Reviving Quantum Geometrodynamics Susanne Schander ÎNSTITUTE

> ILQG Seminar November 14, 2023

in collaboration with Thorsten Lang

arXiv:2305:09650, arXiv:2305.10097, arXiv:2311.00245 and forthcoming publications.

Classical Basics

- Earliest approach to the quantization of general relativity (DeWitt '67, Arnowitt et al. '62)
- Start from classical Hamiltonian formulation
- Canonical variables: Spatial metric q_{ab}(x) and conjugate momentum p^{ab}(x)

Classical Basics

- Earliest approach to the quantization of general relativity (DeWitt '67, Arnowitt et al. '62)
- Start from classical Hamiltonian formulation
- Canonical variables: Spatial metric q_{ab}(x) and conjugate momentum p^{ab}(x)
- First class system of Hamiltonian and diffeomorphism constraints:

$$\mathcal{H} = rac{1}{\sqrt{q}} \left(q_{ac} q_{bd} - rac{1}{n-1} q_{ab} q_{cd}
ight) p^{ab} p^{cd} - \sqrt{q} R,$$
 $\mathcal{D}_a = -2 D_b p^b_{\ a}$

• Hamiltonian fully constrained

Quantization

• Naive canonical quantization:

$$\hat{q}_{ab}(x)\Psi[q_{ab}] = q_{ab}(x)\Psi[q_{ab}], \qquad \hat{p}^{ab}(x)\Psi[q_{ab}] = -\mathrm{i}\frac{\delta\Psi[q_{ab}]}{\delta q_{ab}(x)}$$

• Implementation of constraints in the quantum theory:

$$\mathcal{H}(\hat{q},\hat{p})\Psi=0 \qquad \mathcal{D}_{a}(\hat{q},\hat{p})\Psi=0$$

Open Questions

How can we make sense of non-linear functions such as H(q̂, p̂) of operator-valued distributions q̂_{ab}(x) and p̂^{ab}(x)?

Open Questions

- How can we make sense of non–linear functions such as $\mathcal{H}(\hat{q}, \hat{p})$ of operator–valued distributions $\hat{q}_{ab}(x)$ and $\hat{p}^{ab}(x)$?
- What Hilbert space do the wave-functionals $\Psi[q_{ab}]$ belong to?

Open Questions

- How can we make sense of non-linear functions such as H(q̂, p̂) of operator-valued distributions q̂_{ab}(x) and p̂^{ab}(x)?
- What Hilbert space do the wave-functionals $\Psi[q_{ab}]$ belong to?
- How can we enforce that $\hat{q}_{ab}(x)s^as^b$ is a positive operator for all s?

Open Questions

- How can we make sense of non-linear functions such as H(q̂, p̂) of operator-valued distributions q̂_{ab}(x) and p̂^{ab}(x)?
- What Hilbert space do the wave-functionals $\Psi[q_{ab}]$ belong to?
- How can we enforce that $\hat{q}_{ab}(x)s^as^b$ is a positive operator for all s?

Failure to address these and other issues led to the abandonment of quantum geometrodynamics (Kiefer '07, Isham '91)

Other approaches

... and led to the birth of alternative approaches:

- Canonical LQG (Thiemann '07)
- Spin foams (Perez '03, Rovelli '07)
- Group field theory (Oriti '09)
- Causal dynamical triangulations (Loll '20)

Other approaches

• ...

... and led to the birth of alternative approaches:

- Canonical LQG (Thiemann '07)
- Spin foams (Perez '03, Rovelli '07)
- Group field theory (Oriti '09)
- Causal dynamical triangulations (Loll '20)

Common theme: Reformulate the theory and then adopt lattice regularizations in order to gain non-perturbative control

Other approaches

• ...

... and led to the birth of alternative approaches:

- Canonical LQG (Thiemann '07)
- Spin foams (Perez '03, Rovelli '07)
- Group field theory (Oriti '09)
- Causal dynamical triangulations (Loll '20)

Common theme: Reformulate the theory and then adopt lattice regularizations in order to gain non-perturbative control

A lattice regularization in the original ADM variables has never been tried!

