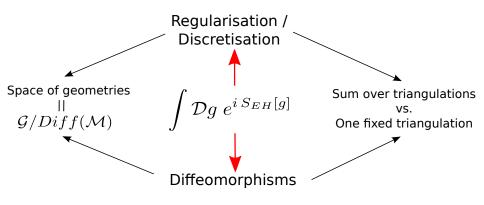
Path integral measure and triangulation independence in discrete gravity Bianca Dittrich and S.St. [arXiv:1110.6866] Phys. Rev. D 85, 044032 (2012)

Sebastian Steinhaus

Albert Einstein Institute Potsdam Canonical and Covariant Dynamics of Quantum Gravity

24th April 2012 International Loop Quantum Gravity Seminar

Introduction



Necessary to better understand relation between discrete and continuous geometries.

Measure in Euclidean Regge Calculus

Discretization of the (formal) continuum path integral [Hamber, Williams '99]:

$$I_{disc} = \int \prod_{e} dI_{e}^{2} \prod_{\Delta} V_{\Delta}^{\alpha} \exp\{-S_{R}\} \quad , \tag{1}$$

where α is *a priori* unknown.

Some ansätze are non-local [Lund, Regge '74 (unpublished)]:

$$I_{RL} = \int \prod_{e} dI_{e}^{2} \prod_{\Delta} \sqrt{\det(G_{ee'})} \exp\{-S_{R}\} \quad , \tag{2}$$

where $G_{ee'}$ is the discretised De-Witt super metric.

Teaser

By requiring triangulation independence of the path integral, we will obtain a measure similar to the asymptotics of spin foam models!

Outline

Motivation

2 Linearised Regge Calculus

3 3D Regge

- 3 2 move
- 4 1 move

4D Regge

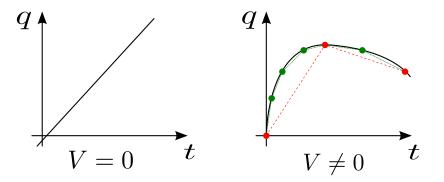
- 4-2 and 5-1 move
- 3-3 move

5 Conclusion and Outlook

Symmetries in the discrete

In general, discretisations break the symmetries (Diffeomorphisms in GR) of the continuous theory.

Example: 1D parametrised particle

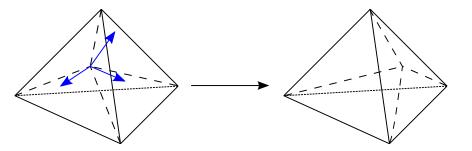


Perfect Discretisation

One can construct discretisations that respect the continuous symmetries:

- Parametrised Particle [Marsden, West '01]
- Regge Calculus without Cosmological constant [Hamber, Williams '81]
- Regge Calculus with Cosmological constant [Bahr, Dittrich '09]

Discrete (diffeomorphism) symmetries are realized by vertex translations.



Why triangulation independence? [Bahr, Dittrich, St. '11]

Discretised 1D parametrised (quantum) (an)harmonic oscillator:

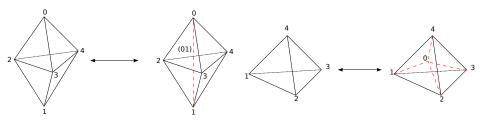
- Wilsonian Renormalisation Group Procedure
 - \rightarrow flows towards fixed point
- Fixed Point: Reparametrisation invariant!
- Starting from a discretisation invariant under vertex translations: \implies discretisation independence

Reparametrisation invariance \iff Triangulation independence

Triangulation independence in discrete gravity [Pachner '91]

Question: Assign same (path integral) amplitude to different triangulations of the same manifold?

Triangulations of the same manifold are related by a series of Pachner moves:



Goal

Achieve triangulation independence by requiring invariance under Pachner moves.

