuum limit

Outlook
® Explore converging sequences of lattice states
® Study continuum limit of approximate gauge transformations

® Goal: Find a strongly continuous representation of the
diffeomorphism group

® Use generalized Weyl transformation to represent lattice
Hamiltonian constraints

® Study continuum limit (probably involves renormalization
techniques)
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Thank you for your attention!