Overview

1. Motivation \checkmark

Overview

- 1. Motivation \checkmark
- 2. Forward Solutions
 - 2.1 A Regularization Scheme
 - 2.2 Quantum Theory with Positive-Def. Metric
- 3. Representation of Gauge Transformations
- 4. Continuum Limit
- 5. Summary and Outlook

General Idea

Regularization

- IR: Torus as spatial manifold
- UV: Restrict phase space of classical geometrodynamics to piecewise constant fields on a cubic lattice
- Replace derivatives ∂_a by finite differences Δ_a

General Idea

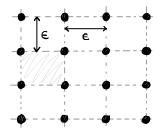
Regularization

- IR: Torus as spatial manifold
- UV: Restrict phase space of classical geometrodynamics to piecewise constant fields on a cubic lattice
- Replace derivatives ∂_a by finite differences Δ_a

Implementation

- Evaluate constraints on restricted phase space
- Compute lattice corrections to constraint algebra
- Compute constraint algebra
- Quantize and study continuum limit

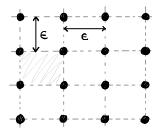
Example in two spatial dimensions



Restrict phase space of field variables $q_{ab}(x, y), p^{cd}(x, y)$ to piecewise constant fields, e.g.:

$$q_{ab}(x) = \sum_{X,Y=1}^{N} q_{ab}^{XY} \chi_{XY}(x)$$

Example in two spatial dimensions



Restrict phase space of field variables $q_{ab}(x, y), p^{cd}(x, y)$ to piecewise constant fields, e.g.:

$$q_{ab}(x) = \sum_{X,Y=1}^{N} q_{ab}^{XY} \chi_{XY}(x)$$

- Associate lattice degrees of freedom q_{ab}^{XY} to the lattice site (X, Y)
- Lattice degrees of freedom inherit Poisson bracket algebra from continuum fields:

$$\left\{q_{ab}^{X_1Y_1}, p_{X_2Y_2}^{cd}\right\} = \frac{1}{\epsilon^2} \delta_a^{(c} \delta_b^{d)} \delta_{X_1}^{X_2} \delta_{Y_1}^{Y_2}$$

Torus regularization implies periodic boundary conditions

Evaluation of the constraints on the restricted phase space yields lattice regularized constraints:

$$\mathcal{H}[N] = \epsilon^{2} \sum_{XY} N^{XY} \left(\frac{1}{\sqrt{q}} \left(q_{ac} q_{bd} - \frac{1}{n-1} q_{ab} q_{cd} \right) p^{ab} p^{cd} - \sqrt{q} R \right)^{XY}$$
$$\mathcal{D}_{a}[N^{a}] = \epsilon^{2} \sum_{XY} N^{a}_{XY} \left(-2\Delta_{b} (q_{ac} p^{cb}) + (\Delta_{a} q_{bc}) p^{bc} \right)^{XY}$$

Evaluation of the constraints on the restricted phase space yields lattice regularized constraints:

$$\mathcal{H}[N] = \epsilon^{2} \sum_{XY} N^{XY} \left(\frac{1}{\sqrt{q}} \left(q_{ac} q_{bd} - \frac{1}{n-1} q_{ab} q_{cd} \right) p^{ab} p^{cd} - \sqrt{q} R \right)^{XY}$$
$$\mathcal{D}_{a}[N^{a}] = \epsilon^{2} \sum_{XY} N^{a}_{XY} \left(-2\Delta_{b} (q_{ac} p^{cb}) + (\Delta_{a} q_{bc}) p^{bc} \right)^{XY}$$

Note: Chain rule for finite differences acquires extra term proportional to lattice constant

 \Rightarrow necessity of a choice regarding the order of execution

Constraint algebra on the lattice acquires extra terms:

$$\left\{ \mathcal{D}[\vec{M}], \mathcal{D}[\vec{N}] \right\} = \mathcal{D}[\mathcal{L}_{\vec{M}}\vec{N}] + \epsilon A_{\mathcal{D}\mathcal{D}}(\vec{M}, \vec{N}), \\ \left\{ \mathcal{D}(\vec{\mathcal{N}}), \mathcal{H}[N] \right\} = \mathcal{H}(\mathcal{L}_{\vec{N}}N) + \epsilon A_{\mathcal{D}\mathcal{H}}(\vec{N}, N), \\ \left\{ \mathcal{H}[M], \mathcal{H}[N] \right\} = \mathcal{D}[F(M, N)] + \epsilon A_{\mathcal{H}\mathcal{H}}(M, N)$$