Sebastian Steinhaus (AEI)

Linearised Regge Calculus

Euclidean Path integral

Euclidean path integral for a Regge discretisation of 3D or 4D triangulation:

$$\int_{I_e|_{e\subset \partial M}} \prod_{e\subset \text{bulk}} dI_e \ \mu(I_e) \ \exp\{-S\}$$
(3)

where S is given by:

$$S := -\sum_{h \subset \text{bulk}} V_h \underbrace{\left(2\pi - \sum_{\sigma^D \supset h} \theta_h^{(\sigma^D)}\right)}_{=:\omega_h^{(\text{bulk})}} - \sum_{h \subset \text{bdry}} V_h \underbrace{\left(\pi - \sum_{\sigma^D \supset h} \theta_h^{(\sigma^D)}\right)}_{=:\omega_h^{(\text{bdry})}} \quad (4)$$

Linearising Regge

To circumvent generalised triangle inequalities, we linearise around a classical background solution $l_e^{(0)}$ and integrate over perturbations λ_e :

$$I_e = I_e^{(0)} + \lambda_e \tag{5}$$

The action expanded up to second order in λ_e :

$$S = S^{(0)}\Big|_{I_e=I_e^{(0)}} + \underbrace{\frac{\partial S}{\partial I_e}\Big|_{I_e=I_e^{(0)}}}_{=0} \lambda_e + \frac{1}{2} \frac{\partial^2 S}{\partial I_e \partial I_{e'}}\Big|_{I_e=I_e^{(0)}} \lambda_e \lambda_{e'}$$
(6)

where

$$\frac{\partial S}{\partial I_e} = -\sum_{h \supset e} \frac{\partial V_h}{\partial I_e} \omega_h = 0 \tag{7}$$

is the Regge equation of motion for the edge I_e .

The components of the Hessian are given by:

3D:

$$\frac{\partial^2 S}{\partial l_e \partial l_{e'}} = -\frac{\partial \omega_e}{\partial l_{e'}}$$
(8)
4D:

$$\frac{\partial^2 S}{\partial l_e \partial l_{e'}} = -\sum_h \frac{\partial A_h}{\partial l_{e'}} \frac{\partial \omega_h}{\partial l_e} - \sum_{h \subset \text{bulk}} \frac{\partial^2 A_h}{\partial l_e \partial l_{e'}} \omega_h^{\text{(bulk)}} - \sum_{h \subset \text{bdry}} \frac{\partial^2 A_h}{\partial l_e \partial l_{e'}} \omega_h^{\text{(bdry)}}$$
(9)

So in both cases one has to compute $\frac{\partial \omega_h}{\partial l_a}$.

Computing $\frac{\partial \omega_h}{\partial l_e}$

Exact formula for $\frac{\partial \theta_h}{\partial l_e}$ (for one *D*-simplex): [Dittrich, Freidel, Speziale '07]

$$\frac{\partial \tilde{\theta}_{kl}}{\partial I_{hm}} = \frac{1}{D^2} \frac{I_{hm}}{\sin(\tilde{\theta}_{kl})} \frac{V_h V_m}{V^2} \left(\cos(\tilde{\theta}_{kh}) \cos(\tilde{\theta}_{ml}) + \cos(\tilde{\theta}_{km}) \cos(\tilde{\theta}_{hl}) + \cos(\tilde{\theta}_{kl}) \cos(\tilde{\theta}_{kh}) \cos(\tilde{\theta}_{km}) + \cos(\tilde{\theta}_{lh}) \cos(\tilde{\theta}_{lm}) \right) \right)$$
(10)

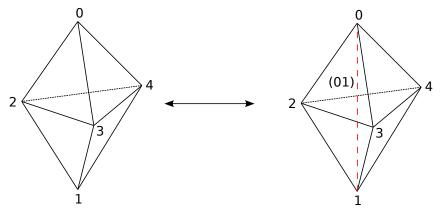
Shortcut:

• Eq. (10) for
$$(kl) = (hm)$$
: $\frac{\partial \tilde{\theta}_{kl}}{\partial l_{kl}} = \frac{1}{D(D-1)} \frac{l_{kl}V_{kl}}{V}$

- $\frac{\partial l}{\partial l'}$ under the condition that the D + 1 volume of the Pachner complex vanishes. [Korepanov '00, '01]
- Exterior curvature angles equal before and after Pachner move.