Constraint algebra on the lattice acquires extra terms:

$$\left\{ \mathcal{D}[\vec{M}], \mathcal{D}[\vec{N}] \right\} = \mathcal{D}[\mathcal{L}_{\vec{M}}\vec{N}] + \epsilon A_{\mathcal{D}\mathcal{D}}(\vec{M}, \vec{N}), \\ \left\{ \mathcal{D}(\vec{\mathcal{N}}), \mathcal{H}[N] \right\} = \mathcal{H}(\mathcal{L}_{\vec{N}}N) + \epsilon A_{\mathcal{D}\mathcal{H}}(\vec{N}, N), \\ \left\{ \mathcal{H}[M], \mathcal{H}[N] \right\} = \mathcal{D}[F(M, N)] + \epsilon A_{\mathcal{H}\mathcal{H}}(M, N)$$

- First class property broken
- Unphysical degrees of freedom
- Suppressed on fine lattices $\epsilon \rightarrow 0$

Constraint algebra on the lattice acquires extra terms:

$$\left\{ \mathcal{D}[\vec{M}], \mathcal{D}[\vec{N}] \right\} = \mathcal{D}[\mathcal{L}_{\vec{M}}\vec{N}] + \epsilon A_{\mathcal{D}\mathcal{D}}(\vec{M}, \vec{N}),$$
$$\left\{ \mathcal{D}(\vec{\mathcal{N}}), \mathcal{H}[N] \right\} = \mathcal{H}(\mathcal{L}_{\vec{N}}N) + \epsilon A_{\mathcal{D}\mathcal{H}}(\vec{N}, N),$$
$$\left\{ \mathcal{H}[M], \mathcal{H}[N] \right\} = \mathcal{D}[F(M, N)] + \epsilon A_{\mathcal{H}\mathcal{H}}(M, N)$$

- First class property broken
- Unphysical degrees of freedom
- Suppressed on fine lattices $\epsilon \rightarrow 0$

Hint for continuum limit: Tune the limit such that long time evolutions are matched with sufficiently fine lattice spacings in order to control the deviation from the constraint surface

Forward Solutions Quantum Theory with Pos.–Def. Metric

Standard Schrödinger Representation

$$(\hat{q}_{ab}^{XY}\psi)(q) = q_{ab}^{XY}\psi(q)$$

 $(\hat{p}_{XY}^{ab}\psi)(q) = -irac{\partial}{\partial q_{ab}^{XY}}\psi(q)$

with $\psi(q) \in \mathcal{H} = L^2\left(\mathbb{R}^3, \mathrm{d}q_{ab}\right)$ for each lattice site (X, Y)

Standard Schrödinger Representation

$$(\hat{q}_{ab}^{XY}\psi)(q) = q_{ab}^{XY}\psi(q)$$
$$(\hat{\rho}_{XY}^{ab}\psi)(q) = -i\frac{\partial}{\partial q_{ab}^{XY}}\psi(q)$$

with $\psi(q) \in \mathcal{H} = L^2\left(\mathbb{R}^3, \mathrm{d}q_{ab}\right)$ for each lattice site (X, Y)

Satisfy standard commutation relations

$$\begin{split} & \left[\hat{q}_{ab}^{X_{1}Y_{1}}, \hat{p}_{X_{2}Y_{2}}^{cd}\right] = \frac{1}{\epsilon^{2}} \delta_{a}^{(c} \delta_{b}^{d)} \delta_{X_{1}}^{X_{2}} \delta_{Y_{1}}^{Y_{2}}, \\ & \left[\hat{q}_{ab}^{X_{1}Y_{1}}, \hat{q}_{cd}^{X_{2}Y_{2}}\right] = \left[\hat{p}_{X_{1}Y_{1}}^{ab}, \hat{p}_{X_{2}Y_{2}}^{cd}\right] = 0 \end{split}$$

States can have support on non-positive definite metrics – causal structure lost!