3D Regge

3-2 Pachner move



- One dynamical edge (01).
- $I_{01}^{(0)}$ is uniquely determined by the boundary data, such that $\omega_{01} = 0$.

With the ingredients mentioned above, one obtains:

Hessian matrix for 3 – 2 move:

$$H_{(ij),(km)}^{(3)} = H_{(ij),(km)}^{(2)} + (\pm 1) \frac{l_{ij}l_{km}}{6} \frac{V_{\bar{i}}V_{\bar{j}}V_{\bar{k}}V_{\bar{m}}}{\prod_{n}V_{\bar{n}}}$$
(11)

- Additional term in (11) only contains volumes and edge lenghts.
- Solving e.o.m. for λ_{01} additional term in (11) vanishes. \implies Action is invariant under 3-2 move.

Path integral for the 3-2 Pachner move

$$P_{3-2} = \int d\lambda_{01} \,\mu(I) \exp\left[-\sum_{(ij),(km)} \frac{1}{2} H^{(3)}_{(ij),(km)} \lambda_{ij} \lambda_{km}\right]$$
(12)

Invariance under 3-2 Pachner move

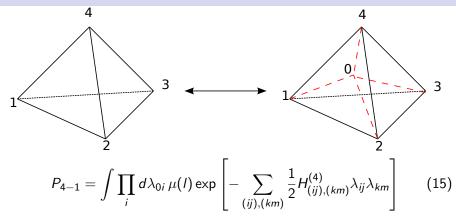
• The action is invariant under the 3-2 Pachner move:

$$P_{3-2} \propto \exp\left[-\sum_{(ij)\neq(01),(km)\neq(01)}\frac{1}{2}H^{(2)}_{(ij),(km)}\lambda_{ij}\lambda_{km}\right]$$
(13)

• The measure $\mu(I)$ is invariant if

$$\mu(I) = \frac{\prod_{e} \frac{I_{e}}{\sqrt{12\pi}}}{\prod_{\tau} \sqrt{V_{\tau}}}$$
(14)

The 4-1 move



Obstacles

3 gauge degrees of freedom

• $H^{(4)}_{(0i),(0i)}$ has the wrong sign - conformal mode problem [Gibbons, Hawking, Perry '78]

Path integral for the 4-1 Pachner move

Using the same $\mu(I)$ from the 3 – 2 move, we obtain

$$P_{4-1} = \frac{\prod_{b} \frac{l_{b}}{\sqrt{12\pi}}}{\sqrt{V_{\bar{0}}}} \exp\left[-\sum_{b,b'} H_{b,b'}^{(1)} \lambda_{b} \lambda_{b'}\right] \underbrace{\int \frac{\prod_{i \neq 1} \frac{l_{0i}}{\sqrt{12\pi}} d\lambda_{0i}}{V_{\bar{1}}}}_{\text{Infinitesimal 3D volume element}}$$
(16)

Summary 4-1 move

- Action is invariant.
- 3 gauge degrees of freedom (corresponding to a 3D volume).
- Measure $\mu(I)$ also invariant.

Summary 3D Regge

• The path integral

$$P = \int \prod_{e \subset \text{bulk}} d\lambda_e \,\mu(l) \exp\left[-\sum_{e,e'} H_{e,e'} \lambda_e \lambda_{e'}\right]$$
(17)

is triangulation independent.

• The Hessian is of the simple form (for the s - t Pachner move, s > t):

$$H_{(ij),(km)}^{(s)} = H_{(ij),(km)}^{(t)} + (\pm 1) \frac{I_{ij}I_{km}}{6} \frac{V_{\bar{i}}V_{\bar{j}}V_{\bar{k}}V_{\bar{m}}}{\prod_{v}V_{\bar{v}}}$$
(18)

• The invariant measure is given by

$$\mu(l) = \frac{\prod_{e} \frac{l_{e}}{\sqrt{12\pi}}}{\prod_{\tau} \sqrt{V_{\tau}}} \quad . \tag{19}$$

Agrees with Ponzano-Regge Asymptotics!