Our idea of using a different representation

- ... that ensures positive-definiteness
- but keeps the standard commutation relations

Cholesky Decomposition

Every positive definite matrix q can be decomposed into the product

$$q = u^{\mathsf{T}} u,$$

where u is an upper triangular matrix with positive diagonal elements. This decomposition is unique.

Note that
$$UT_+(2,\mathbb{R})$$
 is a Lie group

Use this Lie group $\mathrm{UT}_+(2,\mathbb{R})$ to construct a Hilbert space:

$$\mathcal{H} = L^2(\mathrm{UT}_+(2,\mathbb{R}),\rho(u)\mathrm{d} u)$$

where $\rho(u)$ is the left Haar measure associated with $UT_+(2,\mathbb{R})$

Representation of \hat{q}_{ab}^{XY} on $\mathcal H$

$$\begin{aligned} (\hat{q}_{11}\psi)(u) &= u_{11}^2\psi(u), \\ (\hat{q}_{12}\psi)(u) &= u_{11}u_{12}\psi(u), \\ (\hat{q}_{22}\psi)(u) &= \left(u_{12}^2 + u_{22}^2\right)\psi(u). \end{aligned}$$

Realizes positive-definiteness of the spatial metric

How to represent the momentum operator?

First, define generators of shifts in positive q-directions

$$U(s_{ab})\hat{q}_{ab}U(s_{ab})^{\mathsf{T}}=\hat{q}_{ab}+s_{ab},$$

where $s_{ab} > 0$. The following U(s) does the job

$$(U(s)\psi)(u) = \sqrt{\frac{\det J_q(u)}{\det J_q(g_s(u))}} \frac{
ho(g_s(u))}{
ho(u)} \psi(g_s(u)),$$

where g_s is a diffeo on $UT_+(2,\mathbb{R})$ with $g_s(u) = q^{-1}(q(u) + s)$.

One can show that $\{U(s) \in B(\mathcal{H}), s \in \mathbb{R}^3\}$ forms a strongly continuous contraction semigroup.

To define the momentum operators, we use that the contraction semigroup $\{U(s) \in B(\mathcal{H}), s \in \mathbb{R}^{n(n+1)/2}\}$ admits the infinitesimal generators

$$i\hat{\rho}^{ab}\psi = \left(\frac{\mathrm{d}}{\mathrm{d}s_{ab}}U(s)\psi\right)_{s=0}.$$

This yields

$$\begin{split} i\hat{\rho}^{11} &= \frac{1}{2u_{11}}\frac{\partial}{\partial u_{11}} - \frac{u_{12}}{2u_{11}^2}\frac{\partial}{\partial u_{12}} + \frac{u_{12}^2}{2u_{11}^2u_{22}}\frac{\partial}{\partial u_{22}} - \frac{2u_{22}^2 + u_{12}^2}{2u_{11}^2u_{22}^2},\\ i\hat{\rho}^{12} &= \frac{1}{u_{11}}\frac{\partial}{\partial u_{12}} - \frac{u_{12}}{u_{11}u_{22}}\frac{\partial}{\partial u_{22}} + \frac{u_{12}}{u_{11}u_{22}^2},\\ i\hat{\rho}^{22} &= \frac{1}{2u_{22}}\frac{\partial}{\partial u_{22}} - \frac{1}{2u_{22}^2}. \end{split}$$

With this representation, \hat{q}_{ab}^{XY} and \hat{p}_{XY}^{cd} satisfy the standard commutation relations

$$\begin{bmatrix} \hat{q}_{ab}^{X_1Y_1}, \hat{p}_{X_2Y_2}^{cd} \end{bmatrix} = i \delta_a^{(c} \delta_b^{d)} \delta_{X_1}^{X_2} \delta_{Y_1}^{Y_2}, \\ \begin{bmatrix} \hat{q}_{ab}^{X_1Y_1}, \hat{q}_{cd}^{X_2Y_2} \end{bmatrix} = \begin{bmatrix} \hat{p}_{X_1Y_1}^{ab}, \hat{p}_{X_2Y_2}^{cd} \end{bmatrix} = 0.$$

At the same time, \hat{q}_{ab}^{XY} is positive definite in the sense that

$$\hat{q}_{ab}s^{a}s^{b}$$

is a positive operator for any s.