Sebastian Steinhaus (AEI)

Path \int measure and Δ independence

4D Regge

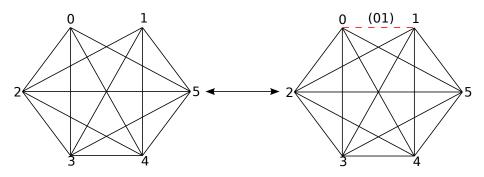
Т

The situation in 4D is more complicated:

$$\frac{\partial^2 S}{\partial l_e \partial l_{e'}} = -\sum_{h} \frac{\partial A_h}{\partial l_{e'}} \frac{\partial \omega_h}{\partial l_e} - \sum_{h \subset \text{bulk}} \frac{\partial^2 A_h}{\partial l_e \partial l_{e'}} \omega_h^{(\text{bulk})} - \sum_{h \subset \text{bdry}} \frac{\partial^2 A_h}{\partial l_e \partial l_{e'}} \omega_h^{(\text{bdry})}$$
(20)
The calculation for $\frac{\partial \omega_h}{\partial l_e}$ (restricted to the case $\omega_h^{(\text{bulk})} = 0$) is completely analogous to the 3D case.

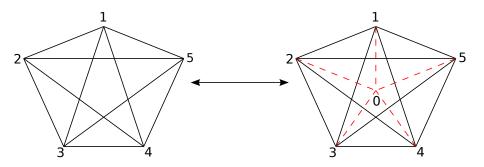
Amazingly, the result for the Hessian is almost identical to the 3D case as well!

4-2 Pachner move



- One dynamical edge (01).
- 4 bulk triangles (that contain (01)). $\omega_h^{(\text{bulk})} = 0$ is a solution to the Regge equation, but then $l_{01}^{(0)}$ uniquely determined.

5-1 Pachner move



• 5 dynamical edges, (0*i*), for *i* = 1,...,5 and 4 gauge degrees of freedom.

• As in 3D, $H_{(0i),(0i)}^{(5)}$ has wrong sign, conformal mode problem.

Results for s - t Pachner move, s > t

• The Hessian is given by:

$$H_{(op),(mn)}^{(s)} = H_{(op),(mn)}^{(t)} + (\pm 1) \frac{D}{96} \frac{I_{op}I_{mn}}{\prod_{I} V_{\bar{I}}} \frac{V_{\bar{o}}V_{\bar{P}}V_{\bar{n}}V_{\bar{n}}}{\prod_{I} V_{\bar{I}}} \quad , \qquad (21)$$

where D is a nonlocal factor:

$$D_{op}^{(s)} = \sum_{k \neq o, p} (\pm 1) \ V_{\bar{k}} \left(l_{ok}^2 + l_{pk}^2 - l_{op}^2 \right) \quad . \tag{22}$$

- Action is invariant under Pachner moves.
- To make the path integral as invariant as possible:

$$\mu(l) = \frac{\prod_{e} \frac{l_{e}}{\sqrt{192\pi}}}{\prod_{\Delta} \sqrt{V_{\Delta}}}$$
(23)

• It is not clear whether to assign *D* to a vertex or an edge!

Sebastian Steinhaus (AEI)

The action for a massless scalar field on a triangulation is given by:

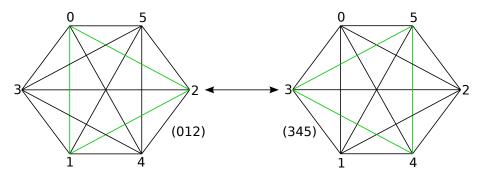
$$S = \sum_{e} \left(\phi_{s(e)} - \phi_{t(e)} \right)^2 \left(\cot(\alpha_1^{(\text{opp})}) + \cot(\alpha_2^{(\text{opp})}) \right)$$
(24)

- Action is invariant under 3-1 move, not 2-2 move.
- Gaussian integration gives a factor:

$$\left(\frac{l_{12}^2}{A_{\bar{3}}} + \frac{l_{13}^2}{A_{\bar{2}}} + \frac{l_{23}^2}{A_{\bar{1}}}\right)^{\frac{1}{2}}$$
(25)

How to assign nonlocal factor to geometrical quantities?

3-3 move



- Only boundary edges, no dynamical edge.
- The configuration is only determined by the triangle shared by all 4-simplices (green).
- Boundary configuration might describe curvature.

Results for the 3-3 move

• For the Hessian matrix one obtains:

$$H_{(op),(mn)}^{(012)} - H_{(op),(mn)}^{(345)} = (\pm 1) \ D^{(012)} \frac{I_{op}I_{mn}}{96} \frac{V_{\bar{o}}V_{\bar{p}}V_{\bar{m}}V_{\bar{n}}}{\prod_{I}V_{\bar{I}}} \quad ,$$
(26)

where $D^{(012)} = -D^{(345)} \neq 0$ in general.

Regge action is not invariant under the 3-3 move.

The measure

$$u(l) = \frac{\prod_{e} \frac{l_{e}}{\sqrt{192\pi}}}{\prod_{\Delta} \sqrt{V_{\Delta}}}$$
(27)

is only invariant if

$$V_{\bar{0}}V_{\bar{1}}V_{\bar{2}} = V_{\bar{3}}V_{\bar{4}}V_{\bar{5}} \quad . \tag{28}$$

Sebastian Steinhaus (AEI)

Path \int measure and Δ independence

Summary 4D Regge

• The Hessian is given by the following form:

$$H_{(op),(mn)}^{(s)} = H_{(op),(mn)}^{(t)} + (\pm 1) \frac{D}{96} \frac{V_{\bar{o}} V_{\bar{p}} V_{\bar{m}} V_{\bar{n}}}{\prod_{I} V_{\bar{I}}} \quad , \qquad (29)$$

where D is a nonlocal factor.

- Action is invariant for 4-2 and 5-1 move, not for 3-3 move.
- The measure (up to factors of D) is given by:

$$\mu(l) = \frac{\prod_{e} \frac{l_{e}}{\sqrt{192\pi}}}{\prod_{\Delta} \sqrt{V_{\Delta}}} \quad . \tag{30}$$

• Up to the nonlocal factor D, action and measure are invariant for the 4-2 and 5-1 move. Neither is invariant (in general) for the 3-3 move.

Conclusion and Outlook

Summary

- Goal: Triangulation independent path integral for Regge, linearised around flat background solution.
- Using the condition $\omega^{(\text{bulk})} = 0$, we derived the Hessian in terms of geometrical quantities:

$$H_{(op),(mn)}^{(s)} = H_{(op),(mn)}^{(t)} + (\pm 1) D \frac{l_{op}l_{mn}}{\text{const.}} \frac{V_{\bar{o}}V_{\bar{p}}V_{\bar{m}}V_{\bar{n}}}{\prod_{l}V_{\bar{l}}} \quad , \qquad (31)$$

where D = 1 in 3D. In 4D, D is a nonlocal factor.

- The linearised Regge action is invariant for all Pachner moves with exception of the 3 – 3 Pachner move in 4D.
- The (as) invariant (as possible) measure is given by:

$$\mu(I) = \frac{\prod_{e} \frac{I_{e}}{\sqrt{2 \cdot \text{const.}\pi}}}{\prod_{\sigma^{(D)}} \sqrt{V_{\sigma^{(D)}}}}$$
(32)

Conclusion

- 3D (linearised) Regge gravity:
 - Triangulation independent (topological theory)
 - Measure similar to spin foam asymptotics although just linearised theory!
- 4D (linearised) Regge gravity:
 - Nonlocal, but local part of path integral similar to 3D gravity. \rightarrow provide interpretation for spin foams in 4D.
 - Not invariant under all Pachner moves
 - Regge action not invariant under 3 3 move.
- Triangulation independence fixes ambiguities.
- Vertex translation symmetry \leftrightarrow triangulation independence

Outlook

• Spin foam model invariant under 5-1 move?

- Renormalization group procedure in the local couplings.
- If achieved, no further subdivision necessary / reasonable:
 - \rightarrow smallest local "atom of spacetime"
- First order Regge calculus
 - Area and angle variables are "closer" to spin foams
- Scalar Field on a triangulation
 - n-1 move in higher dimensions

Thank you for your attention!