- Restrict to theories whose constraints form a Lie algebra (e.g., the diffeo constraints)
- For illustrative purposes consider a scalar field theory

Classical continuum theory

General form of continuum constraint:

$$D[N] = \int_{\mathbb{T}} \mathcal{D}(\phi(x), \partial \phi(x), \pi(x), \partial \pi(x)) f(x) dx$$

Satisfies first class Poisson bracket algebra:

 $\{D[f], D[g]\} = D[F(f, \partial f, g, \partial g)]$

Classical lattice theory

Use lattice discretization $\phi_n(x) = \sum_{k=1}^{N_n} \phi_{nk} \chi_{X_k}(x)$. Lattice constraints are given by:

$$D_n[f_n] = \sum_{k=1}^{N_n} \mathcal{D}(\phi_{nk}, \Delta^n \phi_{nk}, \pi_{nk}, \Delta^n \pi_{nk}) f_{nk} \epsilon_n$$

Algebra on the lattice:

 $\{D_n[f_n], D_n[g_n]\} = D_n[F_n(f_n, \Delta^n f_n, g_n, \Delta^n g_n)] + \epsilon_n G_n(f_n, \Delta^n f_n, g_n, \Delta^n g_n)$

Solve Hamilton's equations of motion on the lattice:

$$\frac{\mathrm{d}\phi_n[g_n]}{\mathrm{d}s} = \{\phi_n[g_n], D_n[f_n]\}$$

Solution only depends on initial data for ϕ_{nk} if $D_n[f_n]$ is of first order in π_{nk} . The Hamiltonian flow $\varphi_s^{D_n[f_n]}$ can be interpreted as an approximate gauge transformation.

Quantum theory

Define approximate gauge transformation in the quantum theory on the lattice:

$$\left(U\left(\varphi_{s}^{D_{n}[f_{n}]}\right)\psi_{n}\right)\left((\phi_{nk})_{k}\right) = \sqrt{\det\left(J_{\varphi_{s}^{D_{n}[f_{n}]}}\left((\phi_{nk})_{k}\right)\right)}\psi_{n}\left(\varphi_{s}^{D_{n}[f_{n}]}\left((\phi_{nk})_{k}\right)\right)$$

Forms a unitary one-parameter group \Rightarrow generator exists See Thiemann '22 for related approach

4. Continuum Limit

4. Continuum Limit

The Weyl algebra on the lattice is spanned by the exponentiated canonical variables:

$$\mathcal{N}_n = \operatorname{span}\{e^{\hat{\phi}_n[f_n] + \hat{\pi}_n[g_n]}\}$$

Let $W = \lim_{n \to \infty} W_n$ be the inverse limit with identifications

$$\hat{\phi}_{n+1,2k}f_{n+1,2k} + \hat{\phi}_{n+1,2k+1}f_{n+1,2k+1} \equiv \hat{\phi}_{nk}(f_{n+1,2k} + f_{n+1,2k+1})$$

Choose a sequence ψ_n of states on every lattice. Define

$$\omega_n\left(e^{\hat{\phi}_n[f_n]+\hat{\pi}_n[g_n]}\right) \coloneqq \left\langle\psi_n, e^{\hat{\phi}_n[f_n]+\hat{\pi}_n[g_n]}\psi_n\right\rangle.$$

If ω_n forms Cauchy sequence, define

$$\omega\left(\lim_{n\to\infty} e^{\hat{\phi}_n[f_n]+\hat{\pi}_n[g_n]}\right) := \lim_{n\to\infty} \omega_n\left(e^{\hat{\phi}_n[f_n]+\hat{\pi}_n[g_n]}\right).$$

Use GNS-construction to obtain continuum Hilbert space.

5. Summary and Outlook

Summary

- Lattice regularized version of quantum geometrodynamics
- Non-standard representation of the canonical commutation relations with inherently positive definite metric
- Representation of approximate gauge transformations on the lattice
- Criterion for existence of continuum limit

Outlook

- Explore converging sequences of lattice states
- Study continuum limit of approximate gauge transformations
- Goal: Find a strongly continuous representation of the diffeomorphism group
- Use generalized Weyl transformation to represent lattice Hamiltonian constraints
- Study continuum limit (probably involves renormalization techniques)

Thank you for your attention!